
\, WV .- - -

.JilllUilry 1985 Report No. STAN-CS-85 1037
Also wtthered* HW-84-4.

Expressiveness and Language Choice

bY

*Jock MacKinlay

Michael R. Gcncscrcth

Department of Computer Science

St;~nford IJllivcrsity
Slilll~Oi>rd, CA 94305

Stanford Heuristic Programming Project
Report No. HPP 84-4

Expressiveness and Language Choice

bY

Jock MacKinlay, and Michael R. Genesereth

Computer Science Department
Stanford University

Stanford, California 94304

January 4,1985

Expressiveness and Language Choice’
Jock Mackinlay

Michael R. Genesereth

Abstract
Specialized languages are often more appropriate than general languages
for expressing certain information. However, specialized languages must be
chosen carefully because they do not allow all sets of facts to be stated. This
paper considers the problems associated with choosing among specialized
languages. Methods are presented for determining that a set of facts is
expressible in a language, for identifying when additional facts are stated
accidentally, and for choosing among languages that can express a set of
facts. This research is being used to build a system that automatically
chooses an appropriate graphical language to present a given set of facts.

1 Introduction
Specialized languages are used in everyday life as well as in the development
of computer software. Common examples include maps, geometry diagrams,
and organization charts. Such languages often make facts easier to express
and easier to understand.

When an information presentation system [15] acts as the user interface
for a representation system or database system, it is often expected to present
arbitrary collections of information. In such circumstances, taking advantage
of specialized languages requires that the presentation system be able to
determine automatically when a specialized language is appropriate.

Some languages have the property that when some collections of facts
are stated explicitly, additional facts are stated implicitly.2 We call such
languages implicit languages. For example, in the following diagram, the
placement of the engine rectangle inside the car rectangle states that an
engine is part of a car. Similarly, the placement of the piston rectangle
inside the engine rectangle states that a piston is part of an engine.

‘This work was supported in part by grant N00014-K-0004 from the Office of Naval
Research. An earlier version of this paper was presented at AAAI-83, Austin, Texas.
The address of the authors is: Computer Science Department; Stanford University, CA
94305

‘Note that implicit facts are not conventional [8] or conversational [6] implicature because
the implicit facts are actually stated in the message. They are implicit only in the sense
that they have not been stated explicitly.

1

Figure 1: Some “part of” facts
The diagram also states implicitly that a piston is part of a car because the
piston rectangle is contained (indirectly) in the car rectangle.

When choosing an implicit language to express facts, one must make sure
that the implicit facts are correct. If the nesting of rectangles represents the
relation “next to” instead of the relation “part of”, the following diagram
states that Canada is next to the U.S.A. and the U.S.A. is next to Mexico:

Figure 2: Some “next to” facts

It also states implicitly that Canada is next to Mexico. Although the two ex-
plicit facts are correct, this implicit fact is not. Thus this rectangle language
is inappropriate for expressing facts about the adjacency of countries.

A language’s expressiveness is the major criterion for choosing a language
to state a given set of facts: a language that cannot express the facts should
not be used. However, additional criteria are needed to choose among lan-
guages that are sufficiently expressive for a set of facts. Two of these criteria
are how easy it is to state the facts in the languages and how easy it is to
perceive the facts once they are stated. In this paper, we consider all three
of these criteria. Section 2 describes how messages and facts are related by
the conventions of a language and specifies when a fact is stated by a mes-
sage. Section 3 specifies when a set of facts is expressible in a language. It
also describes how to identify implicit facts so that they can be checked for
correctness. Section 4 considers the problem of choosing among languages
that are sufficiently expressive for a set of facts. Finally, Section 5 discusses
the related research.

2 Messages and Facts
A message is an arrangement of the world intended to convey meaning.
Stacks of children’s blocks on a table, puffs of smoke in the sky, and spots of
ink on a page can all be messages. The process of understanding messages
involves identifying them in the world and determining their meaning.

In this paper, we describe the world and the messages it contains with

2

predicate calculus formulas. 3 For example, we describe the nesting of two
of the rectangles in the first diagram with the formula Inside(Piston-
Ret , Engine-Ret). We say that this formula is true by writing

Satiafied(Inside(Piston-Ret ,Engine-Ret) , Fig11 .

The constant Figl, a situation [lo], represents a complete state of the world
that includes Figure 1. The situation argument allows us to decribe more
than one arrangement of the world. A formula that describes a message is
called a message formula.

2.1 Stating Facts in Messages

A lunguuge is a set of conventions that a speaker and hearer have for con-
structing and interpreting messages.’We can describe a language by speci-
fying the correspondence between facts about the world and the message for-
mulas that represent them. For example, the fact PartOf (Piston,Engine)
is paired with the message formula Inside(Piston-Ret ,Engine-Ret). A
fact is stated if the corresponding message formula is true:

Definition 1 A fact f is stated with language 1 in situation s if the asso-
ciated message formula $ is satisfied by s:’

Stated(f ,l,s) _ Satiafied(g,s).

We use the overbar notation to represent the binary function from a lan-
guage 1 and a fact f to the corresponding message formula ?. For notational
simplicity, we have omitted 1 from the notation because it can always be
determined from the surrounding context. Some languages have regularities
that make it possible to describe this function recursively. For example, the
language used in Figure 1 can be described with the following equation:

PartOf(x,y) = Inside(

L

The variables in this equation are universally quantified outside of the bar
and range over expressions. If a fact includes variables of its own, they must
be quantified within the bar notation.

3Variables begin with lower case while con&at&s begin with upper case. Free variables
are universally quantiki.

‘This definition of “language” is similar to Winograd’s: “a system intended to commu-
nicate ideas from a speaker to a hearer” [141.

‘This definition is related in spirit to Pylyshyn’s [ll] Semantic Interpretation findion
(SIP). He correctly observed that there are many possible interpretations for a collection
of objects in the world. The particular interpretation depends on the SIP that is being
used. However, our approach can be used in a computer system to reason about a
language.

3

Example: St&s of blocks. A stack of children’s blocks can be used to
express facts. Suppose that a speaker and hearer agree that the existence of
one block anywhere above another represents a unext to” fact between the
objects associated with those blocks. Call this language STACK. When Canada
is the block a and U.S.A. is the block @ the following stack, which is de-- -
scribed by Above(Canada,U.S.A.), states the fact NextTo(Canada,U.S.A.)
in STACK:

clC
clU

The schema in (1) describes when facts are stated in STACK.

Stated(NextTo(x,y) ,STACK,s) e
Satiafied(Above(Z.y) ,a) (1)

Ezumple: Layered tree. A diagram consisting of nodes and arcs can be
used to express facts. Figure 3 lists a set of facts describing the constraints on
class scheduling and the prerequisite relationships among several computer
science classes. Prereq means that one class is a prerequisite for another,
Concur means that two classes may be taken concurrently, and Qtr means
that a class is given in a particular quarter. The message in Figure 4 states
these facts in a layered tree language called LAYERTREE.

Prereq(FundAI,AIProg)
Prereq(FundMTC,AdvDB)
Prereq(FundCS,DB)
Prereq(FundCS,PL)
Prereq(DB,AdvDB)
Prereq(PL,OS)
Prereq(PL,Compiler)
Concur(FundAI,FundMTC)

Concur(FundMTC,FundCS)
Qtr(FundCS,Fall)
Concur(DB ,PL)
Qtr(PL,Uinter)
Concur(AIProg,AdvDB)
Concur(AdvDB,OS)
Concur(OS,Compiler)
Qtr(Compiler,Spring)

Figure 3: Facts about Classes and Quarters

Figure 4: Prerequisites and Class Schedule in LAYERTREE

4

The messages for this language can be described with three predicates:
Connected(x,y), SameLayer(x,y) and HorzLabel(x,y). Con.nected(x,y)
means that node x is connected to node y, SameLayer(x, y) means that x
and y are on the same layer of the diagram, and HorzLabel (x, y) means
that y labels the layer that contains x. The schema in (2) describes how
LAYERTREE facts are stated.

Stuted(Prereq(x,y) ,LAyERTREE,s) e
Satiafied(Connected(Z,y) ,s)

Stated(Concur(x,y) ,LAYERTREE,s) ~-j
Satiajied(SameLayer(Z,y) ,s)

Stated(Qtr(x,y) ,LAYERTREE,s) e
Satiafied(HorzLabel(X,y) ,s)

(2)

Example: Predicate calculus. Strings displayed on a terminal can be used
to express facts. The language PC (for Predicate Calculus) is an example.
The schema in (3) describes when facts are stated in PC.

Stated(f ,PC,s) e Satiafied(OnTerminal(f) ,s) (3)

Ezample: The world. The world can be used as a language. If WORLD
denotes this language, the schema in (4) describes when facts are stated in
this language. Note that there is no bar in this schema because f is its own
message formula. This language might be used by a robot to decide that
it does not have to explicitly store a fact in its representation system. If
the fact is satisfied by the current state of the world, it is already stated
using WORLD. For example, the exact position of a door does not have to be
remembered because the robot can always go and look at it.

Stated(f ,WORLD,s) e Satiafied(f ,s) (4)

2.2 Constraints on Messages

The physical properties of the world constrain the messages of a given lan-
guage. For example, it is not possible for two blocks to be mutually above
each other. The predicates that are used to describe messages can also be
used to describe these constraints formally.

Example: Stacks of blocks. The axiom8 in (5) describe the relation Above
among blocks. The first three axioms are anti-reflexivity, anti-symmetry, and
transitivity. The last two axioms assert that blocks are stacked in columns:

‘These axioms are similar to Montague’s meaning postulates [2]. However, we are de-
scribing the physical properties of the world rather than placing restrictions on possible
models.

5

if two blocks are in the same stack because they are above (or below) a block,
one must be above (or below) the other.

lAbove(x,x)
Above(x,y) =$ -Above(y,x)
[Above(x,y)A Above(y,z)l + Above(x,z)
[Above(x,y)AAbove(x,z)A y#zl +

[Above (y , z) V Above (z , y)]
[Above(y.x)A Above(z.x)A yfz] +

[Above(y.z)VAbove(z,y)].

(5)

Ezample: Layered tree diagrams. The axioms in (6) describe the pred-
icates SameLayer and Connected. SameLayer is symmetric and transitive.
Connected is transitive. HorzLabel is unconstrained.

SameLayer(x.y) * SameLayer(y,x)
[SameLayer(x,y)ASameLayer(y,z)] *

SameLayer(x,z)
[Connected(x,y)A Connected(y,z)] =+

Con.nected(x,z)

(6)

3 Expressiveness
This section presents a formal defiaition of expressiveness by specifying
which sets of facts are expressible in a language. Intuitively, a set of facts f s
is ezpressibfe in a language 1 if there exists a situation that states every fact
in f s. The difficulty with this intuition is that every situation that states f s
might also state additional incorrect facts. Thus our formal definition of ex-
pressiveness requires that the situation state exactly the facts in f s. Later,
we relax this definition when the additional facts turn out to be correct.

3.1 Expressible Sets of Facts

Definition 2 A set of facts f s is expressible in language 1 if there ezists
a situation s that states every fact in f s and does not state any other fact:

Ezpreaaible (f s , 1) e
3 s. (CVfEfs.Stated(f ,l,s)l A

[Vf@fs.lStuted(f,l,s)I).

The two conjuncts in Definition 2 can be used to identify when a set of
facts is not expressible in a language.

The first conjunct asserts that fs is not expressible when 1 does not
associate a message formula with some fact in f s. A ndive test of express-
ibility is to check that each fact has an associated message formula. However,

6

the first conjunct identifies two additional cases where f s is not expressible.
First, a message formula associated with a fact in the set might not be sat-
isfied by any possible situation. Second, two or more facts might conflict in
such a way that they cannot be stated simultaneously. The first difficulty
can be avoided by excluding unsatisfiable message formulas from the defini-
tion of the language. However, the second difficulty is unavoidable because
messages are part of the world and must conform to physical laws.

Example: Message not possible. Some facts are associated with message
formulas that cannot be satisfied. For example, Stated(NextTo(Canada,
Canada), STACK, a> would be stated by Above(Canada,Canada), but the
Above relation is anti-reflexive.

Example: Messages con&t. Two or more facts may be impossible
to state simultaneously because their messages conflict. For example, it
is impossible to state both NextTo(Canada,U.S.A. > and NextTo(U.S.A.,
Canada) in STACK because the Above relation is anti-symmetric.

The second conjunct in Definition 2 limits the situations to ones that do
not include additional facts. These additional facts are the implicit facts in
a message. The second conjunct rejects languages that have implicit facts
because the implict facts might be incorrect. However, in some cases these
implicit facts are correct. The next subsection presents an algorithm for
identifying these implicit facts so that they can be checked for correctness.

Example: Incorrect implicit facts. When block q is associated with
Mexico, the following stack states the set

{NextTo(Canada,U.S.A.),NextTo(U.S.A.,Mexico)}.

The incorrect fact NextTo(Canada ,Mexico) is also stated implicitly because
block q is above block m

c lC
c lU
c lM

Example: Correct implicit fat ta. The facts about classes and quarters
listed in Figure 3 are not expressible in LAYERTREE because the diagram in
Figure 4 includes many implicit facts. These implicit facts, listed in Figure 5,
are correct. Furthermore, these additional facts would be useful to someone
being presented the original facts.

Definition 2 is a sharp definition of expressiveness: a set of facts is not
expressible unless precisely that set can be stated. This raises an interesting
question about conjunctive facts. Namely, is Stated(pAq, 1, s) true when-
ever Stated(p, 1 ,s) and Stated(q,l ,s) are true? The answer depends on
the definition of the language. Some languages (for example, STACK) do not

Prereq(FundCS,AdvDB)
Prereq(FundCS,OS)
Prereq(FundCS,Compiler)
Concur(FundAI.FundCS)
Concur(AIProg,OS)
Concur(AIProg,Compiler)
Concur(AdvDB,Compiler)
Concur(FundCS,FundAI)
Concur(OS,AIProg)
Concur(Compiler,AdvDB)
Concu.r(Compiler,AdvProg)

Qtr(FundAI,Fall)
Qtr(FundMTC,Fall)
Qtr(DB,Winter)
Qtr(AIProg,Spring)
Qtr(AdvDB,Spring)
Qtr(OS ,Spring)
Concur(FundMTC,FundAI)
Concur(FundCS,FundMTC)
Concur(AdvDB,AIProg)
Concur(PL,DB)
Concur(OS,AdvDB)
Concur(Compiler,OS)

Figure 5: Implicit Facts of Figure 2

have message formulas associated with conjunctive facts, in which case p/\q
is not stated. The set {p,q,p~q} is not expressible in these languages. How-
ever, many languages are defined so that p/\q is implicitly stated when p and
q are stated, in which case p/\q is stated. The set {p ,q ,pAq} is expressible
in these languages, but the set {p .q} is not expressible. Finally, some lan-
guages (for example, predicate calculus) are defined so that pAq must be
stated explicitly, in which case pAq is not stated. In these languages, both
sets ({p,q} and {p,q,pAq}) are expressible.

Definition 2 allows us touseanautomatic deduction system to determine
whether a given collection of facts is expressible in a language. Given a
set of facts, assume that these facts are stated and all other facts are not
stated. The facts will be expressible if these assumptions are consistent with
a description of the world. Transitive axioms and other recursive axioms can
be handled using rewriting techniques [13]. In general, a depth limit can be
used to force termination.

Ezample: Ezpre~aibility algorithm. The proof in Figure 6 shows that
+ the set {Prereq(FundCS,DB) ,Prereq(DB.AdvDB)} is not expressible in LAY-

ER’I’REE. Steps d and e use the expressibility definition to convert the facts
to be stated into their associated message formulas. Step f combines the
transitivity axiom for Connected with these message formulas to conclude
that Funds is connected to AdvDB. However, step g concludes that FundCS
is not connected to AdvDB by converting the negative assumption of step
c into the negation of the corresponding message formula. Since this con-
clusion directly contradicts the conclusion of step f, the set of facts is not
expressible.

Assumntions
-L-

a. Stated(PreReq(FundCS ,DB) ,LAYERTREE, S>
b. Stuted(PreReq(DB,AdvDB) ,LAYERTREE,s)
C. lStated(PreReq(Fu.ndCS,AdvDB) ,LAYERTREE,s)

Proof
d. Connected(FundCS,D@
e. Connected(i%,AdvDB)
f . Connected(FundCS,AdvDB)

4)
by (2)
d,e, (6)

g. 1 Connected(Fm&,AdvDB) c, (2)
h. 0 f45

Figure 6: Proof that a Set Is Not Expressible

.

3.2 Using Implicit Languages

Due to the implicit properties of a language, it is often necessary to state
more facts than are desired. An implicit closure f s* for a set of facts f s is
a minimal expressible set of facts that contains f s. Formally, f s* denotes
the relation ImpCl between a language 1, a set of facts f s, and an implicit
closure f s*. For notational simplicity, we have omitted the language name
from the notation because it can always be determined from the surrounding
context.

Definition 3 The set of facts f s* is an implicit closure of the set f s if
there is no smaller expressible set that contains f s:

ImpCl(fs,fs*,l) e
f sgf s*A Expressible(f s* ,l) A

1 [3x. fsCxCfs*A Expessible(x,l)]

The set difference f s*-f s describes the implicit facts that are stated
when f s* is used to state f s. If all the implicit facts are correct, the implicit
language can be used to state f s. If f s is expressible, it is its own implicit
closure.

Note that ImpCl may not be a function. For example, there are
two implicit closures in STACK for the set, {NextTo (Canada ,U . S . A.) ,
NextTo (Canada ,Mexico) }. The following stacks describe these two mes-
sages:

c lC c lC
c lU c lM

c lM c lU

9

The first states the implicit fact NextTo (U. S . A. ,Mexico) , while the second
states NextTo(Mexico,U.S.A.).

The algorithm for determining if a set of facts is expressible can be
modified to produce an algorithm for generating implicit closures. In the
expressibility algorithm, we assumed that the facts not in the set were not
stated. However, this negative assumption does not hold for implicit facts.
When a contradiction is derived while trying to prove that a set of facts
is expressible, we can reverse any negative assumption that was used in
the derivation by assuming that the corresponding fact is an implicit fact.
This invalidates that particular derivation. When every contradiction is
invalidated by placing a fact in the implicit closure, the implicit closure is
guaranteed to be expressible because it is consistent with the world. If there
is more than one negative assumption that can be reversed to invalidate a
contradiction, the alternatives generate different implicit closures. Of course,
sometimes there will not be a negative assumption that can be reversed. In
this case, the set of facts is not expressible.

Example: Generating an implicit closure. The proof in Figure 6
can be used to generate the implicit closure of {Prereq(FundCS , DB) ,
Prereq(DB,AdvDB)}. Since we used 1 Stuted(Prereq(FundCS,AdvDB) ,
LAYERTREE, s > to derive the contradiction, the implicit closure is the original
set plus Prereq(FundCS ,AdvDB).

4 Choosing Among Languages

I

Expressibility (Definition 2) can be used as a criterion for choosing a lan-
guage in which to state a given collection of facts: a language should be used
only if the facts are expressible in that language. However, other criteria are
needed to choose among languages that ure sufficiently expressive for a set
of facts. This section describes two fundamental criteria for choosing among
sufficiently expressive languages: the cost of constructing messages and the
cost of interpreting messages. We illustrate these criteria by comparing the
diagram in Figure 4, which is written in LAYERTREE, with the diagram in
Figure 7, which is written in the language NETWORK. Since both these dia-
grams state the same facts, expressiveness cannot be used to choose between
NETWORK and LAYERTREE.

NETWORK uses labelled arcs to represent relations. The schema in
(7) describes when facts are stated in NETWORK. The predicate La-
belledArc(n,m ,arc) means that node n is connected to node m by a se-
quence of arcs that have the label arc.

10

Qtr

Figure 7: Prerequisites and Class Schedule in NETWORK

Stuted(Prereq(x, y> ,NETWORK, s) tj
Sutiafied(LabelledArc(E,y,Prereq) ,s)

Stuted(Concur(x,y) ,NETWORK,s) e
Sutis/ied(Labelledkc(%,~,Concur) ,s>

Stuted(Qtr(x,y) ,NETWORK.s) c-j
Sutisfied(Labelledkc(E,y.qtr) ,s>

(7)

LabelledArc satisfies the following transitivity axiom:

~LabelledArc(x,y,arc)ALabelledArc(y,z,arc)] +
LabelledArc(x,z,arc)

4.1 Construction Cost

A set of facts can be stated in a language by arranging the world so that
all of the message formulas associated with those facts are satisfied. We
represent the effort expended to construct a message by the cost function
Concost (i, s), which maps message formulas to their corresponding con-
struction costs. The situation variable s is included because the current
arrangement of the world influences the construction cost.

Construction cost can be used as a criterion for choosing among lan-
guages: choose the language with the lowest construction cost. For an arbi-
trary language, the construction cost might be astronomical. For example,
launching the space shuttle would be an expensive way to represent Amer-
ica’s patriotism. However, most languages are designed to have reasonable
construction costs.

A simple calculation of the cost of stating a set of facts is to sum the
costs of stating each fact individually. However, this simple calculation does

11

not work for all languages. Stating one fact changes the world, thereby
changing the cost of stating additional facts. Hence, any general construc-
tion cost calculation must check all orderings in which the facts might be
stated. Therefore, a general calculation is much less efficient than the simple
summation.

The simple summation cannot be used with implicit languages because
the stating of the explicit facts reduces the cost of stating the implicit facts to
zero. However, the cost can be calculated by determining the cost of stating
the set of explicit facts. We call this set the ezplicit kernel. Formally, the
explicit kernel for a set of facts is the smallest subset that can be stated
such that its implicit closure contains all the facts. Definition 4 defines the
relation ExpKer between a set of facts f s and its explicit kernel k.

Definition 4 The explicit kernel for a set of facts f s is the smallest subset
k such that k* contains f s:

ExpKer(fs.k,l) e
kcfsck*A 1 [3 x.xCk A f&x*]

The NETWORK diagram shown in Figure 7 has a larger explicit kernel than
the LAYERTREE diagram shown in Figure 4. Figure 5 lists the implicit facts
of the LAYERTREE diagram in two columns. The facts in the right column
are stated explicitly in the NETWORK diagram by arcs and arrowheads. The
facts in the left column are the implicit facts in the NETWORK diagram.

Since NETWORK and LAYERTREE are both tree languages, we assume a
constant, identical cost for stating facts in these languages. Therefore, their
construction cost is directly proportional to the size of their explicit ker-
nels, and LAYERTREE is more desirable than NETWORK for stating the facts in
Figure 3.

4.2 Interpretation Cost

In this section, we consider another criterion for choosing among sufficiently
expressive languages: interpretation cost. Interpretation cost is more signif-

L icant than construction cost. Most languages are designed so that messages
are easy to construct. However, the cost of interpreting messages in special-
ized languages depends on the facts that are stated.

We represent the cost of interpreting a message with a cost function
Intcost (5) that maps a message formula into its corresponding interpreta-
tion cost. For construction costs, we compared two messages by comparing
the construction cost for the entire set of facts. However, perception of a spe-
cific fact does not necessarily require the interpretation of the entire message.
Some facts might be more important than others, making it important that

12

Length

’ I

More < Accuracy 9LesS

Figure 8: Elementary Perceptual Tasks

they have low interpretation costs. A more realistic calculation is to average
the interpretation costs so that a few high costs do not bias the comparison.
Another possibility is to calculate a weighted sum of the interpretation costs,
where the weights represent the importance of the corresponding facts. We
assume that the facts in the LAYERTREE and NETWORK diagrams are of equal
importance.

To recognize that facts are stated in the presentation languages LAY-
ERTREE and NETWORK, a person must determine whether the predicates Con-
nected, SameLayer, HorzLabel, and LabelledArc are true. The interpre-
tation cost for message formulas involving these predicates could be derived
from a theory of human graphical perception. Although a confirmed theory
does not exist, Cleveland and McGill (31 have proposed a tentative one. We
can use their tentative theory to suggest how a cost function might be deter-
mined. This approximate calculation is sufficient to show that LAYERTREE is
easier to interpret than NETWORK.

Cleveland and McGill identify ten elementary perceptual tasks that peo-
ple must accomplish to extract quantitative information from graphical lan-
guages. They hypothesize an ordering of the perceptual tasks on the basis
of accuracy. Figure 8 lists these tasks from more to less accurate. They also
present the results of two experiments that partially confirm this ordering.
One experiment compared judgements of position along a common scale to
judgements of length. The other compared judgements of position along a
common scale to judgements of angle. Both experiments showed that people
were more accurate at judging position along a common scale.

13

Determining the truth of SameLayer and HorzLabel predicates simply
involves the perception of position along a common scale. However, Con-
nected and LabelledArc do not fit directly into their theory. Cleveland and
McGill are primarily interested in the presentation of quantitative informa-
tion, which does not normally involve perceiving that two graphic objects
are connected. Therefore, we add another perceptual task to their list of
perceptual task: the perception of connected objects. Furthermore, we as-
sume that people are as accurate at judging connection as position along a
common scale.7

Given these assumptions, we can develop a rough estimate of the inter-
pretation costs for messages in LAYERTREE and NETWORK. In LAYERTREE, facts
are stated by position and connection. SameLayer and HorzLabel are both
instances of position on a common scale. Connected requires more than
one primitive perceptual task to determine its truth value: the connection
perceptual task does not include judging the direction of the connection,
which requires the additional perceptual effort of noticing the arrowhead’s
location. We assume that Connected is twice as hard to perceive as Same-
Layer and HorzLabel. Thus, the estimate of the interpretation cost for
LAYERTREE is 49 (see Figure 9). In NETWORK, all the facts are stated with
LabelledArc, which also involves more than one primitive perceptual task.
In addition to perceiving the connection and the arrowhead, a person must
perceive the label on the arc. Optimistically8, we assume that labelled arcs
have an interpretation cost of 3. Thus, the estimate of the interpretation
cost for NETWORK is 117. The table in Figure 9 summarizes both calculations
of interpretation cost and shows that the LAYERTREE language is better than
the NETWORK language for the facts in Figure 3.

5 Related Research
In artificial intelligence, most of the related research on specialized languages
has been done on representation languages for problem solving. Genesereth
has proposed a representation system that allows and even encourages the
use of multiple specialized representation languages [5]. In fact, any criterion

i for choosing presentation languages can also be used to evaluate specialized

‘Connection is easier to judge than the quantitative value of a position. However, we
are primarily interested in qualitative positions (such as “above* and “below”), which
appear to be as easy to perceive as connection.

*Intuitively, the perception of the transitivity of connections becomes more difficult as the
number of connections increase. This suggests that connection perception in NETWORK
is more costly than in LAYEPTREE because there are more connections. However, even
with this optimistic cost assumption, NETWORK is found to be more difikult to interpret
than LAYEBTREE.

14

1 Total (39 facts) 1 49 I 117 I

Figure 9: Interpretation Costs for LAYERTREE and NETWORK

representation languages. In particular, implicit languages are desirable rep-
resentation languages because the implicit facts need not be stated explicitly.

Implicit languages are related to the intuitive concept of direct or ana-
logical representations [I]. An analogical representation, such as a map, has
a structure that directly reflects the world it represents. Sloman has argued
for the importance of analogical representations, which he contrasts with
“Fregean” representations like predicate calculus [121. His definition of ana-
logical representation consists of an informal collection of examples and a
philosophical discussion. We believe that Sloman is incorrect in asserting
that analogical representations are dramatically different from the more for-
mal representations used in artificial intelligence. Critiquing Sloman, Hayes
has argued for the unity of analogical representations and formal logic lan-
guages [7]. This paper is a step toward this unity.

Implicit languages have been used in the design of many software systems.
One of the earliest uses of an implicit language was Gelernter’s Geometry-
Theorem Proving Machine [4]. It used a diagram of the problem to help
control the search for a proof. The diagram implicitly stated many com-
mon facts about geometry. Of course, Gelemter had to be careful that the
diagram did not state incorrect facts:

“If a calculated effort is made to avoid spurious coincidences in
the figure, one is usually safe in generalizing any statement in
the formal system that correctly describes the diagram.”

6 Conclusion
This paper has presented a theory of expressiveness for languages. This
theory can be used to determine whether a given set of facts is expressible in
a language. The paper has also extended these results to implicit languages,
in which additional facts may be stated implicitly and has presented an
algorithm for generating implicit closures. Finally, the paper has discussed

15

how to choose an appropriate language in which to express some facts. This
research is currently being used to construct an information presentation
system that can automatically choose specialized graphical languages for
presenting information [9].

Acknowledgements
We wish to thank David Smith and Polle Zellweger for their incisive com-
ments on drafts of this paper.

References
1. BARR, A., AND FEIGENBAUM, E. (Eds.) The Handbook of Artifi-

cial Intelligence 1. William Kaufmann Inc. (1981), 200-206.

2. DOWTY , D. R., WALL , R. E., AND PETERS , S. Introduction
to Montague Semantics. D. Reidel Publishing Company, Boston, MA,
(1981), 224-225.

3. CLEVELAND, W. S., AND MCGILL, R. Graphical preception: the-
ory, experimentation, and application to the development of graphical
methods. Journal of the American Statistical Association. 79, 387,
(September 1984)) 531-554.

4. GELERNTER, H . Realization of a geometry-theorem proving machine.
In Feigenbaum, E., and Feldman, J. (Eds.) Computera and Thought.
McGraw-Bill, (1963), 134-152.

5. GENESERETH, M . R . Metaphors and models. Proceedings AA AI 80.
Stanford University, CA, (August 1980), 208-211.

6. GRICE, H. P. Logic and conversation. In Davidson, D., and Harman,
G. (Eds.) The Logic of Grammar. Dickinson Publishing Co., E&no,
CA, (1975), 64-75.

7. HAYES, P . J . Some problems and non-problems in represention the-
ory. Proceedings AISB Summer Conference. (1974), 63-79.

8. KARTTUNEN, L. AND PETERS, S . Conventional implicature. In Oh
C., ;nd Dinneen, D. A. (Eds.) Syntax and Semantics II. Academic
Press, New York, (1979), l-56.

9. MACKINLAY, J. Intelligent presentation: the generation problem for
user interfaces. Report HPP-83-34, Computer Science Department,
Stanford University, CA, (1983).

16

10. MCCARTHY, J . AND HAYES, P. Some philosophical problems from
the standpoint of artificial intelligence. In Meltzer B., and Michie D.
(Eds.) Machine Intelligence 4. Edinburgh University Press, (1969),
463-502.

11. PYLYSHYN, Z . W . Representation of knowledge: non-linguistic
forms. do we need images and analogues? Proceedings TlNLAP 75.
Massachusetts, (June 1975)) 174- 177.

12. SLOMAN, A. Interactions between philosophy and artificial intelli-
gence: the role of intuition and non-logical reasoning in intelligence.
Artificial Intelligence. 2, (1971), 209-225.

13. SMITH? D. E., AND GENESERETH, M . R . Controlling recursive
inference. Report HPP-84-6, Computer Science Department, Stanford
University, CA, (1984).

14. W INOGRAD, T . Procedures as a representation for data in a computer
program for understanding natural language. PhD Thesis, MIT, MA,
(1971).

15. ZDYBEL, F . , GREENFELD, N., YONKE, M., AND GIBBONS J . An
information presentation system. Proceedings IJCAI 81. Vancouver,
(August 1981), 978-984.

17

