
PrediCalc: A Logical Spreadsheet Management System

Michael Kassoff Lee-Ming Zen Ankit Garg Michael Genesereth

Logic Group, Department of Computer Science, Stanford University
{mkassoff, leezen, ankitg, genesereth}@stanford.edu

1 Introduction

Computerized spreadsheets are a great success. They
are often touted in newspapers and magazine articles
as the first “killer app” for personal computers. Over
the years, they have proven their worth time and again.
Today, they are used for managing enterprises of all
sorts - from one-person projects to multi-institutional
conglomerates.

The power of computerized spreadsheets derives in
large part from two primary features - the automatic
calculation of the values on spreadsheets and the use
of mathematical formulas in specifying those calcula-
tions. The automatic calculation of values frees the
user from the tedious task of doing those calculations
manually. The support for mathematical formulas
simplifies the task of setting up those calculations and
makes spreadsheet technology accessible to a broad
class of users, including those with no background in
programming.

Despite their successes, computerized spreadsheet
systems today have significant and unnecessary re-
strictions that limit their usefulness. One significant
restriction is that the formulas used to specify calcu-
lations must be functions. Spreadsheet systems gener-
ally do not provide the ability to encode many-to-many
relationships across cell values. Another superfluous
restriction is that propagation can only occur in one
direction in a traditional spreadsheet. For example, if
one defines C = A + B, then one can specify values
for A and B and obtain a value for C, but one cannot
specify a value for C and A and obtain a value for B.

In this demonstration, we present PrediCalc, a
spreadsheet system which allows for general logical
constraints and omnidirectional propagation. Predi-
Calc provides greater benefits than traditional spread-
sheets while preserving the key features of automatic

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

Figure 1: Part of a room management system created
using PrediCalc

calculation of values and ease of administration. Predi-
Calc has applications in data management, design, and
configuration. Figure 1 shows part of a room manage-
ment system created using PrediCalc.

The primary feature of PrediCalc that we wish
to demonstrate is its approach to update. Predi-
Calc allows for inconsistency between the value as-
signments and the constraints. This approach dif-
fers from the traditional consistency-maintaining tech-
niques [Orm01, MT99]. In addition, PrediCalc shows
the consequences of the value assignments, even when
the assignments are inconsistent with the constraints.
PrediCalc’s notion of consequence differs from current
notions based on minimal repairs [BC03].

Another important aspect of PrediCalc that we
would like to demonstrate is its database-like orga-
nization of cells into tables. Because PrediCalc uses
structured names for cells, these tables may be queried
as if they were database tables, while maintaining the
ability to refer to a cell individually by name. In this
respect, PrediCalc bridges the gap between traditional
databases and spreadsheets.

There have been several other systems that al-
low for mutidirectional, many-to-many constraints,
including LogiCalc [Kri88], FINANZ [FR88], PER-
PLEX [SB89], Knowledgesheet [GA00] and CsSolver
[FFJ+03]. None of these systems allow for propagation
under inconsistency or use structured names for cells.



Our demonstration will proceed as follows. First,
we describe the general user experience of building
a spreadsheet in PrediCalc. We then proceed to il-
lustrate the update capabilities of PrediCalc through
an example. Finally, we focus on the formula lan-
guage used by PrediCalc, describing how it allows for
database-style querying.

2 The User Experience

The user interface of PrediCalc is somewhat different
to that of traditional spreadsheets. A user creating a
new spreadsheet document with PrediCalc is greeted
with a blank canvas, a textual constraint editor, and
a domain editor. The experience is similar to that
of other canvas-based WYSIWYG tools, such as vi-
sual Web page designers. The user begins by placing
cells and textual labels on the canvas. The user may
also place static text onto the canvas, change the color
scheme, etc.

A cell may have any number of modalities, such as a
drop-down list or a type-in field. In addition, cells may
be arranged into tables, complete with row and column
names. This arrangement of cells into tables serves not
only to visually organize cells, but also allows cells to
be given names based on their rows and columns. Two
tables created in PrediCalc are shown in Figure 1. The
first table has six rows, representing events which need
to be scheduled, and four columns, containing some
properties of the events, namely their owner, whether
a projector is required, their room, and their time.
The second table represents the event schedule, where
each cell contains the event scheduled in a given room
at a given time.

Once the cells and tables are laid out, the user can
create constraints that express relationships between
cells. The constraints are written textually using a
variant of first order logic (the formula language is
explained in more detail in a subsequent section). The
user can also create domains for cells using a textual
editor and associate each cell with a domain. These
domains are used to populate cell drop-down lists.

Finally, the user may proceed to use the newly cre-
ated spreadsheet. As the user enters and deletes values
from cells, the values in other cells are changed auto-
matically. PrediCalc’s approach to update is described
in the next section.

3 Updates in PrediCalc

The primary feature of PrediCalc that we wish to
demonstrate is how it handles updates. We begin by
describing the update semantics abstractly, and then
illustrate with a concrete example.

PrediCalc dynamically divides cells into “base cells”
and “computed cells.” The computed cells contain con-
sequences of the base cells. After each update, the
partitioning of base and computed cells changes and

then the set of computed facts is recalculated. This
process is described in more detail in the next several
paragraphs.

In PrediCalc, a user can modify one cell at a time.
The user can assign a value to an empty cell, change
the value currently assigned to a cell, or empty a cell
that currently has a value. When directly modified
by the user, a cell automatically becomes a base cell.
Next, PrediCalc determines a set of cells which are to
lose their status as base cells and become computed
cells. In the case of a new value assignment to a cell,
these are the base cells with values that, together with
the constraints, directly contradict the newly assigned
value. When the user empties a cell, these are the
cells with values that, together with the constraints,
directly entail a value in the emptied cell.

In the case that two or more base cells have values
that together contradict the newly assigned value but
none does individually, these cells are left as is and
do not lose their status as base cells. This leads to
inconsistency. Similarly, if two or more cells have val-
ues that together entail a value in the newly emptied
cell but none does individually, these cells are left as is
and remain base cells. This leads to the newly empty
base cell having an entailed value. Note that since the
newly emptied cell is now a base cell, the cell does not
contain a computed value and remains empty.

PrediCalc then proceeds to modify the values in the
computed cells. The computed cells contain conse-
quences of the values in the base cells and the con-
straints. For this purpose PrediCalc uses a para-
consistent consequence relation called existential Ω-
entailment. A set of value assignments Λ existentially
Ω-entails a value assignment φ if and only if there is
some subset of value assignments λ ⊆ Λ consistent
with a set of constraints Ω such that λ ∪ Ω logically
entails φ.

PrediCalc fills the computed cells with the existen-
tial Ω-consequences of the base values and the con-
straints. There is one complication, however, which is
that a cell can hold at most one value. If more than
one value is existentially Ω-entailed in a computed cell,
then PrediCalc uses inertia as a tie-breaker: if the cell
contained a value before the update and the value is
still existentially Ω-entailed, then that value remains
in the cell. If there are multiple existentially Ω-entailed
values for a computed cell but none of these was in the
cell before the update, the cell is left empty.

Unlike current approaches which define a conse-
quence of an inconsistent database as a logical conse-
quence of all minimal repairs of the database [BC03],
in PrediCalc a consequence of an inconsistent set of as-
signments is defined as a logical consequence of some
repair of the database.

We illustrate the approach using the room manage-
ment system of Figure 1 as an example. The room
manager consists of four tables, shown schematically



Figure 2: After creating three events Figure 3: Spreadsheet with e1 and e2 scheduled

Figure 4: Spreadsheet with inconsistency Figure 5: Showing consequences under inconsistency

in Figure 2. 1 The top table contains event requests,
each of which has an owner, a specification of whether
a projector is needed, a room, and a time. The center
table contains a schedule of the events. The informa-
tion is redundant with the first table but is useful be-
cause it offers a different view. The bottom-left table
lists whether or not each room has a projector. The
bottom-right table lists whether each person is a fac-
ulty member or not. Base cells contain a triangle in
the upper left-hand corner of the cell, while computed
cells do not.

We consider an administrator whose task is to as-
sign three new events a room and a time. The admin-
istrator starts with empty schedule table and event
table. She creates three new events in the event ta-

1While this illustrative example is small, PrediCalc can han-
dle large numbers of cells and complex constraints.

ble and, for each, fills in the event owner’s name and
whether a projector is needed. As shown in Figure
2, the system responds by automatically filling in the
room of event e3 as g100, since e3 requires a projector,
and g100 is the only room with a projector.

The administrator then selects g100 as the room
for event e1 and morning as the time in the event ta-
ble, causing e1 to show up in the corresponding cell
in the schedule table. The administrator then assigns
e2 to g200 in the afternoon by modifying the schedule
table directly, causing the corresponding values to ap-
pear in the event table. This leads to the state shown
in Figure 3. This illustrates PrediCalc’s ability to do
propagation in multiple directions.

Next, the administrator moves e1 to g100 in the
evening by modifying the schedule table, resulting in
e1’s time being changed to the evening in the event
table. This illustrates how the update algorithm deals



exists(R, event[E,room](R))
exists(T, event[E,time](T))
schedule[T,R](E) <=> event[E,time](T) and event[E,room](R)
event[E,projection](yes) and event[E,room](R) => room[R,projector](yes)
event[E,owner](P) and person[P,faculty](no) => not event[E,room](g100)

Figure 6: Constraints for the room manager. The first two constraints dictate that every event has a room and
a time. The third constraint relates the schedule table to the event table. The fourth states that events that
require a projector must be scheduled in a rooms with a projector. The fifth states that only faculty members
can reserve room g100. Note that free variables are considered to be universally quantified.

with direct conflicts. The administrator then changes
the room assignment for e3 to g200. Since e3 requires
a projector but g200 lacks a projector, this leads to
a conflict. As shown in Figure 4, PrediCalc marks
the conflicting cells in red. This shows how PrediCalc
deals with conflicts caused by multiple cells.

The administrator does not have to resolve the con-
flict immediately. In fact, she instead proceeds to set
the time of e3 to the morning. The event e3 then
appears in the schedule table, as shown in Figure 5.
This demonstrates PrediCalc’s use of existential Ω-
entailment to show the consequences of the (incon-
sistent) base assignments. Finally, the administrator
moves the projector from g100 into g200, removing the
conflict and resulting in a complete assignment to all
events (not shown).

4 Formula Language

As mentioned above, PrediCalc allows for structured
names for cells. For example, the structured name
schedule[morning,g100] refers to the cell in the sched-
ule table in the morning row and the g100 column.
This sort of structured name allows rows and columns
to be quantified over. PrediCalc structured names are
similar to the structured predicate names allowed in
the logic programming language HiLog [CKW93].

In addition to improving the user experience by re-
ducing the replication of typically required in a tra-
ditional spreadsheet, structured names allow tables to
be queried in a manner similar to database tables. In-
deed, since all rows in a PrediCalc table are named,
one can either treat a row as tuple with attributes
named by the columns, or treat a column as a tuples
with attributes named by the rows.

Formulas in PrediCalc can be built up from these
structured names and the usual logical connectives
and, or, not, =>, <=, and <=> and the quanti-
fiers forall and exists. There are no restrictions on
these formulas; since everything is reducible to unary
relations, satisfiability is decidable [BJ02]. For conve-
nience, PrediCalc also allows users to define new n-ary
relations using <=> and use these in an unrestricted
manner. Again, decidability is preserved since these
n-ary relations are reducible to unary ones. Figure 6
shows the set of constraints for the room manager.

5 PrediCalc and Databases

A PrediCalc spreadsheet is a special kinds of database,
in particular, a database with unary, single-valued re-
lations. However, the techniques employed by Pred-
iCalc could be generalized to general databases. In
particular, its approach to dealing with ambiguity and
inconsistency could be applied to databases with in-
tegrity constraints.

References

[BC03] L. Bertossi and J. Chomicki. Query answer-
ing in inconsistent databases. In Logics for
Emerging Applications of Databases, 2003.

[BJ02] G. Boolos and R. Jeffrey. Computability and
Logic. Cambridge University Press, 2002.

[CKW93] W. Chen, M. Kifer, and D. Warren. Hilog:
A foundation for higher-order logic pro-
gramming. J. Log. Program., 15(3), 1993.

[FFJ+03] A. Felfernig, G. Friedrich, D. Jannach,
C. Russ, and M. Zanker. Developing
constraint-based applications with spread-
sheets. IEA/AIE, pages 197–207, 2003.

[FR88] G. Fischer and C. Rathke. Knowledge-based
spreadsheets. In AAAI, 1988.

[GA00] G. Gupta and S. Akhter. Knowledgesheet:
A graphical spreadsheet interface for inter-
actively developing a class of constraint pro-
grams. In PADL, pages 308–323, 2000.

[Kri88] F. Kriwaczek. Logicalc: a prolog spread-
sheet. Machine Intelligence 11, 1988.

[MT99] E. Mayol and E. Teniente. A survey of cur-
rent methods for integrity constraint main-
tenance and view updating. In ER Work-
shops, pages 62–73, 1999.

[Orm01] L. Orman. Transaction repair for integrity
enforcement. TKDE, 13(6):996–1009, 2001.

[SB89] M. Spenke and C. Beilken. A spreadsheet
interface for logic programming. In Proc. of
CHI-89, pages 75–80, 1989.


