
Dynamic Logic Programming

Michael Genesereth
Computer Science Department

Stanford University

1. Introduction

Dynamic Logic Programming (DLP) is an extension to logic programming designed to support the
representation of knowledge about dynamic worlds. It combines the strengths of safe, stratified,
side-effect-free logic programming in defining relations with the power of simultaneous transition
rules for defining dynamic operations. Because relation definitions in DLP are safe and stratified
and side-effect-free, dynamic logic programs are simpler than general Prolog programs and they
allow for efficient implementation. At the same time, defining operations using simultaneous
transition rules adds expressive power without compromising the conceptual simplicity of logic
programming. DLP is the basis for the logic programming language Epilog (aka Dynamic Prolog).

In Dynamic Logic Programming, the states of the application environment are modeled as sets of
ground atomic propositions (here called datasets), and additional information is expressed in the
form of rules that can be applied to these instances. View definitions define higher level view
relations in terms of lower level base relations, and operation definitions specify how the world
state changes in response to external inputs (such as the actions of agents or the passage of time).

Views are defined by writing Prolog-style rules. For example, the rule below says that g is true of x
and z if there is a y such that p is true of x and y and p is also true of y and z.

 g(X,Y) :- p(X,Y) & p(Y,Z)

Operations are defined using transition rules. For example, the following rule says that when the
operation a is applied to x in a state, the for any y such that p holds of x and y then p will be false
of x and y in the next state and p will be true of y and x.

 a(X) :: p(X,Y) ==> ~p(X,Y) & p(Y,X)

This paper provides technical detail about the syntax and semantics of Dynamic Logic
Programming. Section 2 describes the concept of datasets; Section 3 gives details of view rules;
and Section 4 covers transition rules and shows how they are used in formalizing dynamic
behavior. Section 5 gives an example of the use of Dynamic Logic Programming in defining the
game of Tic Tac Toe.

2. Datasets

A vocabulary is a collection of object constants, function constants, and relation constants. Each
function constant and relation constant has an associated arity, i.e. the number of arguments
allowed in any expression involving that constant.

A ground functional term is an expression formed from an n-ary function constant and n ground
terms. In this paper, we write functional terms in traditional mathematical notation - the function
constant followed by its arguments enclosed in parentheses and separated by commas. For
example, if f is a unary function constant and a is an object constant, then f(a), f(f(a)), and
f(f(f(a))) are all ground functional terms. A ground term is either an object constant or a ground
functional term.

A ground atom (or factoid) is an expression formed from an n-ary relation constant and n ground
terms. In analogy with functional terms, we write factoids in traditional mathematical notation -
the relation constant followed by its arguments enclosed in parentheses and separated by commas.
For example, if r is a binary relation constant and a and b are object constants, then r(a,b) is a
factoid.

The Herbrand universe for a given vocabulary is the set of all ground terms that can be formed
from the constants in the vocabulary. In the absence of function constants, the Herbrand universe
for a vocabulary is just the set of all object constants. In the presence of function constants with
arity greater than 0, the Herbrand universe is necessarily infinite, as it includes not just object
constants but also functional terms nested arbitrarily deeply.

The Herbrand base for a database is the set of all factoids that can be formed from the constants in
its vocabulary. For example, for a vocabulary with just two object constants a and b and a single
binary relation constant r, the Herbrand base is {r(a,a), r(a,b), r(b,a), r(b,b)}.

A dataset is any subset of the Herbrand base, i.e. an arbitrary set of the factoids that can be formed
from the vocabulary of the database. The factoids in a dataset representing a state are typically
assumed to be true in that state, and all other factoids in the Herbrand base are typically assumed
to be false.

3. View Definitions

A static logic program is a set of rules that define new relations in terms of existing relations. Such
view definitions take the form of Prolog-like rules with the constraint that the rules are safe and
stratified and side-effect-free.

The vocabulary of a static logic program is a superset of the vocabulary of any dataset to which it
is applied. It includes the object, function, and relation constants used in the dataset, but it can
include additional object, function, and relation constants as well.

Static logic programs can also include a new type of symbol, called a variable. Variables allow us
to state relationships among objects without naming specific objects. In what follows, we write
variables as strings of alphanumeric characters beginning with a capital letter, e.g. X, Y, Z, Mass,
Speed, and so forth.

Atoms are analogous to dataset factoids except that they can optionally contain variables as well as
object constants. For example, if r is a binary relation constant, if a is an object constant, and if X
and Y are variables, then r(a,X) is an atom, as is r(a,Y) and r(X,Y) and r(X,X).

A literal is either an atom or a negation of an atom (i.e. an expression stating that the atom is
false). A simple atom is called a positive literal, The negation of an atom is called a negative
literal. In what follows, we write negative literals using the negation sign ~. For example, if
p(a,b) is an atom, then ~p(a,b) denotes the negation of this atom.

A rule is an expression consisting of a distinguished atom, called the head, and zero or more
atoms, together called the body. The literals in the body are called subgoals. In what follows, we
write rules as in the example shown below.

ψ :- [~]φ1 & ... & [~]φn

The following expression is an example of a rule. Here, r(X) is the head, the expression p(X,Y) &
q(Y) is the body; and p(X,Y) and ~q(Y) are subgoals.

r(X) :- p(X,Y) & ~q(Y)

Intuitively, a rule is something like a reverse implication. It is a statement that the conclusion of
the rule is true whenever the conditions are true. For example, the rule above states that r is true of
any object X if there is an object Y such that p is true of X and Y and q is not true of Y. For example,
if we know that p(a,b) is true and q(b) is false, then, using this rule, we can conclude that r(a) is
true. See the end of this section for a more formal treatment of semantics.

A logic program is a set of facts and rules of the form just described. Unfortunately, the language
of rules, as defined above, allows for logic programs with some unpleasant properties. To
eliminate these problems, we concentrate exclusively on logic programs where the rules have two
special properties, viz. safety and stratification.

A rule in a logic program is safe if and only if every variable that appears in the head or in any
negative literal in the body also appears in at least one positive literal in the body. A logic program
is safe if and only if every rule in the program is safe.

The rule shown below is safe. Every variable in the head and every variable in the negative
subgoal appears in a positive subgoal in the body. Note that it is okay for the body to contain
variables that do not appear in the head.

r(X,Y) :- p(X,Y,Z) & ~q(X,Z)

By contrast, the two rules shown below are not safe. The first rule is not safe because the variable
Z appears in the head but does not appear in any positive subgoal. The second rule is not safe
because the variable Z appears in a negative subgoal but not in any positive subgoal.

s(X,Y,Z) :- p(X,Y)

t(X,Y) :- p(X,Y) & ~q(Y,Z)

(Note that this condition is stronger than necessary. We do not need every rule to be safe; we just
require that the program as a whole is safe. The definition of this broader notion of safety is a little
complicated and the distinction is unnecessary here, so we skip over this subtlety in the interests of
simplicity.)

We say that a set of view definitions is stratified with respect to negation if and only if its rules can
be partitioned into strata in such a way that (1) every stratum contains at least one rule, (2) the
rules defining relations that appear in positive goals of a rule appear in the same stratum as that
rule or in some lower stratum, and (3) the rules defining relations that appear in negative subgoals
of a rule occur in some lower stratum (not the same stratum).

As an example, assume we have a unary relation p that is true of all of the objects in some
application area, and assume that q is an arbitrary binary relation. Now, consider the ruleset shown
below. The first two rules define r to be the transitive closure of q. The third rule defines s to be
the complement of the transitive closure.

r(X,Y) :- q(X,Y)
r(X,Z) :- q(X,Y) & r(Y,Z)
s(X,Y) :- p(X) & p(Y) & ~r(X,Y)

This is a complicated ruleset, yet it is easy to see that it is stratified with respect to negation. The
first two rules contain no negations at all, and so we can group them together in our lowest
stratum. The third rule has a negated subgoal containing a relation defined in our lowest stratum,
and so we put it into a stratum above this one, as shown below. This ruleset satisfies the conditions
of our definition and hence it is stratified with respect to negation.

Stratum Rules

2 s(X,Y) :- p(X) & p(Y) & ~r(X,Y)

1 r(X,Y) :- q(X,Y)
r(X,Z) :- q(X,Y) & r(Y,Z)

By comparison, consider the following ruleset. Here, the relation s is defined in terms of p and the
negation of r, and the relation r is defined in terms of p and the negation of s.

r(X,Y) :- p(X) & p(Y) & q(X,Y)
s(X,Y) :- r(X,Y) & ~s(Y,X)

There is no way of dividing the rules of this ruleset into strata in a way that satisfies the definition
above. Hence, the ruleset is not stratified with respect to negation.

The problem with unstratified rulesets is that there is a potential ambiguity. As an example,
consider the rules above and assume that our dataset also included the facts p(a), p(b), q(a,b),
and q(b,a). From these facts, we can conclude r(a,b) and r(b,a) are both true. So far, so good.
But what can we say about s? If we take s(a,b) to be true and s(b,a) to be false, then the second
rule is satisfied. If we take s(a,b) to be false and s(b,a) to be true, then the second rule is again
satisfied. The upshot is that there is ambiguity about s. By concentrating exclusively on logic
programs that are stratified with respect to negation, we avoid such ambiguities.

View definitions in static logic programs are required to be both safe and stratified with respect to
negation. This is a departure from view definitions in Logic Programming languages like Prolog,
which permit rules that are unsafe and logic programs that are not stratified.

The semantics of view definitions in static logic programs can be formalized by defining the result
of applying a static logic program to a dataset. The resulting extension is the set of all facts that
can be "deduced" from the dataset on the basis of the rules in the static logic program.

An instance of an expression (atom, literal, or rule) is one in which all variables have been
consistently replaced by terms from the Herbrand universe. For example, if we have a language
with object constants a and b, then r(a) :- p(a,a), r(a) :- p(a,b), r(b) :- p(b,a), and
r(b) :- p(b,b) are all instances of r(X) :- p(X,Y).

Given this notion, we can define the result of single application of a single rule to a dataset. Given
a rule r and a dataset Δ, we define v(r,Δ) to be the set of all ψ such that (1) ψ is the head of an
arbitrary instance of r, (2) every positive subgoal in the instance is a member of Δ, and (3) no
negative subgoal in the instance is a member of Δ.

Using this notion, we define the result of repeatedly applying the rules in a single stratum Σ to a
dataset Δ of facts in the vocabulary of the stratum below. Consider a sequence of datasets defined
recursively as follows. Γ0 = Δ, and Γn+1 = ∪v(r,Γn) for all r in Σ. Finally, we define the closure of
Σ on Δ to be the union of the datasets in this sequence, i.e. C(Σ,Δ) = ∪Γi.

Finally, we define the extension of a static logic program Ω on dataset Δ as follows. Our definition
relies on a decomposition of Ω into strata Σ1, ... , Σn. Let Δ0 = Δ, and let Δn+1 = Δn ∪ C(Σn+1,Δn).
Since there are only finitely many rules in a static logic program and every stratum must contain at
least one rule, there are only finitely many sets to consider (though the sets themselves might be
infinite).

It can be shown that there is only one extension for any static logic program applied to any dataset.
Although it is sometimes possible to stratify the rules in more than one way, this does not cause
any problems. So long as a program is stratified with respect to negation, the definition just given
produces the same extension no matter which stratification one uses.

Note that the extension of any function-free static logic program on a finite dataset must be finite.
Also, the extension of any non-recursive static logic program applied to a finite dataset must be
finite. In both cases, the extension can be computed in time that is polynomial in the size of the
dataset.

In the case of recursive programs without function constants, the result must be finite. However,
the cost of computing the extension may be exponential in the size of the data, but the result can
be computed in finite time.

For recursive programs with function constants, it is possible that the extension is infinite. In such
cases, the extension is still well-defined; but in practice it may be necessary to use a different
algorithm to compute whether or not a given atom is in the extension. There are multiple ways this
can be done. See Ullman's book on Database Systems and Knowledge Base Systems for a
discussion of some usable approaches.

4. Operation Definitions

The syntax of operation definitions is analogous to the syntax for view definitions. The various
types of constants are the same, and the notions of term and atom and literal are also the same.
However, to these, we add a few new items.

To denote operations, we designate some constants as operation constants. As with constructors
and relation constants, each operation constant has a fixed arity - unary, binary, and so forth.

An action is an application of an operation to specific objects. In what follows, we denote actions
using a syntax similar to that of atomic sentences, viz. an n-ary operation constant followed by n
terms enclosed in parentheses and separated by commas. For example, if f is a binary operation
constant and a and b are symbols, then f(a,b) denotes the action of applying the operation f to a
and b.

An operation definition rule (or, more simply, an operation rule) is an expression of the form
shown below. Each rule consists of (1) an action expression, (2) a double colon, (3) a literal or a
conjunction of literals, (4) a double shafted forward arrow, and (5) a literal or an action expression
or a conjunction of literals and action expressions. The action expression to the left of the double
colon is called the head; the literals to the left of the arrow are called conditions; and the literals to
its right are called effects.

γ :: [~]φ1 & ... & [~]φm ==> [~]ψ1 & ... & [~]ψn & γ1 & ... & γk

Intuitively, the meaning of an operation rule is simple. If the conditions of a rule are true in any
state, then executing the action in the head requites that we execute the effects of the rule.

For example, the following rule states that in any state in which p(a,b) is true and q(a) is false,
the executing click(a) requires that we remove p(a,b) from our dataset, add q(b), perform
action click(b).

click(a) :: p(a,b) & ~q(a) ==> ~p(a,b) & q(a) & click(b)

As with rules defining views, operation rules may contain variables to express information in a
compact form. For example, we can write the following rule to generalize the preceding rule to all
objects.

click(X) :: p(X,Y) & ~q(X) ==> ~p(X,Y) & q(X) & click(Y)

As with view rules, safety is a consideration. Safety in this case means that every variable among
the effects of a rule or in negative conditions also appears in the head of the rule or in the positive
conditions.

The operation rules shown above are both safe. However, the rules shown below are not. The
second effect of the first rule contains a variable that does not appear in the head or in any positive
condition. In the second rule, there is a variable that appears in a negative condition that does not
appear in the head or in any positive condition.

click(X) :: p(X,Y) & ~q(X) ==> ~p(X,Y) & q(Z) & click(Y)
click(X) :: p(X,Y) & ~q(Z) ==> ~p(X,Y) & q(X) & click(Y)

In some operation rules there is no condition, i.e. the effects of the transition rule take place on all
datasets. We can, of course, write such rules by using the condition true, as in the following

example.

click(X) :: true ==> ~p(X) & q(X)

For the sake of simplicity in writing our examples, we sometimes abbreviate such rules by
dropping the conditions and the transition operator and instead write just the effects of the
transition as the body of the operation rule. For example, we can abbreviate the rule above as
shown below.

click(X) :: ~p(X) & q(X)

An operation definition is a collection of operation rules in which the same operation appears in
the head of every rule. As with view definitions, we are interested primarily in rulesets that are
finite. However, in analyzing operation definitions, we occasionally talk about the set of all ground
instances of the rules, and in some cases these sets are infinite.

The semantics of operation definitions is more complicated than the semantics of updates due to
the possible occurrence of views in the conditions of the rule and the possible occurrence of
operations in its effects. In what follows, we first define the expansion of an action in the context
of a given dataset, and we then define the result of performing that action on that dataset.

Suppose we are given a set Ω of rules, a set Γ of actions (factoids, negated factoids, and actions),
and a dataset Δ. We say that an instance of a rule in Ω is active with respect to Γ and Δ if and only
if the head of the rule is in Γ and the conditions of the rule are all true in Δ.

Given this notion, we define the expansion of action γ with respect to rule set Ω and dataset Δ as
follows. Let Γ0 be {γ} and let Γi+1 be the set of all effects in any instance of any rule in Ω with
respect to Γi and Δ. We define our expansion U(γ,Ω,Δ) as the fixpoint of this series. Equivalently,
it is the union of the sets Γi, for all non-negative integers i.

Next, we define the positive updates A(γ,Ω,Δ) to be the positive base factoids in U(γ,Ω,Δ). We
define the negative updates D(γ,Ω,Δ) to be the set of all negative factoids in U(γ,Ω,Δ).

Finally, we define the result of applying an action γ to a dataset Δ as the result of removing the
negative updates from Δ and adding the positive updates, i.e. the result is (Δ - D(γ,Ω,Δ)) ∪
A(γ,Ω,Δ).

To illustrate these definitions, consider an application with a dataset representing a directed acyclic
graph. In the sentences below, we use symbols to designate the nodes of the graph, and we use the
edge relation to designate the arcs of the graph.

edge(a,b)
edge(b,d)
edge(b,e)

The following operation definition defines a ternary operation copy that copies the outgoing arcs in
the graph from its first argument to its second argument.

copy(X,Y) :: edge(X,Z) ==> edge(Y,Z)

Given this operation definition and the dataset shown above, the expansion of copy(b,c) consists
of the changes shown below. In this case, the factoids representing the two arcs emanating from b
are all copied to c.

edge(c,d)
edge(c,e)

After executing this event, we end up with the following dataset.

edge(a,b)
edge(b,d)
edge(b,e)
edge(c,d)
edge(c,e)

The following rule defines a unary operation invert that reverses the incoming arcs of the node
specified as it argument.

invert(Y) :: edge(X,Y) ==> ~edge(X,Y) & edge(Y,X)

The expansion of invert(c) is shown below. In this case, the arguments in the factoid with c as
second argument have all been reversed.

~edge(c,d)
~edge(c,e)
edge(d,c)
edge(e,c)

After executing this event, we end up with the following dataset.

edge(a,b)
edge(b,d)
edge(b,e)
edge(d,c)
edge(e,c)

Finally, the following operation rules define a binary operation that inserts a new node into the
graph (the first argument) with an arc to the second argument and arcs to all of the nodes that are
reachable from the second argument.

insert(X,Y) :: edge(X,Y)
insert(X,Y) :: edge(Y,Z) ==> insert(X,Z)

The expansion of insert(w,b) is shown below. The first rule adds edge(w,b) to the expansion.
The second rule adds insert(w,d) and insert(w,e). Given these events, on the next round of
expansion, the first rule adds edge(w,d) and edge(w,e) and the second rules adds insert(w,c).
On the third round of expansion, we get edge(w,c). At this point, neither rule adds any additional
items to our expansion, and the process terminates.

insert(w,b)
edge(w,b)
insert(w,d)
insert(w,e)
edge(w,d)
edge(w,e)
insert(w,c)
edge(w,c)

Applying this event to the preceding dataset produces the result shown below.

edge(a,b)
edge(b,d)
edge(b,e)
edge(d,c)
edge(e,c)
edge(w,b)
edge(w,d)
edge(w,e)
edge(w,c)

Note that it is possible to define insert in other ways. We could, for example, define a view of
edge that relates each node to every node that can be reached from the node; and we could then
use this view in a non-recursive definition of insert. However, this would require us to introduce
a new view into our vocabulary; and, for many people, this is less clear than the definition shown
above.

5. Example - Tic Tac Toe

As an example of a dynamic logic program, consider the task of formalizing the rules for the game
of Tic Tac Toe (also called Noughts and Crosses, Xs and Os). In what follows, we show how to
represent game states as datasets; we show how to define properties of states using view
definitions; and we show how to define "moves" in the game using operation definitions.

Tic Tac Toe is a game for two players (the X player and the O player) who take turns placing their
marks in a 3x3 grid. The first player to place three of his marks in a horizontal, vertical, or
diagonal row wins the game. The figure below shows one state of play in Tic Tac Toe.

X O
X O

In our definition of Tic Tac Toe, states are characterized by the contents of the cells on the Tic Tac
Toe board and control (whose turn it is to play). (It is true that control can be defined in terms of
the contents of cells; but making control explicit costs little and simplifies the description.) In what

follows, we use the ternary relation constant cell together with a row m and a column n and a
mark w to designate the fact that the cell in row m and column n contains w where w is either an x
or an o or a b (for blank). We use the unary relation constant control to state that it is that role's
turn to mark a cell. The dataset shown below uses this vocabulary to characterize the game state
show above.

 cell(1,1,x)
 cell(1,2,o)
 cell(1,3,b)
 cell(2,1,b)
 cell(2,2,x)
 cell(2,3,o)
 cell(3,1,b)
 cell(3,2,b)
 cell(3,3,b)
 control(x)

Our first step is to define legality of moves. A player may mark a cell if that cell is blank.
Otherwise, it has no legal actions.

 legal(M,N) :- cell(M,N,b)

Next, we define the physics of the world - how it changes in response to the performance of legal
actions. If a player that has control and marks a cell, the cell is then marked. Also, control switches
to the other player.

 mark(M,N) :: control(Z) ==> ~cell(M,N,b) & cell(M,N,Z)
 mark(M,N) :: control(x) ==> ~control(x) & control(o)
 mark(M,N) :: control(o) ==> ~control(o) & control(x)

Finally, to complete our game description, we define some properties of game states - rows,
columns, diagonals, lines - and we must say when the game terminates.

A row of marks mean that there are three marks all with the same first coordinate. The column and
diagonal relations are defined analogously.

 row(M,Z) :- cell(M,1,Z) & cell(M,2,Z) & cell(M,3,Z)
 column(M,Z) :- cell(1,N,Z) & cell(2,N,Z) & cell(3,N,Z)
 diagonal(Z) :- cell(1,1,Z) & cell(2,2,Z) & cell(3,3,Z)
 diagonal(Z) :- cell(1,3,Z) & cell(2,2,Z) & cell(3,1,Z)

A line is a row of marks of the same type or a column or a diagonal.

 line(Z) :- row(M,Z)
 line(Z) :- column(M,Z)
 line(Z) :- diagonal(Z)

A game is over whenever either player has a line of marks of the appropriate type or if there are no
cells containing blanks. We define the 0-ary relation open here to mean that there is at least one
cell containing a blank.

 terminal :- line(x)
 terminal :- line(o)
 terminal :- ~open

 open :- cell(M,N,b)

Our rules specify the states and physics of the game. They do not specify how to play the game
effectively. In order to decide this, a player needs to consider the effects of his legal moves in
order to decide a course of action that will lead to a line of his marks while considering the
possible moves of the other player.

6. Comparison to Other Languages

Over the years, various LP researchers, have developed extensions to deal with dynamics, e.g.
assert and retract in standard Prolog, production systems, active databases, transactions in
Transaction Logic, constraint handling rules in CHR, evolving logic programs in EVOLP, and
reactive rules in DALI and LPS. In this full paper, we summarize these approaches and highlight
their commonalties and differences. We mention just two of these below.

Prolog's assert and retract provide one way to model dynamics. The key is a conceptualization of
dynamics as destructive change of state - states are modeled as sets of stored facts, and changes to
state are modeled as applications of assert and retract to these sets of facts. Unfortunately, the
semantics of logic programs involving assert and retract is unsatisfying because of the way the
execution of these actions gets mixed up with query evaluation in the standard Prolog interpreter.
Dynamic logic programming cleans things up by separating the formalization of dynamics from
the definition of relations using standard Prolog rules.

Production systems are another way of expressing dynamics. The transition rules used to define
operations in DLP are similar, but there are some important differences. In most production
systems, only one rule is applied at a time. (Many rules may be "triggered", but typically only one
is "fired".) In dynamic logic programs, all transition rules are executed simultaneously, and all
updates (both deletions and additions) are applied to the dataset before the rules fire again. This
simplifies the specification of dynamics in many cases, and avoids many problems endemic to
sequential update systems, such as unintended race conditions and deadlocks.

7. Conclusion

In practice, it is common to extend the simple version of Dynamic Logic Programming described
here to include "built-in" relations (e.g. arithmetic) and other operators (e.g. aggregates). The
syntax and semantics of such extensions are a little messy. Luckily, they pose no significant
theoretical challenges; and, in the interest of brevity, they are not covered here.

The intent of this article is to provide a concise but reasonably rigorous account of the syntax and
semantics of Dynamic Logic Programming. For motivation and examples of all of these concepts,
see the textbook Dynamic Logic Programming.

References

W. F. Clocksin, and C. S. Mellish: Programming in Prolog. 4th edition. New York: Springer-Verlag.
1994.

A. J. Bonner, M. Kifer: Transaction Logic Programming, International Conference on Logic
Programming (ICLP), 1993.

D. Cabeza, M. Hermenegildo: Distributed www programming us- ing (ciao-)prolog and the pillow
library. Theory and Practice of Logic Programming, 1(3):251-282, May 2001.

S. Constantini, A. Tocchio: The DALI Logic Programming Agent-Oriented Language. Alferes, J.J.,
Leite, J. (eds) Logics in Artificial Intelligence. JELIA 2004. Lecture Notes in Computer Science, vol
3229. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30227-8_57

S. Flesca, S. Greco: Declarative Semantics For Active Rules. Theory and Practice of Logic
Programming, 1(1): 43-69, 2001.

P Fodor: Practical Reasoning with Transaction Logic Programming for Knowledge Base Dynamics, PhD
Thesis, Stonybrook University.

T. Fruehwirth: Constraint Handling Rules. Cambridge University Press, ISBN 9780521877763, 2009.

M. Genesereth, N. Love, B. Pell: The International Game Playing Competition. AAAI Magazine, 2005.

M. Genesereth: Dynamic Logic Programming.
http://logicprogramming.stanford.edu/miscellaneous/dlp.html

M. Genesereth: Epilog. http://epilog.stanford.edu

M. Genesereth, V. Chaudhri: Logic Programming. Synthesis Lectures on Artificial Intelligence and
Machine Learning, February 2020. https://doi.org/10.2200/S00966ED1V01Y201911AIM044

P. Hayes: Computation and deduction. Proceedings Second Symposium on Mathematical Foundations of
Computer Science, Czechoslovakian Academy of Sciences, Czechoslovakia, 1973, pp. 105-118.

M. Kifer, A. Liu: Declarative Logic Programming, ACM Books, 2018.

R.Kowalski: Algorithm = Logic + Control. Communications of the ACM, July 1979, Vol 22 No 7.

R. Kowalski, F. Sadri: LPS-A Logic-based Production System Framework. 2009.

R. Kowalski, F. Sadri: Integrating Logic Programming and Production Systems in Abductive Logic
Programming Agents. 2009.

M. Slota, J. A. Leite: EVOLP: An Implementation. Computational Logic in Multi-Agent Systems, 8th
International Workshop, CLIMA VIII, Porto, Portugal, September 10-11, 2007.

D. S. Warren: Programming in Tabled Prolog. https://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.49.4635

N.-F. Zhou: The Language Features and Architecture of B-Prolog. Theory and Practice of Logic
Programming 12(1-2), 2011. DOI: 10.1017/S1471068411000445

