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Abstract: Consequence-finding is important to various reasoning problems,
including knowledge compilation, abduction, nonmonotonic reasoning, and clause
maintenance systems. The incremental version of the problem is also important
because it is expensive to recompute a consequence set in response to the addi-
tion of new premises. In this paper, we present the first incremental consequence-
finding method for first-order logic to exploit incrementality at the literal-level.
We use a novel restriction called New-Literal Filtering to restrict resolution while
preserving completeness for incremental consequence-finding. We show that the
same restriction also preserves the completeness of linear resolution.

1 Introduction

Consequence-finding [14] is the problem of finding all non-tautological clauses
(up to subsumption) that follow logically from a given set of first-order clauses
(it is essentially a first-order version of the prime implicates problem).

As Inoue argued extensively [6, 5], consequence-finding is useful as a fun-
damental operation in common sense reasoning [17], diagnostics and abduc-
tion [19, 4], nonmonotonic reasoning, and truth maintenance systems [12, 20].
Consequence-finding is also useful in knowledge compilation [24, 22], program
synthesis, intelligent user interfaces, data integration [15], query optimization [2],
data-inconsistency management [8], and logical spreadsheets [9, 10].

Data-centric applications derive particularly great benefit from consequence-
finding because these applications tend to deal with a large set of fast-changing
data (represented as a set of ground literals (or atoms)) governed by a relatively
small and stable set of constraints (represented as a set of logic sentences).
Consequence-finding can be performed once on the constraints, and then the
resulting consequence set can be used many times on changing data.

Here we consider one specific application in detail. In an interactive course
planning system, there are three predicates:

1. a(x, y), meaning that a course x is an “anti-requisite” to course y,
2. p(x, y), meaning that course x is an “prerequisite” to course y, and
3. t(z, x), meaning that student z plans to take course x.

The school defines the a relation and the p relation by specifying ground
atoms. The students define the t relation in making their degree plans.



We have the following constraints that govern conforming plans (not intended
to be complete):

1. ∀xyz((a(x, y) ∧ t(z, x))→ ¬t(z, y))
2. ∀xyz((p(x, y) ∧ t(z, y))→ t(z, x))

Since the constraint set is small and stable, it is cost effective to precompute
its consequence set1:

1. {¬a(x, y),¬t(z, x)),¬t(z, y)}
2. {¬p(x, y),¬t(z, y), t(z, x)}
3. {¬p(x, y),¬t(z, y),¬a(x′, x),¬t(z, x′)}
4. {¬p(x, y),¬t(z, y),¬a(x, y′),¬t(z, y′)}

Now consider the following set of data:
{a(cs1x, cs1a), p(cs1a, cs1b), p(math1, math2), p(math2, math3), . . .
, t(s1, cs1x), t(s1, cs1b), t(math1), t(math2), . . .}.

To help students troubleshoot non-conforming plans, the system finds mini-
mally unsatisfiable subsets of the data w.r.t the constraints (pinpointing). One
such subset is
{a(cs1x, cs1a), p(cs1a, cs1b), t(s1, cs1x), t(s1, cs1b)}. cs1b requires cs1a, but
cs1a conflicts with cs1x which the student plans to take.

With the consequence set precomputed, it is straightforward to find mini-
mally unsatisfiable subsets of the data. The system attempts to find, for each
clause in the consequence set, each ground instance whose complement is a sub-
set of the data2. The operation can be accomplished, for a given clause, by
taking its complement as a conjunctive query and evaluating it on the data. In
this example, the complement of clause 3 is p(x, y) ∧ t(z, y) ∧ a(x′, x) ∧ t(z, x′).
Evaluating it on the data finds the minimally unsatisfiable subset
{a(cs1x, cs1a), p(cs1a, cs1b), t(s1, cs1x), t(s1, cs1b)} as minimal support for
the query.

The incremental version of the problem is important because in all of the uses
of consequence-finding given above, new clauses may be added and it is expensive
to recompute from scratch the closure under consequences. In reasoning tasks, it
is natural to add new hypotheses as more information becomes available. In the
course planning example, new requirements may be added. In truth maintenance
systems (and clause maintenance systems), new dependencies are added as the
real world dependencies evolve. In data integration, new view definitions are
added as new sources are added.

1 In the case that there is a finite consequence set.
2 In general, a ground subsumption condition also needs to be checked to ensure

minimality: that the particular instance of the clause contradicted is not subsumed by
another instance of a clause that is also contradicted by the data. With subsumption
testing on the consequence set, we can eliminate subsumed clauses and also identify
for each clause all other clauses that may have ground instances which subsume a
ground instance of the first clause. With this information precomputed, the ground
subsumption condition can be checked cheaply.



In this paper, we consider the incremental consequence-finding problem. That
is, given a set of clauses Sold that is already closed under consequences and a set
of new clauses Snew, find all the consequences of Sold∪Snew up to subsumption.

Most prior work on incremental consequence-finding have focused on propo-
sitional logic [11, 7, 13]. The algorithms proposed do not directly generalize to
first-order logic without losing completeness. (See section 6, related work, for
further discussion.)

Previous incremental algorithms for first-order consequence-finding add only
clause-level restrictions based on the incremental nature of the problem. These
restrictions result in only modest improvement over recomputation from scratch.
Once a new clause is used to resolve with an old clause, the resolvent is treated
as a completely new clause even if most of the literals are from the old clause.

In this paper, we describe a refinement of resolution that exploits incre-
mentality at the literal-level to prune many more redundant branches than a
clause-level restriction could.

2 Preliminaries

We assume that the reader has a basic knowledge of the resolution method for
first-order logic [21] (for a reference with modern notations, see [3]).

In this paper, a clause is a set of literals, written as comma-separated literals
enclosed by ( and ). () denotes the empty clause. A clause is interpreted as a
disjunction of the literals it contains. For easy reading, we sometimes use the
disjunction symbol ∨ in place of a comma.

Definition 1 (Clause subsumption). Let a and b be clauses. a subsumes b if
there exists a substitution σ such that aσ ⊆ b.

Definition 2 (Consequence Set). Let Σ be a set of clauses. We say a set of
clauses Π is a consequence set of Σ if:

1. Σ |= Π and
2. for any clause c such that Σ |= c and c is not a tautology, there exists a

clause d ∈ Π such that d subsumes c.

We say simply that Π is a consequence set if Π is a consequence set of itself.

The consequence-finding problem is to find, given a set of clauses S, a conse-
quence set of S. The incremental consequence-finding problem is to find, given
two sets of clauses Snew, Sold where Sold is a consequence set, a consequence
set of Snew ∪ Sold.

The method in this paper works on first-order clauses, but for the sake of
simplicity, we now look at examples with propositional clauses.

Example 1.
Snew = {(p, s)}
Sold = {(¬p,¬r), (¬q, r), (¬p,¬q)}

Sold is a consequence set. A consequence set of Snew ∪ Sold is
{(¬p,¬r), (¬q, r), (¬p,¬q), (p, s), (s,¬r), (s,¬q)}.



It is useful to note many refinements of resolution which are complete for
refutation (deriving the empty clause from an unsatisfiable set of clauses) are
not complete for consequence-finding. For example, semi-ordered resolution is
complete for refutation but incomplete for consequence-finding. For a more de-
tailed discussion, see [18].

Example 2. S = {(p,¬r), (q, r)}. Clearly, a consequence set must include (p, q),
but semi-ordered resolution can make no further progress because it requires
one of the two resolved upon literals to be the left-most literal in the containing
clause.

3 Intuition and Examples

Given two sets of clauses Snew and Sold, where Sold is already closed under
consequences (up to subsumption), the basic idea is that we need to resolve only
on literals which descend from an Snew clause. So we underline all the literals
in each Snew clause used and carry that underlining throughout the resolution
process. We require that whenever we resolve two clauses, one of the resolved
upon literals is underlined.

Example 3.
Snew = {(p, s)}
Sold = {(¬p,¬r), (¬q, r), (¬p,¬q)}

First we consider in figure 1 a resolution deduction which disobeys the New-
Literal Filtering. The deduction finds a new, unsubsumed consequence (s,¬q).

(p, s) (¬p,¬r)
↓ ↙

(s,¬r) (¬q, r)
↓ ↙ (Resolves on non-underlined literals ¬r,r!)

(s,¬q)

Fig. 1. A resolution example where the New-Literal Filtering is disobeyed.

But it is not necessary to explore such deductions. We see in figure 2 that
a resolution deduction which does obey the New-Literal Filtering and produces
the same consequence.

(p, s) (¬p,¬q)
↓ ↙

(s,¬q)

Fig. 2. A resolution example where the New-Literal Filtering is obeyed.



The New-Literal Filtering greatly increases efficiency by preventing the ex-
ploration of many unnecessary branches.

We consider a comparison to the clause-level restriction that requires each
resolution step to involve at least one clause that is new. In the process, gener-
ated resolvents are considered new (otherwise completeness is lost). We call this
restriction the New-Clause Filtering.

Using a level-saturation strategy, New-Literal Filtering and New-Clause Fil-
tering behave exactly the same in generating the first level. In each case, each
literal in each clause in Snew attempts unification with each literal in each
clause in Snew ∪ Sold. Let S1 denote the newly generated clauses at this first
level. In generating the second level, under New-Clause Filtering, each literal
in each clause in S1 attempts unification with each literal in each clause in
S1 ∪ Snew ∪ Sold. Under New-Literal Filtering, on the other hand, the method
attempts unification only on underlined literal in S1. The number of unifica-
tion attempts under New-Literal Filtering is n/m of the number of unification
attempts under New-Clause Filtering, where n is the total number of literal oc-
currences in S1 that descend from Snew and m is the total number of literal
occurrences in S1.3 A similar savings ratio holds for generating each additional
saturation level beyond S2. Because the restrictions causes fewer clauses to be
generated at each level beyond S1, the overall work saved can be exponential in
the number of levels required.

Example 4. Snew = {(p(a) ∨ s(y))}
Sold = {(¬p(x) ∨ r(x)), (t(x) ∨ ¬r(x)), (¬t(x) ∨ ¬s(x)), (¬p(x) ∨ t(x)), (¬p(x) ∨
¬s(x)), (¬r(x) ∨ ¬s(x))}

Computing the first level (New-Clause Filtering and New-Literal Filtering
behave identically on the first level):

Attempting to resolve (p(a) ∨ s(y)), on p(a) with each literal occurrence in
Sold yields: S1,1 = {(s(y) ∨ r(a)), (s(y) ∨ ¬s(a)), (s(y) ∨ t(a))}.

Attempting to resolve (p(a) ∨ s(y)), on s(y) with each literal occurrence in
Sold yields: S1,2 = {(p(a) ∨ ¬t(y)), (p(a) ∨ ¬p(y)), (p(a) ∨ ¬r(y))}.

S1 = S1,1 ∪ S1,2.
Computing the second level:

Under New-Clause Filtering, 43 clauses are generated.
Under New-Literal Filtering, only 30 clauses are generated.

For details on the clause generation, please see the appendix.

4 Resolution with New-Literal Filtering

4.1 Definition

In this section, we formalize resolution deduction with New-Literal Filtering (NL-
deduction) and prove that it is complete for incremental consequence-finding.

3 This simple analysis assumes that no indexing is used. A corresponding ratio holds
when a particular indexing scheme is used.



To give a formal definition of NL-deduction, we first define binary resolution
and factoring on clauses with underlining. Each is a straightforward extension
of the traditional definition.

Definition 3 (Clause with underlining). A clause with underlining is a
structured clause 〈s, u〉 where s is a clause (a set of literals) and u is a sub-
set of s that indicates the underlined literals.

Definition 4 (Binary NL resolution). 〈c, uc〉 is a binary NL resolvent of
〈a, ua〉 and 〈b, ub〉 if there exists la ∈ a and lb ∈ b such that:

– ¬la and lb are unifiable with a most general unifier σ,
– la ∈ ua or lb ∈ ub (one of the resolved upon literals is underlined),
– c = (aσ − {laσ}) ∪ (bσ − {lbσ}) (c is a binary resolvent), and
– uc = ((uaσ − {laσ}) ∪ (ubσ − {lbσ})) (underlining inherited).

Definition 5 (NL Factor). 〈f, uf 〉 is a factor of 〈s, us〉 if there exists l1, l2 ∈ s
such that:

– l1 and l2 are unifiable by a most general unifier σ,
– f = sσ (f is a factor of s), and
– uf = usσ (underlining inherited).

Notation. Given a set S of unstructured clauses. Let Su denote the set of
structured clauses obtained by underlining every literal in every clause in S. Let
Sn denote the set of structured clauses obtained by leaving every literal in every
clause in S non-underlined.

Finally, we give a formal definition of NL-deduction.

Definition 6 (NL-deduction).
An NL-deduction of cn from (Snew, Sold) is a resolution deduction:

〈c1, uc1〉
〈c2, uc2〉
〈c3, uc3〉
...
〈cn, ucn〉
where: For each i, letting Si = Su

new∪Sn
old∪{〈c1, uc1〉, . . . , 〈ci−1, uci−1〉}, 〈ci, uci〉

is a binary resolvent between (a factor of) a ∈ Si and (a factor of) b ∈ Si.

4.2 Completeness for incremental CF

In this section, we show that NL resolution is complete for incremental consequence-
finding. After giving some simple lemmas, we show refutation completeness for
ground clauses (theorem 1). Then we show completeness for consequence-finding
(theorem 2). Finally, we prove completeness for consequence-finding for first-
order clauses (theorem 3).



Theorem 1 (Ground refutation completeness). Given S, a set of ground
clauses. Let S = Snew ∪ Sold, where Sold is a consequence set. If S is unsatis-
fiable and () 6∈ Sold, then there is an NL-deduction of () from (Snew, Sold).

First we give a simple lemma.

Lemma 1. Let N be a set of ground unit clauses and Σ a ground consequence
set. Then if N ∪Σ is unsatisfiable, then there exists a single clause c ∈ Σ such
that N ∪ {c} is unsatisfiable.

Proof. Let d =
∨

l∈N l̃. Because N ∪ Σ is unsatisfiable, Σ |= d. There exists a
c ∈ Σ such that c ⊆ d. Then N ∪ {c} derives the empty clause and, hence, is
unsatisfiable.

Proof. (of theorem 1) For a set of clauses S, let k(S) be defined to be the total
number of occurrences of literals in S minus the total number of clauses in S.
For example, k({(p(a), q(x)), (p(a))}) = 3− 2 = 1.

We prove the result by induction on k(Snew).
Base case:

Let S = Snew ∪ Sold be an unsatisfiable set of ground clauses such that
k(Snew) ≤ 0 and S = Snew ∪ Sold. Then either () ∈ Snew or Snew con-
sists entirely of unit clauses. If () ∈ Snew, then there is a one line NL-deduction
of (). The base case holds in that subcase. So assume Snew consists entirely of
unit clauses. By lemma 1, there is a single clause C ∈ Sold such that Snew∪{C}
is unsatisfiable. Clearly there is a NL-deduction of () from 〈Snew, {C}〉.

Induction step:
Let S = Snew ∪ Sold be an unsatisfiable set of ground clauses and k(Snew) =
N > 0. Induction hypothesis: assume for any unsatisfiable set of ground clauses
T such that T = Tnew ∪ Told and Told is consequence set and k(Tnew) < N ,
there is an NL-deduction of () from 〈Tnew, Told〉.

If () ∈ S, the induction step holds. So assume () 6∈ S. That is, () 6∈ Snew
and () 6∈ Sold. Since k(Snew) > 0, there is at least one clause C ∈ Snew which
contains more than one literal.

Let S′new = Snew − {C}. Let C = (A ∨ L), where L is a literal and A is a
non-empty disjunction of literals. S′new ∪ {A} ∪ SoldandS

′
new ∪ {L} ∪ Sold are

each unsatisfiable. Furthermore, k(S′new∪{A}), k(S′new∪{(L)}) < N . Apply in-
duction hypothesis to conclude that there is an NL-deduction of () from 〈S′new∪
{A}, Sold〉 (call it D1) and an NL-deduction of () from 〈S′new∪{(L)}, Sold〉 (call
it D2).

We may replace A by C in D1 and replace each resolvent by the resolvent of
its (possibly updated) parents. That gives an NL-deduction of either () or (L)
from (Snew, Sold) (call it D3). If the conclusion of D3 is (), the induction step
holds. Otherwise, in the last line of D3, the literal L must have come from the
L that is added back to the clause A to give C = (A ∨ L). Because C ∈ Snew,
the literal L is underlined in the last line of D3. Placing D2 after D3 gives an
NL-deduction of () from (Snew, Sold).

By induction, the theorem holds.



Theorem 2 (Ground completeness of for CF). Given S = Snew ∪ Sold
a set of ground clauses and T a ground clause. Further assume that Sold is a
consequence set. Given that S logically implies T and T is not a tautology. Then
there exists an NL-deduction of T ′ from 〈Snew, Sold〉 such that T ′ ⊆ T .

First we introduce some notation and lemmas.

Notation.
For a set of clauses S and a set of literals T , ST = {c− T |c ∈ S}
(̃T ) is the complement of T . For example, (̃p, q,¬r) = {(¬p), (¬q), (r)}

Lemma 2. (Lemma 1 of [18]) Let T be a ground clause that is not a tautol-
ogy. Let S be a set of ground clauses. If S ∪ (̃T ) is unsatisfiable, then ST is
unsatisfiable.

Lemma 3. Let S be a ground consequence set. Let T be a set of ground literals.
Then ST is a consequence set.

Proof. Let c be a clause that follows from ST . There exists a clause d ⊆ c ∪ T
that follows from S. S is a consequence set. Choose r ∈ S such that r ⊆ d.
r − T ⊆ d− T ⊆ c. r − T ∈ ST , from definition. Hence, there exists a clause in
ST that subsumes c.

Proof. (of theorem 2) (Using the technique from [18])

S ∪ (̃T ) is unsatisfiable. Then by lemma 2, ST is unsatisfiable.

Clearly, ST = ST
new ∪ ST

old.

By lemma 3, ST
old is a consequence set.

So by theorem 1, there is an NL-deduction of () from 〈ST
new, S

T
old〉 (call it

D).

In D, replace each occurrence of C ′ in ST by the clause C in S from which C ′

was produced. Also replace each resolvent in the deduction D in the obvious way.
Call the new deduction D′. Let T ′ be the set of literals removed from the clauses
of S to obtain ST . D′ is an NL-deduction of T ′ from (Snew, Sold). Furthermore,
T ′ ⊆ T .

Theorem 3 (FO completeness for CF). Given S = Snew ∪ Sold a set of
(first-order) clauses and T a (first-order) clause. Further assume that Sold is a
consequence set. Given that S logically implies T and T is not a tautology. Then
there exists an NL-deduction of T ′ from 〈Snew, Sold〉 such that T ′ subsumes T .

Proof. (Modeled after theorem 2 of [18])

Lemma 4. (Theorem 1 of [23]) A ground clause C is a logical consequence of
a set S of clauses if and only if there is a finite set S′ of ground instances of
clauses in S over the Herbrand universe of S ∪ {C} such that C is a logical
consequence of S′.



We use the technique, first used in [23], of introducing new distinct constants
into the Herbrand Universe. Let x1, . . . , xn be all of the individual variables of
T , which we now write as T (x1, . . . , xn). Let b1, . . . , bn, be new distinct con-
stants not occurring in S or T . S logically implies T (x1, . . . , xn), so S also
logically implies T (b1, . . . , bn). Let H(b1, . . . , bn)be the Herbrand Universe of
S ∪ {T (b1, . . . , bn)}. By lemma 4, there exists a finite set of ground instances
S′ of S over H(b1, . . . , bn) such that S′ logically implies T (b1, . . . , bn). That is,
S′ ∪ T (b1, . . . , bn) is unsatisfiable.

Let S′ = S′new ∪ S′rem, where S′new and S′rem are a finite set of ground
instances of Snew and Sold respectively. Let S′old be a consequence set of S′rem
such that each clause in S′old is subsumed by a clause in Sold. This is possible

because each clause in S′old also follows from Sold and Sold is a consequence
set.

By theorem 2, there exists a ground NL-deduction D′, from 〈S′new, S
′
old〉,

of a clause E′(b1, . . . , bn) ⊆ T (b1, . . . , bn). In D′, replace each clause C ′ ∈ S′ by
the clause C ∈ S that subsumes C ′, and replace each ground resolvent of D′

by the general resolvent of its two parent clauses. The steps are removed which
have become inapplicable and unnecessary because a resolved upon literal no
longer exists in the replacing clause. The result is a general NL-deduction, from
〈Snew, Sold〉, of a clause E which subsumes E′(b1, . . . , bn).

There exists a substitution σ1, substituting {b1, . . . , bn} into the variables of
E, such that Eσ1 ⊆ E′(b1, . . . , bn) ⊆ T (b1, . . . , bn),

Let σ2 be a new substitution formed by replacing each bi in σ1 by xi. Since
S does not contain the symbols b1, . . . , bn, we conclude that

Eσ2 ⊆ T (x1, . . . , xn). That is, E subsumes T .

5 Linear resolution with New-Literal Filtering

Linear resolution [16] is a strong restriction on the resolution method which
results in a much more efficient complete proof procedure.

In this section, we show that New-Literal Filtering also preserves the com-
pleteness of linear resolution for incremental consequence-finding. We call it lin-
ear resolution with New-Literal Filtering (NLL-resolution).

Figures 1 and 2 are both examples of linear resolution deduction. Figure 2 is
also a linear resolution deduction with New-Literal Filtering.

Now we define NLL-resolution.

Definition 7 (NLL-deduction). An NLL-deduction of cn from (Snew, Sold)
is an NL-deduction:
〈c1, uc1〉
〈c2, uc2〉
〈c3, uc3〉
...
〈cn, ucn〉
where: For each i, letting Si = Su

new∪Sn
old∪{〈c1, uc1〉, . . . , 〈ci−1, uci−1〉}, 〈ci, uci〉



is a binary resolvent between (a factors of) 〈ci−1, uci−1
〉 and (a factor of) a

structured clause in Si.

5.1 Completeness for incremental CF

As in the proof of theorem 3, it is often useful to first establish the refuta-
tion completeness in the ground case before generalizing to completeness for
consequence-finding and lifting to the first-order case.

Anderson and Bledsoe proved the refutation completeness of linear resolution
(with merging and subsumption) by proving a stronger result that from a mini-
mally unsatisfiable set of clauses, there is a linear deduction of the empty clause
starting from any of the clauses. To prove the existence of a linear deduction
in the inductive step, a problem is broken into two smaller instances. Applying
an induction hypothesis, they obtain a linear deduction of a unit clause in the
first instance and a linear deduction of the empty clause starting from that unit
clause in the second instance. The two linear deductions are then pieced to-
gether to form one linear deduction of the empty clause for the original problem
instance. It is crucial here that in the second instance the induction hypothesis
asserts that there is a linear deduction from any of the clauses in the minimally
unsatisfiable set, otherwise, one may not piece together the two linear deductions
together into one linear deduction.

Anderson and Bledsoe’s technique is a powerful technique that gives a simple
and easy-to-understand proof of refutation completeness. Many authors have
used this technique to establish the completeness of other resolution procedures.
A straightforward extension of the completeness proof of linear resolution [1]
gives a completeness proof of NLL-resolution in the case of ground clauses and
a single new clause. The result is not liftable to the case of first-order clauses
and a single new clause because a single new first-order clause may correspond
to several new ground clauses in the lifting process.

Unfortunately, to prove the case of several new clauses (or even a single
new clause in the first-order case), it appears that an alternative technique is
needed because the stronger completeness statement that an empty clause may
be derived from any clause in a minimally unsatisfiable subset does not hold
for NLL-resolution. So instead, we used a technique that transforms an NL-
deduction into a linear resolution deduction while preserving the obedience to
the New-Literal Filtering.

Lemma 5 (Transformation to NLL deduction). Given a ground NL-deduction
D concluding s from 〈Snew, Sold〉, there exists a ground NLL-deduction D′ con-
cluding s′ ⊆ s from (Snew, Sold).

Proof. (sketch)
Given a non-linear NL-deduction tree (DAG) G, we may assume that G does

not contain tautologies. Consider a node c such that both of c’s parents (a and
b) are resolvents and neither is an ancestor of the other.

Figure 3 illustrates this section of the deduction tree.



Fig. 3. The original subtree. At least one of L1 and ˜L1 is underlined.

Fig. 4. A transformed subtree. At least one of L1 and ˜L1 is underlined.

At least one of b1 and b2 contains the literal ˜L2. Assume without loss of
generality that b1 does.

In an NL deduction, at least one of the two parents of c has the resolved
upon literal underlined. Assume without loss of generality that in this case a
does. Also, at least one of the two parents of b have the resolved upon literal
underlined.

We transform this section of the deduction tree by choosing a as the main
branch and moving b1 and b2 to be part of this branch.

If ˜L2 6∈ b2, we replace the subtree in figure 3 with the subtree in figure 4.
Otherwise, ˜L2 ∈ b2, then we may replace the subtree in figure 3 with the

subtree (DAG) in figure 5.
In each case, we see that the transformed subtree obeys the New-Literal Fil-

tering and the linear restriction and obtain a conclusion that subsumes the orig-



Fig. 5. A transformed subtree. At least one of L1 and ˜L1 is underlined.

inal conclusion. Furthermore, each underlined literal in the original conclusion
either remains underlined or is removed in the new conclusion. More precisely,
letting 〈so, uso〉 be the original conclusion and 〈sn, usn〉 be the new conclusion,
there exists a substitution σ such that snσ ⊆ so and uso ∩ snσ ⊆ usnσ. These
conditions ensure that transforming one section of the tree does not cause fur-
ther deduction steps that depend on the conclusion of the transformed section to
disobey the New-Literal Filtering. By applying these transformations bottom-
up (transform a later deduction step before an earlier deduction step) to each
section of the deduction tree D that does not satisfy the linear restriction4, one
obtains an NLL deduction D′ concluding s′ ⊆ s.

Theorem 4 (Completeness of NLL-resolution). Given S = Snew ∪ Sold
a set of (first-order) clauses and T a (first-order) clause. Further assume that
Sold is a consequence set. Given that S |= T but Sold 6|= T , then there exists an
NLL-deduction of T ′ from (Snew, Sold) such that T ′ subsumes T .

Proof. By theorem 2 and lemma 5, NLL-deduction is complete for ground consequence-
finding.

4 Discarding each branch that is no longer applicable because the a literal resolved
upon at the beginning of the branch no longer exists.



By the lifting procedure in theorem 3, NLL-deduction is complete for first-
order consequence-finding.

6 Related work

We have searched extensively but failed to find any work on first-order incre-
mental consequence-finding that exploits incrementality at the literal-level. The
closest piece of related work is the work on SOL resolution [6, 5]. SOL resolution
places a weak, clause-level restriction on resolution to exploit the incremen-
tal nature of the problem. The work on SFK-resolution [24] also considers the
consequence-finding problem in first-order logic, but it does not consider the
incremental version of the problem.

There is some prior work on resolution-based approaches to incremental
consequence-finding in the setting of propositional logic (often called the prime
implicates problem) [11, 13, 7]. The incremental algorithms proposed in [11] and
[7] do not generalize to the setting of first-order clauses without losing complete-
ness. That is because the central restriction used to exploit incrementality in
both cases (not resolving two new consequence clauses with each other) leads
to incompleteness in the first-order case. De Kleer is concerned with optimiz-
ing the efficiency of the method in [11] (through clever algorithms for the basic
operations) without changing the general method.

7 Conclusions and future work

In this paper, we presented New-Literal Filtering, a novel resolution restriction
that aggressively prunes the resolution tree to increase efficiency while preserving
completeness for incremental consequence-finding. New-Literal Filtering signif-
icantly reduces the number of unification attempts as well as the number of
clauses generated at each level of resolution search. The overall savings can
be exponential in the height of the search tree. Some of the savings may be
mitigated by the potential for some of the clauses New-Literal Filtering avoids
generating to be equivalent to or subsumed by previously generated clauses. If
equivalent clause elimination and subsumed clause elimination are used, these
clauses would be eliminated anyway. In this case the avoidance of these clauses
saves computation at each search level but does not reduce the branching factor.
The avoidance of clauses not subsumed by previously generated clauses would
still reduce the branching factor. Furthermore, New-Literal Filtering may al-
low us to turn off subsumed clause elimination (an expensive check) and still
maintain a manageable branching factor.

We are currently applying the results to improve several data management
systems, including Gates Information Network, an online services system that
handles event scheduling, degree planning, and people information in the com-
puter science department at Stanford University.



To achieve even greater efficiency, we are also investigating an ordered reso-
lution method that combines New-Literal Filtering with c-order restriction and
linear restriction, to incrementally find consequences in a target production field.
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Appendix

Below is the resolution process, under New-Clause Filtering, for generating S1

and S2 in example 4. The clauses that would NOT be generated under New-
Literal Filtering are marked by an asterisk after its line number.

Step Proof Justification

1 {~p(X),r(X)} S_{old}

2 {t(X),~r(X)} S_{old}

3 {~t(X),~s(X)} S_{old}

4 {t(X),~p(X)} S_{old}

5 {~s(X),~p(X)} S_{old}

6 {~r(X),~s(X)} S_{old}

7 {p(a),s(Y)} S_{new}

8 {s(V2),r(a)} Resolution: 7, 1

9 {p(a),~t(X)} Resolution: 7, 3

10 {s(V8),t(a)} Resolution: 7, 4

11 {s(V10),~s(a)} Resolution: 7, 5

12 {p(a),~p(X)} Resolution: 7, 5

13 {p(a),~r(X)} Resolution: 7, 6

14 {s(V16),t(a)} Resolution: 8, 2

15* {r(a),~t(X)} Resolution: 8, 3

16 {r(a),~p(X)} Resolution: 8, 5

17 {r(a),~r(X)} Resolution: 8, 6

18* {s(V24),~s(a)} Resolution: 8, 6



19 {~t(V28),r(a)} Resolution: 9, 1

20* {~r(X),p(a)} Resolution: 2, 9

21* {~p(X),p(a)} Resolution: 4, 9

22 {~t(V34),t(a)} Resolution: 9, 4

23 {~t(V36),~s(a)} Resolution: 9, 5

24* {t(a),~t(X)} Resolution: 10, 3

25 {s(V50),~s(a)} Resolution: 10, 3

26 {t(a),~p(X)} Resolution: 10, 5

27 {t(a),~r(X)} Resolution: 10, 6

28* {s(V62),p(a)} Resolution: 10, 9

29* {p(a),s(V10)} Resolution: 7, 11

30* {r(a),s(V10)} Resolution: 8, 11

31* {t(a),s(V10)} Resolution: 10, 11

32 {~s(a),~t(X)} Resolution: 11, 3

33 {~s(a),~p(X)} Resolution: 11, 5

34 {~s(a),~r(X)} Resolution: 11, 6

35 {~s(a),s(V10)} Resolution: 11, 11

36 {s(V80),p(a)} Resolution: 7, 12

37 {~t(V82),p(a)} Resolution: 9, 12

38* {~p(V85),r(a)} Resolution: 12, 1

39* {~p(V85),t(a)} Resolution: 12, 4

40* {~p(V85),~s(a)} Resolution: 12, 5

41 {~p(V85),p(a)} Resolution: 12, 12

42* {s(V93),p(a)} Resolution: 8, 13

43 {~r(V98),r(a)} Resolution: 13, 1

44 {~r(V98),t(a)} Resolution: 13, 4

45 {~r(V98),~s(a)} Resolution: 13, 5

46 {~r(V98),p(a)} Resolution: 13, 12


