
LG-2006-03 December 27, 2006

Object-Oriented Constraint Satisfaction Problems1

Timothy Hinrichs

Nathaniel Love

Michael Genesereth

{thinrich, love, genesereth }@cs.stanford.edu

Abstract
The object-oriented paradigm can be leveraged to make the definition of constraint satisfaction problems

more modular, which often results in reusable subproblems and fewer encoding errors. These object-

oriented constraint satisfaction problems (OOCSPs) synthesize object-oriented constructs with declarative

constraints to provide a rich, solver-independent language for describing both finite and infinite domains as

sets of structured objects. This paper introduces the concept of an OOCSP, describes algorithms for solving

certain classes of OOCSPs, and gives an undecidability result that shows not all OOCSPs can be solved.

Stanford Logic Group Technical Report LG-2006-03

Stanford Logic Group

Computer Science Department

Stanford University

353 Serra Mall

Stanford, CA 94305

ABabcdfghiejkl
1Our thanks to Akhil Sahai and Sharad Singhal for providing the inspiration for this work and for their contributions in many discussions. Lyle

Ramshaw, Nathaniel Love, and Charles Petrie also played pivotal roles in the development of OOCSPs. Our thanks to Hewlett-Packard for its

support of the work reported herein.

LG-2006-03 1

1 Introduction

The intuition behind a constraint satisfaction problem (CSP) is simple: given a set of constraints, find a solution that

satisfies all those constraints. Problems in the real-world are often phrased in just that way, and people who know of the

existence of general CSP solvers sometimes try to use that software to solve their problems, thereby avoiding problem-

specific programming. Unfortunately, not all constraint satisfaction problems fit nicely under the classic definition of

a CSP: a three-tuple<V,DV , CV >, whereV is the set of variables,DV assigns to each variable a domain of values,

andCV are the constraints on the variables. For example, some problems are naturally conceptualized as a hierarchy

of objects, where a solution to the problem is a top-level object that satisfies a set of constraints. Each object contained

within that top-level object also must satisfy certain constraints, and so on down the hierarchy.

Many people when trying to force a hierarchical problem to fit into the classical CSP framework end up flattening

the hierarchy, and in doing so throw away the structure and therefore the information inherent in that hierarchy. This

information loss is not only aesthetically unpleasing, but it can make the construction of the CSP error-prone and the

answer discovered by a CSP solver hard for people to understand. Moreover, it robs the solver of extra information

that might help it more efficiently find a solution to the problem.

The major obstacle that inhibits phrasing a hierarchical problem as a classical CSP is that the domain values in a

CSP are required to be atomic entities, e.g.a, car137, 18. Without the ability to assign variables to complex entities,

e.g.f(a, b, g(c)), the answer will never be a structured object, but rather can only be interpreted as a structured object

by the user after seeing the solution.

In response to this limitation, Sabin and Freuder[SF96] developed the notion of a Composite CSP. The input is

almost the same as a standard CSP. The difference is that a variable can either be assigned an atomic value as in a

standard CSP, or it can be assigned a solution to a subproblem. A solution to a subproblem is a variable assignment

for some subset of all the remaining variables in the original problem. Composite CSPs cleverly cast a hierarchical

problem in what is basically the standard input language for a CSP; consequently, all the powerful results on solving

CSPs can be brought to bear on Composite CSPs. The drawback is that expressing hierarchically structured problems

as a composite CSP is not always the most natural thing to do for the people who want to solve those problems.

People with a background in object-oriented programming, for example, often want to employ the same features they

use when programming, e.g. inheritance, encapsulation, and polymorphism, which Composite CSPs do not nicely

accommodate.

Our attempt at addressing these concerns abandons the classical three-tuple definition of a CSP. By developing

a new input language that has an inherent hierarchical structure, more of the beneficial features of object-oriented

programming can be brought to bear on developing, maintaining, and reusing CSP specifications. Moreover, this

language naturally allows infinite domains to be represented finitely, in a solver-independent manner. In this paper

we introduce the Object-Oriented Constraint Satisfaction Problem (OOCSP)2, a nonstandard CSP that synthesizes

several object-oriented programming features with the classical CSP formalism. OOCSPs are more expressive than

CSPs, and in fact they turn out to be undecidable in general. We demonstrate undecidability and also show decidability

results for two subclasses.

This paper contains the following contributions as well as a section on related work (Section 6).

• a formal definition for OOCSPs using logic (Section 2 and 3)

• decidability results (Section 4)

2The term Object-Oriented Constraint Satisfaction was originally used by Paltrinieri [Pal94], but his version was no more expressive than a CSP.

In this paper OOCSPs are strictly more expressive, but the name fit so well we chose to redefine it.

LG-2006-03 2

f
a

fA
fAfCB

g
e d

Figure 1: A simple object

• undecidability results (Section 5)

2 OOCSP Syntax: Object Grammars

Every object-oriented constraint satisfaction problem includes a set of objects and a set of object types. An object

belongs to a particular type if it satisfies all the constraints associated with that type. In this paper, we represent

objects symbolically and use logical sentences to represent constraints on object types.

The logical language used in what follows is a first-order language. Variables start with letters from the end of the

alphabet, e.g.x, y, z. Relation constants, function constants, and object constants will be clear from context. We will

often use constants of the formrX for relation constants and constants of the formfX for function constants.

In this paper, we assume objects can be assembled in different ways, and each assembler is labeled differently than

every other assembler. For example, the object in Fig. 1 has been built using an assembler namedfA out of objects

built using assemblersfB andfA.

Such objects can be succinctly represented as functional terms. For example, the object in Fig. 1 can be represented

as the term

fA(fB(a, fC(d, e)), fA(g))

Sets of objects that share a common pattern at the root can be represented in logic by functional terms with

variables. The set of all objects with three children where the root isfA, the first child isc, and the second child has

rootfB with two children of its own can be represented by the followingobject template.

fA(c, fB(x, y), z)

Each object can be assigned multiple types, and each type can include multiple objects. Types are represented with

relation constants. The objectfA(fB(a, fC(d, e)), fA(g)) can be assigned the typerH by writing the statement

rH(fA(fB(a, fC(d, e)), fA(g)))

Likewise, the object templatefA(c, fB(x, y), z) can be assigned the typerH with the expression

rH(fA(c, fB(x, y), z))

Statements like this one that assign object templates to types can be constrained so that they only apply to a subset

of all the objects that match the object template. The only way to differentiate objects that match the object template is

by differentiating its variables. We consider four types of constraints: type constraints, equality constraints, distinction

constraints (6=), and constructor constraints.

LG-2006-03 3

Type constraints require a variable to be instantiated with an object of a specific type. Equality constraints between

two variablesx andy requirex andy to be instantiated with two copies of the same object, i.e. their functional

representations must be syntactically identical. Distinction constraints require the objects to be syntactically different.

The fourth constraint that we consider is the constructor constraint, which will be discussed shortly.

For example,

rH(fA(x, y, z)) ⇐ rB(x) ∧ x = y ∧ rC(fC(x, a, y, x))

states that all objects matchingfA(x, y, z) are of typerH as long as (1)x is of typerB , (2) y is the same tree asx, and

(3) fC(x, a, y, x) is an object of typerC .

The last constraint is a constructor constraint. It says thatx andy are constrained so thatfC(x, a, y, x) turns out to

be an object of typerC , whererC is a type defined elsewhere. We call this constraint aconstructor constraintbecause

it is analogous to what a constructor does in common object-oriented programming languages. In languages like C++

and Java, new objects are built by calling the constructor for the object type and supplying the appropriate arguments.

That is, a constructor returns an object whose attributes are the arguments it was given.

For example, in C++, the line

p = new Pair(a,b);

assigns p to an object of type Pair whose values are a and b. Pair(a,b) is the constructor in this example.

Viewing a constructor as a constraint simply means that the constraint is satisfied only when the arguments given

to it can be used to build an object of that class. Constructor constraints are a great source of expressive power and

will be used extensively in examples; their utility will be illuminated to a greater extent later.

Rules like the one above will be calledcomposition rulesbecause they can be seen as composing larger objects out

of smaller ones. It will be useful later on to have a name for a composition rule with no constraints, i.e. of the form

rX(fX(t1, . . . , tn)); such rules will be calledsimple typing rules. Additionally, rules stating that a particular primitive

object is of a particular type, e.g.rX(a), will be calledprimitive typing rules.

Composition rules are not the only kind of rule allowed. It is natural in object-oriented languages for some types

to be defined entirely in terms of other types. Here we allow new types to be defined as the intersection of other types,

e.g.rH(x) ⇐ rG(x) ∧ rJ(x). Such rules will be calledintersection rules. The special case when the right hand side

contains a single conjunct, e.g.rA(x) ⇐ rB(x), will be called asubtying rule. Subtyping is what is usually done in

traditional object-oriented languages.
rV ehicle(x) ⇐ rAuto(x)
rV ehicle(x) ⇐ rBoat(x)
rV ehicle(x) ⇐ rPlane(x)
rAuto(x) ⇐ rCar(x)
rAuto(x) ⇐ rTruck(x)

These two kinds of rules and their special cases are sufficient to formally define the notion of an object grammar.

Definition 1 (Object Grammar). A Object Grammar is a six-tuple<N,P, T, V, S, P>.

N : finite set of symbols called the nodes, e.g.fA

P : nonempty, finite set of symbols, called the primitives, e.g.a

T : nonempty, finite set of symbols, called the types, e.g.rA

V : finite set of symbols, called the variables, e.g.x, y, z

S : an element of T, the start type

LG-2006-03 4

The setsN , P , T , andV are disjoint.

R : finite set of rules of the following three forms.

1. rA(fB(t1, . . . , tn)) ⇐ C1 ∧ . . . ∧ Ck

rA ∈ T

fB ∈ N

ti ∈ Terms[N,P, V]

Ci ∈


t = u, wheret, u ∈ V ∪ L

t 6= u, wheret, u ∈ V ∪ L

rB(t), whererB ∈ T andt ∈ Terms[N,P, V]
2. rA(b)

rA ∈ T

b ∈ P

3. rA(x) ⇐ rB1(x) ∧ . . . ∧ rBn(x)
rA, rBi ∈ T

x ∈ V

Terms[N,P, V] is the set of all functional terms (object templates) produced from the nodes, primitives, and vari-

ables, respectively. No arities are placed on the function constants, but every term is finite.

Example 1.The following example is the one used in [SF96]; we use it here both to illustrate object grammars and for

the purpose of comparison. The domain of interest is automobiles, specifically cars and the possible engines for each

car class. The car classes of interest correspond to primitive objects:{compact,midsize, fullsize, coupe, sedan}.
Each engine corresponds to a primitive object as well,{4D, 4TD, 2.0L4, 2.2L4, 2.5L6, 3.0L6, 3.2V 6, 4.6L8, 5.7L8},
and are arranged in a hierarchy.

Gasoline and diesel are subtypes of engine.

rEngine(x) ⇐ rGasoline(x)
rEngine(x) ⇐ rDiesel(x)

Four, six, and eight cylinder are subtypes of the gasoline engine.

rGasoline(x) ⇐ r4cyl(x)
rGasoline(x) ⇐ r6cyl(x)
rGasoline(x) ⇐ r8cyl(x)

Each primitive engine object is either a diesel, 4-cylinder, 6-cylinder, or 8-cylinder engine.

rDiesel(4D)
rDiesel(4TD)
r4cyl(2.0L4)
r4cyl(2.2L4)
r6cyl(2.5L6)
r6cyl(3.0L6)
r6cyl(3.2V 6)
r8cyl(4.6L8)
r8cyl(5.7L8)

LG-2006-03 5

The constraints ensure that only certain engines can be placed in certain car classes.

rCar(fCar(compact, x) ⇐ r4Cyl(x)
rCar(fCar(compact, 2.5L6)
rCar(fCar(compact, 4D)

A midsize car can take any 4-cylinder or any 6-cylinder engine as well as the 4D engine.

rCar(fCar(midsize, x)) ⇐ r4cyl(x)
rCar(fCar(midsize, x)) ⇐ r6cyl(x)
rCar(fCar(midsize, 4D))

A fullsize car can take any 6-cylinder engine, any diesel engine, the 2.2L4, or the 4.6L8.

rCar(fCar(fullsize, x)) ⇐ r6cyl(x)
rCar(fCar(fullsize, x)) ⇐ rDiesel(x)
rCar(fCar(fullsize, 2.2L4))
rCar(fCar(fullsize, 4.6L8))

A coupe can take either a 3.2V6 or a 4.6L8, and a sedan takes only the 5.7L8 engine.

rCar(fCar(coupe, 3.2V 6))
rCar(fCar(coupe, 4.6L8))
rCar(fCar(coupe, 5.7L8))

If we make the start symbolrCar, an OOCSP solver would try to find one of the possible car configurations, e.g.

fCar(midsize, 2.0L4).

3 OOCSP Semantics

The Object Grammar semantics are exactly the same as the semantics of logic programming, where there happens

to be no negation, i.e. minimal model semantics over Herbrand models. We give those semantics below, in terms of

objects and object types.

An object is part of an Object Grammar whenever it corresponds to a functional term in that grammar.

Definition 2 (Objects(G)). Let G =<N,P, T, V, S,R> be an Object Grammar. The set of objects forG is defined

as follows.

• Each member ofP (a primitive object) is inObjects(G).

• If t1, . . . , tn are inObjects(G) andfX is in N thenfX(t1, . . . , tn) is in Objects(G).

• Objects(G) is the minimum set satisfying the above.

An object can only be of a certain type if there is a set of production rules that force it to be of that type.

Definition 3 (Types). Let G =<N,P, T, V, S,R> be an Object Grammar. The types of objects inG are defined

inductively as follows.

LG-2006-03 6

• Each rulerA(t), wheret is an object template, ensures typerA includes all instances oft. If t is a primitive, it

is of typerA.

• If t is an object of typesrB1 , . . . , rBn the rulerA(x) ⇐ rB1(x) ∧ · · · ∧ rBn(x) ensures typerA includest.

• Supposev is a variable assignment for the variables in the object templatee to objects. Consider the rule

rA(e) ⇐ C1 ∧ . . . ∧ Cn. Supposev satisfies all theCi constraints:

– (t = u)[v] is satisfied ifft[v] is the same object as u[v].

– (t 6= u)[v] is satisfied iff(t = u)[v] is not satisfied.

– rH(t)[v] is satisfied ifft[v] is an object of typerH .

Then typerA includes the objecte[v].

• Types are defined by the minimum set satisfying the above.

We can view an Object Grammar as a machine that accepts some set of objects – those objects of typeS; conse-

quently, it is natural to define the language of an Object Grammar as exactly that set of objects in typeS.

Definition 4 (Language(G)). Let G =<N,P, T, V, S,R> be an Object Grammar. The language ofG is the set of

all objects of typeS.

Object grammars serve as the input to an OOCSP, just as the triple<V,DV , CV > serves as the input to a CSP.

Solving an OOCSP amounts to finding an object of a particular type. More precisely, the solution to an OOCSP for a

particular object grammar is any tree whose type is the start symbol, i.e. any tree in the language of the grammar. This

may not be the definition one might expect; an OOCSP solution could have been defined as an assignment of variables

to objects of the appropriate types.

If what is desired is an assignment for the variables{v1, . . . , vn} with types{t1, . . . , tn}, one can construct a new

typerS and use the following rule to define it.

rS(fS(v1, . . . , vn)) ⇐ t1(v1) ∧ · · · ∧ tn(vn)

Then, add this to the object grammar and make the start typerS . Thus the definition for an OOCSP solution given

here encompasses the standard definition in a natural way.

Definition 5 (OOCSP). An object-oriented constraint satisfaction problem consists of an object grammarG. The

set of solutions isLanguage(G).

Example 2.Suppose in the context of utility computing, we were interested in modeling computing resources for the

purpose of constructing e-Commerce sites. Computers,C, are built out of an architecture,A, some amount of memory,

M , and a hard driveH. We can model computers with the following rules.

rC(fC(x, y, z)) ⇐ rA(x) ∧ rM (y) ∧ rH(z)
rA(x86), rA(sparc)
rM (500MB), rM (1GB)
rH(40GB), rH(80GB), rH(160GB)

Servers,S, are built out of a computer, an operating system,O, and an IP address,I. The WinNT operating system

requires an x86 architecture, and Solaris requires SPARC.

LG-2006-03 7

rS(fS(fC(x86, x, y), winnt, z)) ⇐
rM (x) ∧ rH(y) ∧ rI(z)

rS(fS(fC(sparc, x, y), solaris, z)) ⇐
rM (x) ∧ rH(y) ∧ rI(z)

For simplicity, we will use the natural numbers to represent IP addresses. The natural numbers,N , are represented

as the height of a tree, i.e. encoded using the successor function.

rN (0)
rN (fN (x)) ⇐ rN (x)

Then the IP addresses can be defined as the set of natural numbers:rI(x) ⇐ rN (x).
An e-Commerce site is built out of a network connection and a list of servers,L, each of which has a unique IP

address. The empty list of servers is represented bynil, and the objectfL(x, y) is a list of servers ifx is a server and

y is a list of servers.

rL(nil)
rL(fL(x, y)) ⇐ rS(x) ∧ rL(y)

Requiring that the list of servers all have unique IP addresses can be accomplished in a similar way. Every server

in a list with zero or one elements has a unique IP address. If the first server in a list has a different IP address than

every other server in the list, and the rest of the list has unique IP addresses, then so does the entire list.

rD(nil)
rD(fL(x, nil))
rD(fL(fS(x, y, z), fL(fS(u, v, w), t)))) ⇐

z 6= w ∧ rD(fL(fS(x, y, z), t))
∧ rD(fL(fS(u, v, w), t))

The definition for an e-Commerce site is then a network connection,W , and a list of servers that is also of type

rD.

rE(fE(x, y)) ⇐ rW (x) ∧ rL(y) ∧ rD(y) �

4 Decidable OOCSPs

In the next two sections we will be investigating various syntactic classes of object grammars. Those classes are

defined by the kinds of constraints allowed in the composition rules. All the classes we consider include basic type

constraints, e.g.rA(fA(x)) ⇐ rB(x). We will use the abbreviationOG to represent the class of tree grammars that

includes composition rules with only type constraints and intersection and primitive typing rules. IfOG is subscripted

with =, the composition rules are allowed to include equality constraints as well. Likewise distinction and constructor

constraints will be indicated by subscriptingOG with 6= andc, respectively.

This section gives algorithms for solving OOCSPs for inputsOG= andOG=, 6= under some restrictions. The first

restriction requires there be only one assembler used for all the objects in a particular type. That is, every composition

rule is of the following form.

rA(fA(. . .)) ⇐ . . .

LG-2006-03 8

We will call the class of composition rules that include this connection between types and assemblers theone-to-

one composition rules. All the results in this section will concern object grammars where every composition rule is

one-to-one.

The one-to-one composition rules inOG= grammars are thus of the following form.

rA(fA(t1, . . . , tn)) ⇐ rB1(e1) ∧ . . . ∧ rBn(em)
∧ u1 = v1 ∧ . . . ∧ uk = vk

Eachei is either a variable or a primitive object, eachti is an object template, and eachui, vi is either a variable or a

primitive object.

Given an object grammar where all the composition rules are one-to-oneOG= rules, we want to be able to deter-

mine whether there is an object of a particular type. The algorithm we use is a variant of the marking algorithm for

determining whether a context-free-grammar is empty. (The connection between OOCSPs and context-free grammars

is addressed in Section 6.)

Recall there are two types of rules: the composition rules and the intersection rules. The first step in this algorithm

is to eliminate the equality constraints from the composition rules, which can be accomplished by repeatedly applying

the usual algorithm for equality elimination. Replace variables by what they are equal to. Then remove tautologous

equality constraints and remove rules containing unsatisfiable equality constraints.

For example, if at some point the constrainta = b appears wherea andb are primitives, remove the rule containing

the constraint since it will never be satisfied. If the constrainta = a appears, remove just the constraint since it is

always satisfied. At the end of this process the composition rules remaining have no equality constraints.

The second step is to remove the type constraints on primitive objects within composition rules. Consider any of

the type constraintsrBi(ei). If ei is a primitive, we can check whetherrBi is satisfied by first computing the types as

determined by the intersection rules and primitive typing rules in a bottom-up fashion [Ull89], taking advantage of the

function-free nature of those rules. Store the results in primitive typing rules, e.g. if we finda is of typerC then add

the rulerC(a). Then for eachrBi
(ei) in a composition rule, remove it if it is satisfied; otherwise, remove the entire

rule.

After removing the type constraints on primitives, the only remaining constraints in the composition rules are

type constraints on variables; the next step is to ensure that no variable appears in more than one typing constraint.

Multiple type constraints on the same variable constraint that variable to take on an object in the intersection of the

two types. We can remove such constraints within composition rules and handle them at the same time we handle

the other intersection rules. For any set of type constraintsrB1(x), . . . , rBn
(x) on the variablex, introduce a new

type rB and replacerB1(x), . . . , rBn
(x) with rB(x) in the composition rule. Then include the intersection rule

rB(x) ⇐ rB1(x) ∧ . . . ∧ rBn
(x).

For example, the composition rule

rA(fA(x, y)) ⇐ rB(x) ∧ rC(y) ∧ rD(y) ∧ rE(y)

can be replaced by
rA(fA(x, y)) ⇐ rB(x) ∧ rF (y)
rF (y) ⇐ rC(y) ∧ rD(y) ∧ rE(y)

The last preprocessing step removes the intersection rules. To do this, we will rely on the fact that the composition

rules are one-to-one composition rules. Besides primitive objects, every object of typerA produced by such one-to-

one composition rule is of the formfA(. . .). With this in mind, it is easy to see that the intersection of two distinct

types is empty (except for primitives) unless there is a subtyping rule relating the two types.

LG-2006-03 9

Continuing the example, the intersection rule

rF (x) ⇐ rC(x) ∧ rD(x) ∧ rE(x)

can only add complex trees to therF type if there are subtyping rules that giverC , rD, andrE common subtypes. The

following rules ensure they have the common subtyperH .

rC(x) ⇐ rH(x)
rD(x) ⇐ rH(x)
rE(x) ⇐ rI(x)
rI(x) ⇐ rH(x)

Suppose that for the intersection rulerA(x) ⇐ rB1(x) ∧ . . . ∧ rBn
(x), the typesrB1 , . . . , rBn

share the subtypes

rC1 , . . . , rCk
. Then the intersection rule can be replaced by a set of subtyping rules:

rA(x) ⇐ rC1(x)
...

rA(x) ⇐ rCk
(x)

Note that because we have already computed all the types for all the primitive objects and stored that information as

primitive typing rules, no types are lost by removing this intersection rule. Thus the intersection rules can be replaced

by a set of subtyping rules.

Those subtyping rules can be removed by turning our one-to-one composition rules into non-one-to-one com-

position rules. First compute the transitive closure on the subtyping rules, e.g. the rulesrA(x) ⇐ rB(x) and

rB(x) ⇐ rC(x) yield the rulerA(x) ⇐ rC(x).
Next replace each subtyping rulerA(x) ⇐ rB(x) with a new set of composition rules forrA. For each composition

rule rB(fB(. . .)) ⇐ . . ., insert the rulerA(fB(. . .)) ⇐ This transformation breaks the one-to-one-ness of the

composition rules, but that property was only necessary for handling intersection.

To summarize, given aOG= grammar with one-to-one composition rules, one can simplify it by (1) removing

equality constraints, (2) removing the type constraints on primitives, (3) removing intersection within composition

rules, and (4) removing the intersection rules. This results in a set of rules all of the following form.

rA(fC(t1, . . . , tn)) ⇐ rB1(x1) ∧ . . . ∧ rBm(xm)

Constructing a tree out such rules can be accomplished using a variant of the well-known marking algorithm for

determining emptiness in a CFG [Sip96].

Algorithm 1 (Marking) Input: <N,P, T, V, S,R>.

1. Remove equality, leaf type constraints, and intersection.

2. Number the rules and run the basic marking algorithm.

(a) For each rule for typerA numberedk without any unmarked constraints in the body, usek to mark all the

unmarkedrA type-constraints in the rule bodies.

(b) If no rule forS has been marked and progress has been made, goto step (a).

(c) If no rule forS has been marked, return NIL.

LG-2006-03 10

(d) Choose a marked rule forS and apply it toS. For each type constraint in the body, apply the production

rule corresponding to the number that constraint is marked with. Repeat until no type constraints remain.

If the resulting object template includes no variables, return it. Otherwise, fill in every variable with any

one of the primitives. Return the resulting object.

Example 3.As an example, consider the following set of production rules, with the start symbol isrS .

1. rS(fS(x, y)) ⇐ rA(x) ∧ rB(x)
2. rA(a)
3. rB(fB(x)) ⇐ rC(x)
4. rC(fC(d))

Begin by marking rule (2) and (4) as they have no unmarked constraints. Also mark the type constraintrA in rule (1)

with a 2 andrC in rule (3) with a 4. NorS rule has been marked, so continue. Since every type constraint in rule (3)

has been marked, mark rule (3) itself and then mark therB constraint in rule (1) with a 3. Again no rule forrS has

been marked, so repeat. This time, every constraint in rule (1) has been marked, which means the rule itself must be

marked, after which the loop exits. This results in the following marked production rules.

1.M rS(fS(x, y)) ⇐ r2
A(x) ∧ r3

B(y)
2.M rA(a)
3.M rB(fB(x)) ⇐ r4

C(x)
4.M rC(fC(d))

Because a rule forrS is marked, construct an object by first applying rule (1).rS(fS(x, y)) ⇐1 rA(x)∧ rB(x). Then

apply rule (2) to therA constraint, followed by rule (3) to therB constraint, and finally rule (4) to therC constraint

that resulted from applying rule (3). This yields the objectfS(fA(a), fB(fC(d))). �

Theorem 1 (Soundness, Completeness, and Termination of Marking).Marking takes as input an object grammar

G =<N,P, T, V, S,R> in OG= with one-to-one composition rules. It outputs an object inG of typeS if and only if

one exists. It returns NIL if no such tree exists.

The next algorithm we give handles object grammars with both equality and distinction (6=) constraints. As we

shall see, distinction constraints require a fundamental change to the algorithm. Step (2) of Marking can be replaced

by a restricted form of Ullman’s bottom up evaluation [Ull89], where only a certain number of objects of each type

are computed. Once this bound is reached, all the rules that produce an object of that type are discarded. Eventually

no new objects can be produced or an object of the requested type has been found. For completeness, we will require

every composition rule to befully safe, i.e. every variable in the head must occur in the body, and every variable in the

body must occur in the head.

Algorithm 2 (Bottom-up) Input: <N,P, T, V, S,R>

1. Remove equality, primitive type constraints, and intersection rules.

2. Run altered bottom-up evaluation.

(a) k = max number of6= constraints in any rule.

(b) Build a binbA for each typerA.

LG-2006-03 11

(c) For each rule without a bodyrA(t), placet in bA.

(d) If |bA| ≥ k remove the rules for typerA.

(e) Use bottom-up evaluation to produce new trees.

(f) If no new trees were produced, return NIL. If there is some tree in the bin forS, return it. Otherwise repeat

the last two steps.

(g) Return NIL.

Theorem 2 (Soundness, Completeness, and Termination of Bottom-up).Bottom-up takes as input an object gram-

mar G =<N,P, T, V, S,R> in OG=, 6= with one-to-one composition rules. If at step (2), the composition rules are

fully safe, it outputs an object inG of typeS if and only if one exists. It returns NIL if no such tree exists.

5 Undecidable OOCSPs

In this section, we explain how to encode Diophantine equations withinOGc, making OOCSPs forOGc formally

undecidable.

Let P (x1, . . . , xn) be an arbitrary polynomial with integral coefficients and positive, integral exponents over the

variablesx1, . . . , xn. It is well known that finding a solution toP (x1, . . . , xn) = 0 where eachxi is an integer is

undecidable. We will show how to encode a polynomial over the natural numbers inOGc; encoding polynomials over

the integers is straightforward but tedious. There can be no algorithm solving all OOCSPs since if there were, this

transformation could be applied, resulting in a decision procedure for Diophantine problems.

The natural numbers are represented using the analog of the successor function,fN . 0 is zero,fN (0) corresponds

to one,fN (fN (0)) corresponds to two, and so on. Addition (rA) and multiplication (rM) operate on thesefN trees.

Below, we encode addition and multiplication using the usual identities:x + y = z implies(x + 1) + y = (z + 1) and

x ∗ y = z implies(x + 1) ∗ y = z + y.

rA(fA(0, y, y)) ⇐ rN (y)
rA(fA(fN (x), y, fN (z))) ⇐ rN (x) ∧ rN (y) ∧ rN (z)

rA(fA(x, y, z))

rM (fM (0, y, 0)) ⇐ rN (y)
rM (fM (fN (x), y, z)) ⇐ rN (x) ∧ rN (y) ∧ rN (z)

rM (fM (x, y, w)) ∧ rA(fA(y, w, z))

In exponentiation (rE), the first argument is the exponent, the second the base, and the third the base raised to the

exponent. The recursive portion of the definition is structurally identical to that of multiplication.

rE(fE(0, y, fN (0)))
rE(fE(fN (x), y, z)) ⇐ rN (x) ∧ rN (y) ∧ rN (z)

rE(fE(x, y, w)) ∧ rM (fM (y, w, z))

Using this machinery, every polynomial can be encoded as an object grammar.

Example 4.Consider the monomialx3y2. We will build a new type,rP , for objects with three fields so that ifx is the

first field andy is the second field, the third field isx3y2.

LG-2006-03 12

rP (fP (x, y, t)) ⇐ rN (x) ∧ rN (y) ∧ rN (t)∧
rE(fE(fN (fN (fN (0))), x, z)∧
rE(fE(fN (fN (0)), y, w)∧
rM (fM (z, w, t)

If this were the polynomial of interest, we could construct an OOCSP to solve the equationx3y2 = 0 by introduc-

ing a new typerS , and making it the start symbol.

rS(fS(x, y)) ⇐ rN (x) ∧ rN (y) ∧ rP (fP (x, y, 0)) �

The summation of monomials can be encoded in a similar fashion, as can setting that sum to zero. The full

encoding requires nothing outsideTGc. In fact, it appears that limiting every composition rule to two constructors is

sufficient for undecidability.

Example 5.Consider the production rule forrP given above. Notice it includes three constructor constraints. By

inventing a new typerP1 and introducing new composition rules, we can expressrP using only two constructors per

rule.
rM (fM (x, y, t)) ⇐ rN (x) ∧ rN (y) ∧ rN (z)∧

rE(fE(fN (fN (fN (0))), x, z)∧
rP1(fP1(z, y, t))

rP1 simply defines the result of multiplying its first argument,z, with y2.

rP1(fP1(z, y, t)) ⇐ rN (z) ∧ rN (y) ∧ rN (t)∧
rE(fE(fN (fN (0)), y, w)∧
rM (fM (z, w, t)

This transformation appears to turn a rule with an arbitrary set of constructors with an arbitrary number of new

variables into a set of rules each of which has at most two constructors with no more than one new variable.

Theorem 3 (Undecidability ofOGc). The class of OOCSPs that take as inputOGc is undecidable.

A stronger claim appears to hold as well: the class of OOCSPs where every composition rule includes no more

than two constructors is undecidable.

6 Related Work

The undecidability result in the last section relies on recursion. OOCSPs without recursion are no more expressive

than standard CSPs because they can always be flattened and then written as a CSP. Additionally, every CSP can be

expressed as a non-recursive OOCSP, as evidenced below.

Consider the standard input to a CSP: a set of variables, their domains, and constraints among the variables:

<V,DV , CV >. Suppose the variablesV consist of{v1, . . . , vn}. The corresponding non-recursive OOCSP includes

composition rules that state the contents of each domain. For example, assumeDv1 is defined as{e1, . . . , em}. Then

we include the followingm rules.
rDv1

(e1)
...

rDv1
(em)

LG-2006-03 13

Suppose there arec constraints, and each constraintCVi
is represented as a table of allowable combinations of values

for the variables in the tuple of variablesVi. Each such table can be represented as its own object class. For example,

assumeCV1 includesm tuples of values, and each tuple constrainsk variables.

rCV1
(fCV1

(e11, e12, . . . , e1k))
...

rCV1
(fCV1

(em1, em2, . . . , emk))

We can then define the class of objects where every object in the class is a solution to the CSP. In the head are all

those variables inV . The constraints on the body ensure each variable is instantiated with a value from the appropriate

domain and that all those instantiations satisfy the required constraintsCV .

rS(fS(v1, . . . , vn)) ⇐ rDv1
(v1) ∧ · · · ∧ rDvn

(vn) ∧ rCV1
(fCV1

(V1)) ∧ · · · ∧ rCVc
(fCVc

(Vc))

Suppose the object found isfS(t1, . . . , tn). The CSP variable assignment corresponding to this OOCSP object is then

{v1/t1, . . . , vn/tn}.
Certain kinds of CSPs with infinite domains can be represented as OOCSPs. The encoding for the natural numbers,

for instance, was illustrated in Section 5. But OOCSPs are strictly less expressive than the class of CSPs with infinite

domains. For example, a CSP over the real numbers cannot be expressed as an OOCSP. But for the class of infinite

domains that can be encoded as OOCSPs, the need for hard-coded knowledge of those domains within solvers is

obviated, giving a broader range of users the ability to change those domains.

Many components of the OOCSP formalism appears in different contexts in the literature. Because this paper

focuses on constraint satisfaction, it is that literature we review. Object-oriented constraint satisfaction was a term first

coined by Paltrinieri[Pal94, Pal95]. His version is no more expressive than a CSP with finite domains, but because

our version is in general undecidable, the OOCSPs in this paper are clearly more expressive. Dynamic Constraint

Satisfaction Problems [MF90] allow the values of special variables to affect the number of regular variables in a

solution. But those special variables must be recognized as such by the DCSP solver. In OOCSPs, the number of

variables is never given explicitly; if some class of objects does not satisfy a particular constraint but another class

does, the second class will be used, which may have a different number of attributes, i.e. variables. Free logic has

also been used to allow variance in the number of variables in a solution[BD91], but there the domains are treated as

atomic values–just the limitation OOCSPs were invented to overcome. Hierarchical constraint satisfaction in another

seemingly related topic that allows one to define a hierarchy of constraints. Those with the highest precedence must be

satisfied; the others represent a ranked set of preferences [BFBW92]. Such a scheme is orthogonal to OOCSPs, since

every constraint must be satisfied in an OOCSP. Hierarchical domain CSPs arrange domain values into a hierarchy of

values, but those values are atomic leaving the size of expressible domains finite. [HM83].

In 2004, Bodirsky did his dissertation on constraint satisfaction in infinite domains and considered the case of

constructing a tree out of a set of constraints in a particular tree description language. [Bod04] That tree description

language constrains trees by forcing the existence of nodes that satisfy a set of constraints. It allows three possible

constraints between two nodesx andy: x must be an ancestor ofy, x andy must be equal, andx must be included in

a subtree which is ordered to the left of the subtree that includesy. Tree descriptions in OOCSPs have more structure,

allowing and requiring constraints to be placed on particular subtrees. Bodirsky’s constraints require the existence of

nodes with a particular relationship. OOCSPs require particular nodes to have a particular relationship.

Representing domains as structured objects is not a new idea within the CSP community and has appeared in Meta

CSPs [Fre92] and Composite CSPs[SF96]. Meta CSPs decompose a CSP into subproblems, where each metavariable

LG-2006-03 14

can be assigned any solution to the given subproblem. Those solutions can be viewed as structured objects. OOC-

SPs build in this notion of assigning variables to solutions of subproblems and in fact reify subproblems (as types),

allowing a subproblem to be defined in terms of the subproblem itself (recursive type definitions). In a Composite

CSP, regular variables can be assigned solutions to subproblems of the original CSP. These solutions take the form

of a set of variable assignments, where each variable is assigned either an atomic value or a solution to part of the

remaining problem. However, composite CSPs cannot be defined recursively, thus ensuring the maximum depth of

object embedding (or when viewed as a tree, the maximum height of the tree) is bounded by the number of variables

in the problem. Without built-in infinite domains, e.g. the reals or integers, a composite CSP allows only definitions

of finite domains. Employing these built-in domains allows one to construct infinite domains of structured objects,

but those objects are still bounded by a fixed height. For instance, the set of all binary trees cannot be defined using

composite CSPs since there is no upper bound on the height of the objects in that set.

Finally, OOCSPs have a strong relationship to context-free grammars (CFGs). Recall that a CFG consists of a set

of production rules and a start symbol, e.g.
S → AbDD

A → a

D → D

D → d

D → e

Capital letters denote nonterminal symbols and lowercase letters denote terminals. Only a nonterminal can occur

on the left hand side of a rule. The nonterminals denote internal nodes in a tree, and terminals denote leaves.S is

historically used as the start symbol for a grammar, meaning that the trees of interest are rooted atS.

Trees in a CFG correspond to objects in an OOCSP. Nonterminals in a CFG correspond to object types. Terminals

in a CFG correspond to primitive objects. Each production rule in a CFG corresponds to a composition rule of a

particular type

rA(fA(t1, . . . , tn)) ⇐ rB1(x1) ∧ · · · ∧ rBn
(xn)

where eachti is either a primitive object or a variable, and each variableti is distinct from every other variableti. For

example, the ruleS → AbDD says that any object whose first attribute is of typeA, second attribute is the valueb,

and third and fourth attributes are of typeD is an object of typeS.

Notice that in the first rule,S → AbDD, any tree rooted atD can be used for either of the attributes of typeD on

the right-hand-side. A CFG does not allow constraints to be written which would require the twoDs to be the same,

hence its context-freeness. OOCSPs on the other hand do allow constraints to be added to production rules.

Additionally, while a CFG does not allow a type hierarchy to be defined without duplicating production rules,

OOCSPs allow types to be defined as the intersection of other types.

Formally, the definition for a CFG is very related to the definition for an OOCSP. Recall that a context-free grammar

is a four-tuple<N,T, P, S>.

N : finite set of symbols, called the nonterminals

T : finite set of symbols, disjoint from N, called the terminals

S : an element of N, the start symbol

P : finite set of rules of the form

A → γ1 . . . γm, whereγi ∈ N ∪ T andA ∈ N

LG-2006-03 15

To summarize, one can think of an OOCSP as a CFG with constraints on its production rules. A CFG with

constraints on its production rules is reminiscent of a context sensitive grammar. Comparing OOCSPs to context

sensitive grammars is the subject of future work.

The fact that every object in an OOCSP corresponds to a tree in a CFG is noteworthy. It means that objects are

acyclic, e.g. there is no direct representation of a circular list in OOCSPs (though by introducing a new object that

represents memory, we could encode circular lists in the same way we represent circular lists in a computer’s memory:

using pointers).

Besides relationships to CSPs and CFGs, other related topics include OO programming languages that provide

native constructs for solving CSPs [Cas94, RP97] and natural language generation, which uses CFGs heavily and

often employ constraints. OOCSPs (in a different formal incarnation) can be applied to configuration management, as

illustrated in [HLP+04].

7 Conclusion

Many real-world problems are modeled naturally with a hierarchy of objects and a hierarchy of object classes. The

OOCSP formalism attempts to marry components of the object-oriented paradigm with declarative constraints.

The OOCSP formalism differs from OO programming languages in that inter-attribute relationships are expressed

declaratively. It differs from the CSP formalism by shifting focus from variable assignments to objects and object

types. That shift in focus is not simply a reconceptualization of the problem; it adds expressive power.

One of the benefits of OOCSPs is the ability to finitely encode infinite sets of objects in a natural way. Infinite

CSPs can be used to encode a much larger array of problems than CSPs restricted to finite domains, which is both a

strength and a weakness. The more interesting the class of problems, the harder it is to solve them.

OOCSPs include three types of rules: composition rules, primitive typing rules, and intersection rules. When

the composition rules are one-to-one and are limited to type and equality constraints, the OOCSP can be solved by

a marking algorithm similar to that for determining whether a CFG is empty. Distinction (6=) constraints require an

algorithm that actually builds a small set of trees for each type. This bottom-up evaluation is a generalization of

marking; hence, it can be used for solving OOCSPs that include type constraints, equality constraints, and distinction

constraints.

OOCSPs that allow two or more constructors per composition rule are sufficiently expressive to encode Dio-

phantine equations, thus making the class formally undecidable. One topic for future work is to determine whether

restricting composition rules to one constructor results in decidability. On this topic, two items are noteworthy. First,

addition can be expressed using one constructor constraint, but multiplication appears to require two. Second, Pres-

burger arithmetic, which includes addition but not multiplication, is decidable, but Peano arithmetic, which includes

both, is not. This hints that limiting rules to one constructor may result in a decidable fragment of OOCSPs.

8 Appendix: Planning Example

Example 6.Suppose we wanted to use OOCSPs to do planning in the context of the blocks world. Here we show

how to encode that domain without knowing the blocks that exist. This formulation of blocks world has three fluents:

on(x, y), clear(x), andtable(x), where the variables represent blocks.

LG-2006-03 16

rFluent(fF (on(x, y))) ⇐ rBlock(x) ∧ rBlock(y)
rFluent(fF (clear(x))) ⇐ rBlock(x)
rFluent(fF (table(x))) ⇐ rBlock(x)

There are two actions, which are inverses:st(x, y) andunst(x, y). st(x, y) moves blockx which must be clear

onto blocky, which must also be clear.unst(x, y) moves blockx, which must be clear, onto the table.

rAction(fA(st(x, y))) ⇐ rBlock(x) ∧ rBlock(y)
rAction(fA(unst(x, y))) ⇐ rBlock(x) ∧ rBlock(y)

A state in a world with an unknown number of blocks must accommodate a fluent list of arbitrary length. A fluent

list is eithernil or a fluent and a fluent list.

rFluentList(nil)
rFluentList(fL(x, y)) ⇐ rFluent(x) ∧ rFluentList(y)

A list of actions is identical to a list of fluents, but withFluent replaced byAction. Each action has associated

with it a list of preconditions and effects, which are also lists of fluents. Thest(x, y) action is shown below.unst(x, y)
is similar.

rPreEff (rE(fA(st(x, y)), [clear(x), clear(y)], [on(x, y)])))

The left child ofPreEff is the action. The middle child is the list of preconditions, and the right child is the list

of effects. For legibility, lists have been written as Prolog sequences.

Checking whether a particular action sequence changes the initial state into the final state is built upon computing

the result of executing a single action in a state. The left child ofrExec is the initial state; the middle child is the action

to be executed, and the right child is the resulting state. If the preconditions of the action are not met in the initial state,

there is norExec object with that initial state and action.

rExec(fX(x, y, u)) ⇐ rPreEff (rE(y, yp, ye)) ∧ rSubset(fB(yp, x)) ∧ rSetDifference(fD(u, x, ye))

The classrSubset(fB(x, y)) represents the relationshipx ⊂ y. The classrSetDifference(fD(x, u, y)) represents

the relationshipx− u = y.

Executing a sequence of actions amounts to walking over that sequence and computing the state update after each

action.rResult’s left child is the initial state; its middle child is the action sequence, and its right child is the resulting

state, once again using Prolog sequence notation in place of OOCSP lists.

rPlan(fP (x, nil, x))
rPlan(fP (x, [y|z], w)) ⇐ rExec(fX(x, y, u)) ∧ rPlan(fP (u, z, w))

Now, posing a planning problem requires giving the set of blocks that exist, e.g.

rBlock(fB(a))
rBlock(fB(b))

and defining the class that requests a plan to achieve the final state from the initial state. In this example, the two

blocks,a andb start out on the table. In the final state,a is on top ofb.

rS(fS(x)) ⇐ rPlanResult(fR([clear(a), clear(b), table(a), table(b)]), x, y) ∧ rSubset(fB([on(a, b)], y))

LG-2006-03 17

Here we give two objects that will achieve the given final state, and when the start symbol isrS , these objects are

therefore in the language of the grammar.

fL(st(a, b), nil)
fL(st(a, b), fL(unst(a, b), fL(st(a, b), nil)))

References

[BD91] J. Bowen and D.Bahler. Conditional existence of variables in generalized constraint networks.AAAI,

1991.

[BFBW92] A. Borning, B. N. Freeman-Benson, and M. Wilson. Constraint hierarchies.Lisp and Symbolic Compu-

tation, 5:223–270, 1992.

[Bod04] M. Bodirsky.Constraint Satisfaction with Infinite Domains. PhD thesis, Humboldt University in Berlin,

2004.

[Cas94] Yves Caseau. Constraint satisfaction with an object-oriented knowledge representation language.Applied

Intelligence, 4(2):157–184, 1994.

[Fre92] E. Freuder. Constraint solving techniques.Constraint Programming, 131:51–74, 1992.

[HLP+04] T. Hinrichs, N. Love, C. Petrie, L. Ramshaw, A. Sahai, and S. Singhal. Using object-oriented constraint

satisfaction for automated configuration generation.DSOM, 2004.

[HM83] W. Havens and A. Mackworth. Representing knowledge of the visual world.IEEE Computer, 16(10):90–

96, 1983.

[MF90] Sanjay Mittal and Brian Falkenhainer. Dynamic constraint satisfaction problems.AAAI 90, pages 25–32,

1990.

[Pal94] Massimo Paltrinieri. Some remarks on the design of constraint satisfaction problems.Workshop on

Principles and Practice of Constraint Programming, pages 299–311, 1994.

[Pal95] Massimo Paltrinieri. A visual environment for constraint programming.IEEE Symposium on Visual

Languages, 1995.

[RP97] Pierre Roy and Francois Pachet. Reifying constraint satisfaction in smalltalk.Journal of Object-Oriented

Programming, 10(4):43–51, 1997.

[SF96] D. Sabin and E. Freuder. Configuration as composite constraint satisfaction.AAAI Configuration Work-

shop, pages 28–36, 1996.

[Sip96] Michael Sipser.Introduction to the Theory of Computation. Brooks Cole, 1996.

[Ull89] Jeffrey Ullman.Principles of Database and Knowledge-Base Systems. Computer Science Press, 1989.

