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ABSTRACT
Database Reformulation is the process of rewriting the data and

rules in deductive databases in a functionally equivalent manner,

ideally in ways that decrease query processing time while keeping

storage costs within acceptable bounds.

Early research in this area focussed on materializing existing

views, i.e. caching those views as data. Subsequent research inves-

tigated the problem of inventing new views to afford different op-

portunities for materialization. The Bounding Theorem, introduced

in this latter effort, is significant in that it gives a finite bound on

the number of useful reformulations for conjunctive queries. Un-

fortunately, the number of possibilities allowed by the Bounding

Theorem is doubly exponential in the size of the query (not the

database instance).

In this paper, we show that we can reduce that double exponen-

tial to a single exponential. We first present an improved version

of the Bounding Theorem, called the Subgoal Theorem. We then

present an additional result, called the Projection Theorem. Finally,

we present a reformulation algorithm that runs in exponential time;

and, using the Subgoal Theorem and the Projection Theorem, we

show that the algorithm is correct for all conjunctive queries, i.e.

it produces reformulations that are as good as or better than any

other reformulation (in terms of worst-case query evaluation per-

formance with at most linear growth in storage space).
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1 INTRODUCTION
Database Reformulation is the process of rewriting the data and

rules in deductive databases in a functionally equivalent manner,
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ideally in ways that decrease query processing time while keeping

storage costs within acceptable bounds.

As an example, consider a deductive database with four base (i.e.
stored) relations p, q, r, and s and a view relation query defined

in terms of these base relations. The definition of query is shown
below (using Prolog-like syntax).

query(X,Y,Z) :- p(X,A) & q(X,A) & r(A,Y) & s(Y,Z)

The relation query is true of an object X and an object Y and an

object Z if and only if there is an object A such p is true of X and A
and q is true of X and A and r is true of A and Y and s is true of Y
and Z.

If we assume that the data associated with each base relation is

stored as a linear list, thenwe can use this rule to determine whether

query is true of any specific combination of values for X and Y and

Z. Assuming relational indexing and nested loop evaluation, the

worst case query processing cost isO(n5), where n is the cardinality

of the domain of objects in the database.

In an effort to improve query processing time, we could mate-

rialize the query relation. However, it is potentially much larger

than any of the base relations; and, for large domains, materializing

query might be impractical. Moreover, checking a specific instance

can still take O(n3) steps. All is not lost. Suppose we define a new

relation v in terms of p and q and r as follows.

v(X,Y) :- p(X,A) & q(X,A) & r(A,Y)

Once we have v, we can define query in a functionally equivalent

way as shown below. The relation query is true of X and Y and Z if

and only if v is true of X and Y and s is true of Y and Z.

query(X,Y,Z) :- v(X,Y) & s(Y,Z)

If we materialize v and use this rule to query a specific instance,

we get a worst case runtime that is O(n2). For large n, this cost is
much lower than the original version. Moreover, we pay little in

storage - since the cardinality of v is smaller than that of p, the
storage required to store v is no greater than the storage required

to store p.
To make this example concrete, imagine a database of cities. Let

p be true of pairs of cities in the same country. Let q and r be true

of pairs of cities connected by a non-stop train ride. Let s be true
of pairs of cities connected by a non-stop flight. In this case, query
is the set of all triples X, Y, Z where X and Y are cities in the same

country connected by a one-stop train ride for which there is a

non-stop flight from Y to Z. And, in this case, the view v is the set
of all pairs of cities in the same country that are connected by a

one-stop train ride.

Existing research on database reformulation describes various

methods for finding reformulations of this sort. This research in-

cludes selecting pre-existing views to materialize [1, 2, 4, 9, 11–14]

and inventing additional views of the base data to afford more

opportunities for materialization [5–8].
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For the purposes of this paper, the most interesting result in

this work is Chirkova’s Bounding Theorem, introduced in [5]. The

Bounding Theorem is significant in that it gives a finite bound on

the number of reformulations that must be considered for conjunc-

tive queries. The downside is that the set of possibilities is doubly

exponential in terms of the size of the query.

In this paper, we show thatwe can reduce that double exponential

to a single exponential. We first present an improved version of the

Bounding Theorem, called the Subgoal Theorem. We then present an

additional result, called the Projection Theorem. Next, we describe a

reformulation algorithm that runs in singly exponential time in the

size of the query (not the database instance); and, using the Subgoal

Theorem and the Projection Theorem, we show that the algorithm

is correct for all conjunctive queries, i.e. it produces reformulations

that are as good as or better than any other reformulations (in terms

of worst-case query evaluation performance with at most linear

growth in storage space). We then describe a few ways to improve

the performance of the reformulation algorithm. We show that the

the problem of computing optimal reformulations of a conjunctive

query is isomorphic to the Steiner Tree problem [10], a well known

NP-complete problem. This guarantees that it is not possible in all

cases to eliminate the exponential search involved in computing

optimal reformulations. Finally, we mention some limitations of

our results and suggest some directions for future work.

2 PRELIMINARIES
The vocabulary for a database is a collection of object constants and
relation constants. Each relation constant has an associated arity,
i.e. the number of arguments allowed in any expression involving

that constant.

A factoid is an expression formed from an n-ary relation con-

stant and n object constants. In what follows, we write factoids in

traditional mathematical notation - the relation constant followed

by its arguments enclosed in parentheses and separated by commas.

For example, if r is a binary relation constant and a and b are object
constants, then r(a,b) is a factoid.

The Herbrand base for a database is the set of all factoids that
can be formed from the constants in its vocabulary. For example,

for a vocabulary with just two object constants a and b and a single
binary relation constant r, the Herbrand base is {r(a,a), r(a,b),
r(b,a), r(b,b)}. A dataset is any subset of the Herbrand base,

i.e. an arbitrary set of the factoids that can be formed from the

vocabulary of the database.

It is possible to define relations in terms of others. In this pre-

sentation, we encode such definitions in a logic language called

Datalog. We could equally well use other database languages, like

SQL; however, Datalog is well-studied; it is easy to understand; and

it serves our purposes here.

One key difference between Datalog and the language of data is

the inclusion of a new type of symbol, called a variable. Variables
allow us to state relationships among objects without explicitly

naming those objects. In what follows, we use individual capital

letters as variables, e.g. X, Y, Z.
Datalog atoms are analogous to factoids except that they can op-

tionally contain variables in place of object constants. For example,

if r is a binary relation constant, if a is an object constant, and if

X and Y are variables, then r(a,X) is an atom, as are r(a,Y) and

r(X,Y) and r(X,X).
A Datalog rule is an expression consisting of a distinguished

atom, called the head, and zero or more atoms, together called the

body. We write rules as in the example shown below. Here, r(X) is

the head, the expression p(X,Y) & q(Y) is the body; and p(X,Y)
and q(Y) are subgoals.

r(X) :- p(X,Y) & q(Y)

Semantically, a rule is a reverse implication. It is a statement

that the head of the rule is true whenever the subgoals are true. For

example, the rule above states that r is true of any object X if there

is an object Y such that p is true of X and Y and q is true of Y. For
example, if we know that p(a,b) and q(b) are true, then, using

this rule, we can conclude that r(a) is true.
A rule is safe if and only if every variable that appears in the

head also appears in at least one subgoal. Note that it is okay to

have variables in the body that do not appear in the head. In what

follows, we assume that all rules are safe.

A Datalog program is a collection of safe Datalog rules. A pro-

gram consisting of a single rule of the form shown above is called

a conjunctive query (or CQ). In this paper, we concentrate on con-

junctive queries and Datalog programs that are equivalent to such

queries in that they give the same results for the head of the con-

junctive query when applied to the same set of base relations.

Given a dataset and a rule, we can apply the rule to the factoids

in the dataset to determine the truth or falsity of a given instance of

the rule’s head or to compute all instances of the head that satisfy

the body. In what follows, we assume relational indexing and nested

loop evaluation. By relational indexing, we mean that, for every

relation, we have a list of all factoids in the dataset containing that

relation. By nested loop evaluation, we mean that we evaluate each

subgoal in turn and we evaluate the remaining subgoals for each

solution.

Analyzing the worst-case complexity of this algorithm is quite

simple. Consider a dataset with binary relation constant p and unary
relation constant q and a domain consisting of n object constants;

and consider the rule shown above. In this example, the worst case

cost of determining the truth of a specific instance of r is n2
. Given

a value for X, we search all factoids in the dataset containing p to
find those with that value as first argument. For each value of Y
that we find, we search all factoids in the dataset containing q to
find those with that value of Y as argument. Evaluating the first

subgoal can require as many as n2
steps. There are as many as n

solutions. For each such solution, as many as n steps are required to

check the second subgoal. Consequently, in this case, the algorithm

requires O(n2) operations.

3 REFORMULATION
Consider a conjunctive query q that defines an output relation r in
terms of a given set of base relations. An input to q is an arbitrary

dataset involving the base relations in q. The output of q on a given

input D is the dataset that results from applying q to D.
A compound query consists of a collection of view definitions in

terms of a given set of base relations and a definition of an output
relation r in terms of the base relations and these view relations. An

input to a compound reformulation is an arbitrary dataset involving



A Practical Algorithm for Reformulation of Deductive Databases SAC’19, April 8-12, 2019, Limassol, Cyprus

the base relations of the compound query. Let D be an input to a

compound query and let D ′
be the result of applying the view

definitions to D. In this case, the output of the compound query is

the result of applying the definition of r to D ∪ D ′
.

We say that a compound query q′ is a reformulation of a con-

junctive query q if and only if they are equivalent, i.e. (1) they have

the same base relations and the same output relation and (2) the

output of q′ is the same as the output of q for every input.

Note that a conjunctive query can be viewed as a reformulation

of itself in which the set of view relations is empty.

We say that one reformulation is as good as or better than another
if and only if the asymptotic worst case query cost for the first is

as good as or better than the asymptotic worst case query cost for

the second and the storage cost for the intermediate view relations

in the first reformulation grows no more than linearly with growth

in the storage cost for the base relations in the second.

In [5], Chirkova presents two significant results on reformula-

tion - the Infinity Theorem and the Bounding Theorem.

Infinity Theorem: There is a conjunctive query for which there

are infinitely many distinct reformulations.

Bounding Theorem: For any reformulation q′ of a conjunctive
query q, there is a reformulation q′′ of q in which the bodies of all

views have no more subgoals than the original query and q′′ is as
good as or better than q′.

The Bounding Theorem is significant in that it selects finitely

many reformulations from the infinity of possibilities guaranteed

by the Infinity Theorem. Unfortunately, it still leaves a set of possi-

bilities that is doubly exponential. The good news is that we can

do better. In the next two sections, we introduce two theorems that

further limit the number of reformulations that must be considered,

and we then present a reformulation algorithm that produces an

optimal reformulation in singly exponential time.

4 SUBGOAL THEOREM
Once again, consider the query from Section 1.

query(X,Y,Z) :- p(X,A) & q(X,A) & r(A,Y) & s(Y,Z)

Since the definition of query contains four subgoals, the Bound-

ing Theorem assures us that we need consider only those views

that can be defined with four or fewer subgoals. Unfortunately,

the theorem does not place any restrictions on the patterns of ar-

guments in these subgoals, and there are many such patterns. In

this case, we might need to consider views defined with various

combinations of the following subgoals: p(X,X), p(X,Y), p(Y,X),
p(X,A), p(A,X), p(X,Z), p(Z,X), p(Y,Z), p(Z,Y), q(X,X), q(X,Y),
q(Y,X), q(X,A), q(A,X), q(X,Z), q(Z,X), q(Y,Z), q(Z,Y), and so

forth. While some combinations of these subgoals are identical to

others under variable renaming, there are many that are not.

By contrast, the Subgoal Theorem (stated below) assures us that,

to find an optimal reformulation of a conjunctive query, it suffices

to look at views in which the bodies consist entirely of subgoals in

the original query. In this case, we need to consider only view defi-

nitions with combinations of p(X,Y), q(X,A), r(A,Y), and s(Y,Z)
as subgoals.

Theorem 4.1 (Subgoal Theorem). For any reformulation q′ of
a conjunctive query q, there is a reformulation q′′ that is as good or
better than q′ in which the bodies of all views are subsets of the body
of q.

Proof. Consider an arbitrary query q :- p1, . . . , pm , and con-

sider a reformulation q′ :- v ′
1
, . . . , v ′

k , where v
′
i :- pi1, . . . , pimi .

Without loss of generality, let us assume that the existential vari-

ables in the definition of each v ′
i are distinct from the existential

variables in the definitions of other views. (Existential variables are

variables that appear in the body of a view definition but not in the

head.)

Expanding the views in the definition ofq′, we getp11, . . . , p1m1
,

. . . , pk1
, . . . , pkmk . Since q and q′ are equivalent CQs, we know

there is a containment mapping from this expansion to the subgoals

in the definition of q, i.e. there must be a binding of variables of the

expansion that makes it identical to a subset of those subgoals.

Now consider the rewrite q′′ :- v ′′
1
, . . . , v ′′

k where the definition

of each view v ′′
i is replaced by the result of applying the contain-

ment mapping to v ′
i .

It is easy to see that q′ and q′′ are equivalent. After applying the
rules defining each v ′′

i in the definition of q′′, we end up with the

same result as applying the containment mapping to the expansion

of q′ (after removing duplicates and reordering).

Moreover, the new reformulation is as good as or better than

the given reformulation. Each v ′
i contains v

′′
i , which can be shown

using the containment mapping discussed above. Consequently,

the size of v ′′
i is less than or equal to the size of v ′

i , meaning that

computational cost and storage size for v ′′
i are bounded by the

computational cost and storage size for v ′
i .

Finally, for the purposes of our theorem, the new reformulation

is defined entirely in terms of subgoals of the original query. □

As a simple example of this construction, consider the query

shown below.

q(X,Y,Z) :- p(X,Y) & p(Y,Z)

Now consider the following reformulation of this query.

q'(X,Y,Z) :- v1'(X,Y,Z) & v2'(X)
v1'(X,Y,Z) :- p(X,Y) & p(Y,Z)
v2'(X) :- p(X,Y2) & p(Y2,Z2)

By substituting the views definitions into the definition of q′, we
end up with the following expansion.

qe'(X,Y,Z) :- p(X,Y) & p(Y,Z) & p(X,Y2) & p(Y2,Z2)

In this case, there is a simple containment mapping that shows

that this query contains the original query. (The reverse direction

is even simpler.)

Y2→ Y
Z2→ Z

Applying this containment mapping to the given reformulation

results in the reformulation shown below.

q''(X,Y,Z) :- v1''(X,Y,Z) & v2''(X)
v1''(X,Y,Z) :- p(X,Y) & p(Y,Z)
v2''(X) :- p(X,Y) & p(Y,Z)

Of course, in this case, the reformulation has no practical value.

However, the example shows how a candidate reformulation with
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new subgoals can be replaced by one consisting entirely of subgoals

of the original query.

5 PROJECTION THEOREM
The value of the Subgoal Theorem is that it gives us an easy method

for enumerating the view definitions used in useful reformulations

- we just need to consider subsets of the subgoals in the original

query and no more. In this section, we show that we can further

narrow the set of possible reformulations by taking advantage of

the linear storage growth constraint.

A projection view is a view in which the body of a view definition

includes at least one subgoal that contains all of the variables in

the head of the definition.

For example, the view defined below is a projection view. All of

the variables in the head appear in the first subgoal in the body.

v(X,Y) :- p(X,Y) & q(Y,Z)

By contrast, the following view is not a projection view. Although

the rule is safe, neither of the subgoals contains all of the variables

in the head.

v(X,Z) :- p(X,Y) & q(Y,Z)

Theorem 5.1 (Projection Theorem). In any reformulation that
satisfies the linear growth constraint, every view must be a projection
view.

Proof. Since all view definitions are safe, then every variable in

the head must appear in at least one subgoal. If there is no subgoal

whose variables include all of the variables in the head, then the

head variables must be split across multiple subgoals. Let u and v
be two such variables. Consider a dataset that satisfies the body of

the view definition with n distinct values for u and n distinct values

for v . This results in at least n2
instances of the head. Moreover,

any increase in n leads to a quadratic increase in the number of

factoids that satisfy the head. Hence, the linear storage constraint

is violated. □

The merit of projection views is that the cardinality of each

defined relation is guaranteed to be no larger than the cardinality

of the relation containing the head variables. Although the size of

a non-projection view can be smaller than the size of the relations

in terms of which it is defined, it can also be larger, and we are

concerned here with worst-case analysis. The upshot is that, the

only way we can guarantee to satisfy the linear growth constraint

is to allow only projection views in our reformulations.

6 REFORMULATION ALGORITHM
The Subgoal Theorem and the Projection Theorem decrease the

number of reformulations we need to consider to find an optimal

reformulation of a conjunctive query. We need look only at views

that are defined in terms of subgoals of the original query and,

among these, we need look only at projection views.

We start this section by describing an algorithm that computes

a reformulation that is as good as or better than any other reformu-

lation and the algorithm runs in time that is singly exponential in

the size of the original view definition. The input to the algorithm

is a rule defining a conjunctive query, and the output is an optimal

reformulation of the given query.

Step 1. Construct the set of maximal projection views. Let R
be the empty set. For each si in the body of the original

query, create an atom consisting of a new relation constant

vi and the arguments in the head of si , form a rule with

this new atom as head and with the subgoals in the original

query as body, and add the resulting rule to R. Once that is
done, add to R an overall rule in which the head is the head

of the original rule and the body consists of the heads of the

rules in R.
Step 2. Remove unneeded occurrences of variables. Consider

all subsets of variable occurrences in the heads of the rules

in R. For each such subset, drop those variables from the

view heads in R and the overall rule and check for equiva-

lence to the original query by performing containment tests

as described in [3]. Then compare all surviving possibilities

to each other to find a set of reformulations that minimizes

worst-case query cost. Let R be the set reformulations result-

ing from this process.

Step 3. Minimize view definitions. If the head of a view definition

in R contains a subset of the variables in the head of some

other view definition, delete the former view definition from

R and delete the corresponding view head from the overall

rule.

As an example of this algorithm in operation, consider the query

shown below. Note that two subgoals contain variables that are not

used in the head.

query(X,Y,Z) :- p(X,A) & q(X,A) & r(Y,Z)

In step 1, we construct a set of maximal projection views and a

new definition of the original query.

query(X,Y,Z) :- v1(X,A) & v2(X,A) & v3(Y,Z)
v1(X,A) :- p(X,A) & q(X,A) & r(Y,Z)
v2(X,A) :- p(X,A) & q(X,A) & r(Y,Z)
v3(Y,Z) :- p(X,A) & q(X,A) & r(Y,Z)

In step 2, we try removing the variables X and A from the first

view and discover that the resulting reformulation is equivalent

to the original, so we drop those variables from the head of v1
and modify the overall rule accordingly. We discover that we can

remove A from the second view at the same time an still preserve

equivalence, and so we drop that occurrence as well. By comparing

this reformulation to other equivalent reformulations, we find that

this reformulation is as good as or better than any other.

query(X,Y,Z) :- v1() & v2(X) & v3(Y,Z)
v1() :- p(X,A) & q(X,A) & r(Y,Z)
v2(X) :- p(X,A) & q(X,A) & r(Y,Z)
v3(Y,Z) :- p(X,A) & q(X,A) & r(Y,Z)

Finally, in step 3 we check each view to see whether it can be

eliminated. In this case, we can remove v1, but we must keep the

two other view definitions, resulting in the following reformulation.

query(X,Y,Z) :- v2(X) & v3(Y,Z)
v2(X) :- p(X,A) & q(X,A) & r(Y,Z)
v3(Y,Z) :- p(X,A) & q(X,A) & r(Y,Z)

Theorem 6.1 (Correctness Theorem). For any reformulation
q′ of a conjunctive query q, the reformulation algorithm produces a
reformulation q′′ that is as good as or better than q′.
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Proof. The Bounding Theorem assures us that, for any refor-

mulation of a conjunctive query, there is a reformulation in which

the body of any constituent consists entirely of subgoals of the

original query. Adding additional subgoals from the original query

to any view in any optimal reformulation cannot change equiva-

lence of the reformulation since containment in the original query

still applies in both directions. And it cannot change optimality

since the only effect is to produce possibly smaller views. Hence,

without loss of generality, we can focus on reformulations in which

all bodies contain all subgoals of the original query.

The Projection Theorem assures us that, for any reformulation of

a conjunctive query, there is a reformulation in which the variables

in the head of any constituent view are included in the variables

of at least one of the subgoals. Consequently, we know that the

head variables in any optimal reformulation are included among

the head variables of at least one of the views in the output of step

1.

By construction, the result of step 2 is equivalent to the original

query and no other variables can be removed without violating this

equivalence.

At the start of step 3, we drop any views where the set of head

variables is a subset of the variables in another view. It is easy to see

that doing so preserves equivalence and improves query execution

time. Moreover, we cannot delete any other views. If that were

possible, the head variable occurrences would have been eliminated

in step 2. □

7 IMPROVEMENTS
The reformulation algorithm, as given, can be improved in a variety

of ways to eliminate some of the variables that must be considered

in step 2 and thereby decrease the runtime of that step. For example,

if a variable occurs in just one view head, it can be dropped from

that view head.

It is also possible to decrease the number of subgoals in each

view definition by eliminating subgoals that are not connected to

the variables in the heads of the view definitions. This has no effect

on worst-case optimality of of query evaluation. However, it can

decrease the cost of materialization, which in some cases may be

significant.

For example, applying this rule to the last reformulation from

Section 6 would lead to the equivalent but simpler reformulation

shown below.

query(X,Y,Z) :- v2(X) & v3(Y,Z)
v2(X) :- p(X,A) & q(X,A)
v3(Y,Z) :- r(Y,Z)

Another such pruning heuristic is to consider only reformula-

tions that preserve connectivity among head variables. Given a

query, two variable sets X and Y are connected with respect to the

query if either (a) X = Y , (b) the body of the query contains an

atom with variable sets X and Y , or (c) there exists a variable set U
such that X andU are connected andU and Y are connected.

For example, in the following query, there are two paths between

the head variables X and Y, one of which goes through A and the

other B.

query(X,Y) :- r1(X,A) & r2(A,Y) & r3(X,B) & r4(B,Y)

In fact, it is possible to show that any rewriting of a query using

projection views is a reformulation if for every pair of head variables

X and Y such that X and Y are connected with the respect to the

query, the variables X and Y are also connected with respect to the

rewriting by a unique path. We can use this result in step 3 of our

reformulation algorithm to filter the list of reformulations to be

checked for equivalence. We call such rewritings as dpp-transforms.

Lemma 7.1. Every dpp-transform of a query is a reformulation.

Proof. We prove the above lemma using induction on the size

of the path between head variables. The scenario where a supplied

query consists of only one head variable case is uninteresting be-

cause the materializing the query itself does not violate the linear

storage constraint, and is the optimal reformulation. Therefore, we

focus on the case where a supplied query has two head variables.

Base case. In this case, there exists a shortest path of length one

between the head variables, say, X and Y , i.e., there exists an atom

of the form r (X ,Y ). We can materialize the query without violating

storage constraint. If there exists a shortest path of length two, e.g.

q(X ,Y ) :- v1(X ,A), v2(A,Y ), v3(X ,B) v4(B,Y ), we may either drop

A or B to get an equivalent reformulation.

Inductive hypothesis. If the shortest path between the head

variables is of length ≤ n, the lemma holds, and we may elimi-

nate variables preserving a unique path, and have an equivalent

reformulation.

Inductive step. Suppose the shortest path between the head

variables, say, X and Y is of length n + 1. Let Ny be the set of

nodes = {A1,A2, . . . ,Ak } that are directly connected to Y in such

paths. Consider a rewriting of the dpp-transform where every

view of the form v(Y , Ā, Z̄ ) where Ā(⊆ Ny ), is replaced by a view

tv (Y ,A1,A2, . . . ,Ak , Z̄ ). Clearly, this rewriting is equivalent to the

dpp-transform. The shortest path betweenX and Y in the rewriting

is n. Therefore, we can apply our induction hypothesis to prove the

lemma.

We can extend our proof to queries with more than two variables

by applying induction on the number of head variables. □

8 COMPLEXITY
A straightforward computational analysis of our reformulation

algorithm described in Section 6 shows that it runs in time that is

exponential in the size of the input query (not the database instance).

This running time is dominated by the containment tests performed

in step 2 of the algorithm.

While the pruning heuristics described in Section 7 can safely

decrease or even eliminate the exponential in some cases, they

cannot always eliminate that cost. There are cases where exponen-

tial search is still necessary. In fact, it is possible to show that the

problem of computing an optimal reformulation of a conjunctive

query is NP-hard by proving that the problem is isomorphic to the

Steiner Tree problem [10].

In the following, we focus on queries with binary subgoals and

prove that the time taken to compute optimal dpp-transforms is

NP-hard in the size of the query.

Theorem 8.1. For conjunctive queries with binary subgoals, the
time taken to compute an optimal dpp-transform is NP-hard in the
number of subgoals and free variables in the query.
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Proof. We prove NP-hardness by showing that the problem of

computing an optimal dpp-transform is isomorphic to the Steiner

Tree problem, which is NP-complete [10]. Given an undirected

graph G(V ,E), a subset of the vertices R called terminal nodes, the

Steiner Tree is there a subtree G ′(V ′,E ′) of G such that R ⊆ V ′
,

and there does not exist a subtree G ′′(V ′′,E ′′), where R ⊆ V ′′
and

| E ′′ |< | E ′ |.
Given an instance of a Steiner Tree problem, we reduce it to an

instance of finding an optimal dpp-transform as follows.

• We label the terminal nodes asX1,X2, . . . ,X |R | . We label the

edges where at least one of the end-points is a non-terminal

node as A1,A2, . . . ,A |E | .

• For every pair of edges Ai ,Aj incident on a non-terminal

node, we assign a relation, say rm (Ai ,Aj ).

• For every edge incident Ai on a terminal node X j , we assign

a relation, say rk (Ai ,X j ).

• For every between two terminal nodes Xi ,X j , we assign a

relation, say rl (Xi ,X j ).

• Let ϕ be the conjunction of the above relations. The output

dpp-transform instance is the following query.

q(X1,X2, . . . ,X |R |) :- ϕ

Let q′ be an optimal dpp-transform of q. We can leverage the defini-

tion of q′ to construct the Steiner Tree ofG as follows. We construct

G ′
by removing the edges in G that correspond to the variables

that are present in the definition of q, but missing in q′. Since q′

is a dpp-transform, there exists a unique path between any two

head variables Xi and X j . As a result, there is a unique path in

G ′
between any two nodes. Therefore, G ′

is a tree. G ′
must be a

Steiner Tree; if not, then we could obtain a better dpp-transform by

starting with the Steiner Tree and applying the reduction outlined

above.

Given a conjunctive query q with binary subgoals, we reduce it
to an instance of Steiner Tree problem as follows.

• We create a node for every variable in the query.

• For every subgoal, say, r (X ,Y ), we create an edge between

nodes in the graph corresponding to X and Y .
• The set of terminal nodes R is the set of nodes corresponding

to the head variables in the query.

Consider a Steiner Tree of G ′(V ′,E ′) of G. We can use G ′
to con-

struct an optimal dpp-transform q′ of q as follows. We replace each

subgoal si (X ,Y ) of q using a view vi (X ,Y ) where vi is defined as

vi (X ,Y ) :- body of q. We remove all views of the form vk (Xi ,X j )

if there is no edge between the nodes corresponds Xi and X j in

G ′
. We drop all variables Xi such that the node corresponding to

Xi does not appear in G
′
. Since G ′

is a tree, there is a unique path

between any two head variables in q′. Hence, q′ is a dpp-transform.

Suppose, there is a different dpp-transform q′′ with fewer free vari-

ables than in q′, then we can construct a small subtree G ′′
that

spans the terminal nodes R by applying the above reduction to q′′.
Since the Steiner Tree problem is NP-complete [10], the problem

of computing an optimal dpp-transform is NP-hard as well. □

Although the problem of computing an optimal reformulation

of a conjunctive query is NP-hard, all is not lost. The running time

of our reformulation algorithm from Section 6 is exponential in

the size of the query but is independent of the size of the database

instance which, in practice, is typically much larger than the query

size.

9 CONCLUSION
One arguable limitation of the Bounding Theorem, as well as the

results reported here, is that they concentrate exclusively on con-

junctive queries. The good news is that the results can easily be

extended to more complex queries, e.g. union queries and semi-

positive queries [15]. Unfortunately, the results break down in the

presence of full negation or recursion or aggregates; and further

work is needed to deal with such cases.

Another limitation is that we do not take into account known

database constraints, e.g. functional dependencies, inclusion depen-

dencies, or mutual exclusion constraints. Fortunately, it is possible

to accommodate some of these constraints in many cases by using

a variant of the chase algorithm to fold the constraints into the

view definitions before applying the reformulation algorithm (as

suggested in [7, 8]). (The main problem in doing this arises when

the chase algorithm does not terminate. Also, for some constraints,

our results would need to be extended to conjunctive queries with

equalities and/or inequalities.)

Another limitation of our results is the emphasis on worst-case

analysis. The theorems presented here promise only that reformula-

tions are as good as or better than other reformulations in the worst

case. More sophisticated processing is necessary to show results

about average time computation or to take database statistics into

account.

A final limitation worth noting is that these results do not take

into account the costs of creating or updating materialized views in

the face of changes. If materialization and update costs are consid-

ered, reformulations that would be appropriate for static databases

may not longer be justified for rapidly changing databases. Once

again, there may be good news here. A preliminary investigation

of update costs suggests that, in the case of differential update, the

reformulation algorithm presented here produces reformulations

for which the update costs are bounded by the costs of using the

resulting reformulations, so this may not be a significant worry.

The Bounding Theorem is significant in that it selects finitely

many reformulations to consider from the infinity of possible re-

formulations. Unfortunately, it still leaves a set of possibilities that

is doubly exponential in query size. The reformulation algorithm

presented here is significant in that it is correct yet runs in singly ex-

ponential time, making it feasible to employ database reformulation

in practical deductive database systems.

The broader value of this work is that it illustrates the feasibil-

ity and computational value of automated problem reformulation,

i.e. changing the vocabulary / conceptual basis of problems as a

precursor to ordinary, formulation-preserving deductive reasoning.
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