General Game Playing:
Overview of the AAAT Competition*

Michael Genesereth, Nathaniel Love
Stanford University
353 Serra Mall
Stanford, CA 94305
{genesereth, natlove}@stanford.edu

9 March 2005

Abstract

A General Game Playing System is one that can accept a formal de-
scription of a game and play the game effectively without human interven-
tion. Unlike specialized game players, such as Deep Blue, general game
players do not rely on algorithms designed in advance for specific games;
and, unlike Deep Blue, they are able to play different kinds of games. In
order to promote work in this area, the AAAI is sponsoring an open com-
petition at this summer’s National Conference. This article is an overview
of the technical issues and logistics associated with this summer’s compe-
tition, as well as the relevance of General Game Playing to the long range
goals of artificial intelligence.

1 Introduction

Games of strategy, such as Chess, couple intellectual activity with competition.
We can exercise and improve our intellectual skills by playing such games. The
competition adds excitement and allows us to compare our skills to those of
others. The same motivation accounts for interest in Computer Game Playing
as a testbed for Artificial Intelligence: programs that think better should be able
to win more games, and so we can use competitions as an evaluation technique
for intelligent systems.

*This document is copyrighted material of the American Association for Artificial Intelli-
gence. This material may not be retransmitted or redistributed without permission in writing
from The American Association for Artificial Intelligence. Permission to use documents from
this server is granted, provided that (1) the copyright notice appears in all copies, and that
both the copyright notice and this permission notice appear, (2) use of such documents is for
personal use only and will not be copied or posted on any network computer or broadcast in
any media, and (3) no modifications of any documents are made. Use for any other purpose
is expressly prohibited by law, and may result in severe civil and criminal penalties.

Unfortunately, building programs to play specific games has limited value in
Al. To begin with, specialized game players are very narrow: they focus only
on the intricacies of a particular game. IBM’s Deep Blue may have beaten the
world Chess champion, but it has no clue how to play checkers; it cannot even
balance a checkbook. A second problem with specialized game playing systems
is that they do only part of the work. Most of the interesting analysis and design
is done in advance by their programmers, and the systems themselves might as
well be tele-operated.

However, we believe that the idea of game playing can be used to good
effect to inspire and evaluate good work in Artificial Intellgence, but it requires
moving more of the mental work to the computer itself. This can be done by
focusing attention on General Game Playing (GGP).

General game players are systems able to accept declarative descriptions
of arbitrary games at runtime and able to use such descriptions to play those
games effectively (without human intervention).

Unlike specialized game players such as Deep Blue, general game players
cannot rely on algorithms designed in advance for specific games. General game
playing expertise must depend on intelligence on the part of the game player
itself and not just intelligence of the programmer of the game player. In order
to perform well, general game players must incorporate various Artificial Intel-
ligence technologies, such as knowledge representation, reasoning, learning, and
rational decision making; these capabilities must work together in an integrated
fashion.

Morever, unlike specialized game players, a general game player must be able
to play different kinds of games. It should be able to play simple games (like Tic-
Tac-Toe) and complex games (like Chess), games in static or dynamic worlds,
games with complete and partial information, games with varying numbers of
players, with simultaneous or alternating play, with or without communication
among the players.

While general game playing is a topic with inherent interest, work in this area
has practical value as well. The underlying technology can be used in a variety
of other application areas, such as business process management, electronic
commerce, and military operations.

In order to promote work in this research area, the AAAI is running an open
competition on General Game Playing at this summer’s National Conference.
The competition is open to all computer systems, and a $10,000 prize will be
awarded to the winning entrant.

This article summarizes the technical issues and logistics for this summer’s
competition. Section 2 defines the underlying game model. Section 3 presents
the language used for describing games according to this model. Section 4
outlines issues and strategies for building general game players capable of using
such descriptions. Section 5 discusses the associated general game management
infrastructure, and section 6 describes logistics of the competition. Section 7
offers some perspective on the relationship between General Game Playing and
the long-range goals of Artificial Intelligence.

2 Game Model

In General Game Playing, we consider finite, synchronous games. These games
take place in an environment with finitely many states, with one distinguished
initial state and one or more terminal states. In addition, each game has a fixed,
finite number of players; each player has finitely many possible actions in any
game state, and each terminal state has an associated goal value for each player.
The dynamic model for general games is synchronous update: all players move
on all steps (although some moves could be “no-ops”), and the environment
updates only in response to the moves taken by the players.

In its most abstract form, we can think of a finite, synchronous game as a
state machine with the following components:

S, a set of game states

T1,...,Tn, the n roles in an n-player game.
Iy,...,I,, n sets of actions, one set for each role.
l1,...,ln, where each [; C I; x S. These are the legal actions in a state.

n, an update function mapping I; x --- x I,, Xx § — S.

s1, the initial game state, an element of S.

915 -5 9n, Where each g; C .S x [0...100].

t, a subset of S corresponding to the terminal states of the game.

A game starts out in state s;. On each step, each player r; makes a
move m; € I; such that [;(m;, s1) is true. The game then advances to state
n(my,...,my,s1). This continues until the game enters a state s € S such that
t(s) is true, at which point the game ends. The value of a game outcome to
a player r; is given by g;(s,value). Note that general games are not necessar-
ily zero-sum, and a game may have multiple winners. Figure 1 shows a state
machine representation for a general game with S = {a,b,¢,d, e, f,g,h,1,j, k},
s1 = a, and t = {c¢,i,k}. The shading of states ¢, g, h, and k indicates that
these are highly-valued states for two different players of the game (determined
by the g; for those players).

Figure 1 exhibits the transition function n with double arrows labeled with
the set of moves made by the players on a step of the game. This is a two player
game, and each player can perform actions x or y. Note that it is not the case
that every state has an arc corresponding to every action pair: only the legal
actions in /; can be made in a particular state. For example, from state d, one
player can legally play both = and y, while the other player’s only legal move is
x.

This definition of games is similar to the traditional extensive normal form
definition in game theory, with a few exceptions. In extensive normal form, a
game is modeled as a tree with actions of one player at each node. In state
machine form, a game is modeled as a graph, and all players’ moves are syn-
chronous. State machine form has a natural ability to express simultaneous
moves; with extensions, extensive normal form could also do this, albeit with
some added cost of complexity. Additionally, state machine form makes it pos-
sible to describe games more compactly, and it makes it easier for players to
play games efficiently.

x/x

Figure 1: Simultaneous Actions

3 Game Descriptions

Since all of the games that we are considering are finite, it is possible, in prin-
ciple, to describe such games in the form of lists (of states and actions) and
tables (to express legality, goals, temination, and update). Unfortunately, such
explicit representations are not practical in all cases. Even though the numbers
of states and actions are finite, they can be extremely large; and the tables
relating them can be larger still. For example, in Chess, there are thousands of
possible moves and approximately 1030 states.

All is not lost, however: in the vast majority of games, states and actions
have composite structure that allows us to define a large number of states and
actions in terms of a smaller number of more fundamental entities. In Chess,
for example, states are not monolithic; they can be conceptualized in terms of
pieces, squares, rows and columns and diagonals, and so forth. By exploiting
this structure, it is possible to encode games in a form that is more compact
than direct representation.

Game Definition Language (GDL) is a formal language for defining discrete
games with complete information. GDL supports compact representation by

relying on a conceptualization of game states as databases and by relying on
logic to define the notions of legality, state update, etc.

In what follows, we look at a model for games in which states take the
form of databases. Each game has an associated database schema, and each
state of the game is an instance of this schema. Different states correspond to
different instances, and changes in the world correspond to movement among
these database instances.

A database schema is a set of objects, a set of tables, and a function that
assigns a natural number to each table (its arity— the number of objects involved
in any instance of the relationship). The Herbrand base corresponding to a
database schema is defined as the set of expressions of the form r(as,...,a,),
where r is a relationship of arity n and aq,...,a, are objects. An instance of a
database schema, then, is a subset of the corresponding Herbrand base.

As an example of this conceptualization of games, let us look at the game of
Tic-Tac-Toe. The game environment consists of a 3 x 3 grid of cells where each
cell is either blank or contains an X or an O. Figure 2 portrays one possible
state of this game.

X

Figure 2: A Tic-Tac-Toe game state

In order to describe game states, we assume a ternary relation cell that
relates a row number {1,2,3}, a column number {1, 2,3}, and a content desig-
nator {X, 0, B}. Although it is not strictly necessary, we include an auxiliary
relation control that designates the player with the authority to make a mark.
The following data encode the game state shown above.

cell(1,1,X)
cell(1,2,b)
cell(1,3,b)
cell(2,1,b)
cell(2,2,0)
cell(2,3,b)
cell(3,1,b)
cell(3,2,b)
cell(3,3,b)
control(white)

By itself, the switch from monolithic states to databases does not help. We
must still encode tables that are as large as in the state model. However, with

the database model, it is possible to describe these tables in a more compact
form by encoding the notions of legality, goalhood, termination, and update as
sentences in logic rather than as explicit tables.

In our GGP framework, we use a variant of first order logic enlarged with
distinguished names for the key components of our conceptualization of games.

Object variables: X, Y, Z

Object constants: a, b, ¢

Function constants: £, g, h

Relation constants: p,q,r

Logical operators: =, |, &, =>, <=, <=>
Quantifiers: A, E

Terms: X, Y, Z, a, b, ¢, f(a), g(b,c)
Relational sentences: p(a,b)

Logical sentences: r(a,c) <= r(a,b) & r(b,c)
Quantified sentences: p(a,S) <= Ex.q(x,S)

GDL uses an indexical approach to defining games. A GDL game description
takes the form of a set of logical sentences that must be true in every state of
the game. The distinguished vocabulary words that support this are described
below:

role(<a>) means that <a> is a role (player) in the game.

init (<p>) means that the datum <p> is true in the initial state.

true (<p>) means that the datum <p> is true in the current state.

does (<r>,<a>) means that player <r> performs action <a> in the current
state.

next (<p>) means that the datum <p> is true in the next state.

legal (<r>,<a>) means it is legal for <r> to play <a> in the current state.

goal (<r>,<v>) means that player <r> would receive the goal value <v> in
the current state, should the game terminate in this state.

terminal means that the current state is a terminal state.

distinct (<p>,<g>) means that the datums <p> and <gq> are syntactically
unequal.

GDL is an open language in that this vocabulary can be extended; however, the
significance of these basic vocabulary items is fixed for all games.

As an example of GDL, the following demonstrates how the game Tic-Tac-
Toe is formalized as a general game. First, we define the roles for the game:

role(white)
role(black)

Next, we characterize the initial state. In this case, all cells are blank, and
white holds control, a term which gains meaning through the descriptions of
legal moves that follow.

init(cell(1,1,b))
init(cell(1,2,b))
init(cell(1,3,b))
init(cell(2,1,b))
init(cell(2,2,b))
init(cell(2,3,b))
init(cell(3,1,b))
init(cell(3,2,b))
init(cell(3,3,b))
init (control(white))

Next, we define legality. A player may mark a cell if that cell is blank and he
has control. Otherwise, so long as there is a blank cell, the only legal action is
noop.

legal(Y,mark(M,N)) <=
true(cell(M,N,b)) &
true(control(Y))

legal(white,noop) <=
true(cell(M,N,b)) &
true (control(black))

legal(black,noop) <=
true(cell(X,Y,b)) &
true(control (white))

Next, we look at the update rules for the game. A cell is marked with an X
or an O if the appropriate player marks that cell. If a cell contains a mark, it
retains that mark on the subsequent state. If a cell is blank and is not marked,
then it remains blank. Finally, control alternates on each play.

next(cell(M,N,x)) <=
does(white,mark(M,N)) &
true(cell(M,N,b))

next (cell(M,N,o0)) <=
does(black,mark(M,N)) &
true(cell (M,N,b))

next (cell(M,N,W)) <=
true(cell(M,N,W)) &
distinct (W,b)

next(cell(M,N,b)) <=
does(W,mark(J,K)) &
true(cell(M,N,W)) &

(distinct(M,J) | distinct(N,K))

next (control (white)) <= true(control(black))
next (control(black)) <= true(control(white))

A game terminates whenever either player has a line of marks of the appropriate
type. The line and open relations are defined below.

terminal <= line(x)
terminal <= line(o)
terminal <= “open

The following rules define the players’ goals. The white player achieves their
maximal goal if there is a line of xs; the black player does so if there is a line
of os. The final termination condition (when the board is full) may be true in
a state in which neither player has a line, and this necessitates the goal rules
with a value of 50:

goal(white,100) <= line(x)
goal(white,50) <=

“line(x) &

~line(o) &

“open
goal(white,0) <= line(o)
goal(black,100) <= line(o)
goal(black,50) <=

“line(x) &

~line(o) &

“open
goal(black,0) <= line(x)

A specific game description may require some supporting concepts. In Tic-
Tac-Toe, we define a line as a row of marks of the same type or a column or a
diagonal. A row of marks means that there are three marks with the same first
coordinate. The column and diagonal relations are defined analogously. We also
need to define open, a condition that holds whenever the board is not yet full
of marks.

line(W) <= row(M,W)
line(W) <= column(M,W)
line(W) <= diagonal (W)

row(M,W) <=
true(cell(M,1,W)) &
true(cell(M,2,W)) &
true(cell(M,3,W))

column(M,W) <=

true(cell(1,N,W))
true(cell(2,N,W)) &
true(cell(3,N,W))

&

diagonal (W) <=
true(cell(1,1,W))
true(cell(2,2,W)) &
true(cell(3,3,W))

&

diagonal (W) <=
true(cell(1,3,W))
true(cell(2,2,W)) &
true(cell(3,1,W))

&

open <= true(cell(M,N,b)

Note that, under the full information assumption, any of these relations
can be assumed to be false if it is not provably true. Thus, we have complete
definitions for the relations legal, next, goal, terminal in terms of true and
does. The true relation starts out identical to init and on each step is changed
to correspond to the extension of the next relation on that step. The upshot
of this is that in every state of the game, each player can determine legality,
termination, goal values, and— given the joint move of all players —can update
the state.

Although GDL is designed for use in defining complete information games,
it may also be extended to partial information games relatively easily. Unfor-
tunately, the resulting descriptions are more verbose and more expensive to
process. This extension to GDL is the subject of a future document.

Given the state machine model for games, we can define notions of playa-
bility and winnability. While any description built in the language described
above defines a game, for the purposes of analyzing intelligent behavior, we are
interested in “good” games: games where players are able to move, and have
some chance of achieving their goals.

A game is playable if and only if every player has at least one legal move in
every non-terminal state. In the GGP setting, we require that every game be
playable.

A game is strongly winnable if and only if, for some player, there is a sequence
of individual moves of that player that leads to a terminal state of the game
where that player’s goal value is maximal. A game is weakly winnable if and
only if, for every player, there is a sequence of joint moves of all players that
leads to a terminal state where that player’s goal is maximal. In the GGP
setting, every game must be weakly winnable, and all single player games are
strongly winnable. This means that in any general game, every player at least
has a chance of winning.

4 General Game Players

Having a formal description of a game is one thing; being able to use that
description to play the game effectively is something else entirely. In this section,
we examine some of the problems of building general game players and discuss
strategies for dealing with these difficulties.

Let us start with automated reasoning. Since game descriptions are writ-
ten in logic, it is obviously necessary for a game player to do some degree of
automated reasoning.

There are various choices here. (1) A game player can use the game de-
scription interpretively throughout a game. (2) It can map the description to
a different representation and use that interpretively. (3) It can use the de-
scription to devise a specialized program to play the game. This is effectively
automatic programming. There may be other options as well.

The good news is that there are powerful reasoners for first order logic freely
available. The bad news is that such reasoners do not, in and of themselves,
solve the real problems of general game playing, which are the same whatever
representation for the game rules is used, viz. dealing with indeterminacy, size,
and multi-game commonalities.

The simplest sort of game is one in which there is just one player and the
number of states and actions is relatively small. For such cases, traditional Al
planning techniques are ideal. Depending on the shape of the search space, the
player can search either forward or backward to find a sequence of actions /
plays that convert the initial state into an acceptable goal state. Unfortunately,
not all games are so simple.

To begin with, there is the indeterminacy that arises in games with multiple
players. Recall that the succeeding state at each point in a game depends on
the actions of all players, and remember that no player knows the actions of the
other players in advance. Of course, in some cases, it is possible for a player to
find sequences of actions guaranteed to achieve a goal state. However, this is
quite rare.

More often, it is necessary to create conditional plans in which a player’s
future actions are determined by its earlier actions and those of the other players.
For such cases, more complex planning techniques are necessary.

Unfortunately, even this is not always sufficient. In some cases, there may
be no guaranteed plan at all, not even a conditional plan. Tic-Tac-Toe is a
game of this sort. Although it can be won, there is no guaranteed way to win in
general. It is not really clear what to do in such situations. The key to winning
in such situations is to move and hope that the moves of the other players put
the game into a state from which a guaranteed win is possible. However, this
strategy leaves open the question of which moves to make prior to arrival at
such a state. One can fall back on probabilistic reasoning. However, this is not
wholly satisfactory since there is no justifiable way of selecting a probability
distribution for the actions of the other players. Another approach, of primary
use in directly competitive games, is to make moves that create more search for
the other players so that there is a chance that time limitations will cause those

10

players to err.

Another complexity, independent of indeterminacy, is sheer size. In Tic-Tac-
Toe, there are approximately 5000 distinct states. This is large but manageable.
In Chess there are approximately 1030 states. A state space of this size, being
finite, is fully searchable in principle but not in practice. Moreover, the time
limit on moves in most games means that players must select actions without
knowing with certainty whether they are the best or even good moves to make.

In such cases, the usual approach is to conduct a partial search of some sort,
examining the game tree to a certain depth, evaluating the possible outcomes at
that point, and choosing actions accordingly. Of course, this approach relies on
the availability of an evaluation function for non-terminal states that is roughly
monotonic in the actual probability of achieving a goal. While, for specific
games, such as Chess, programmers are able to build-in evaluation functions in
advance, this is not possible for general game playing, since the structure of the
game is not known in advance. Rather, the game player must analyze the game
itself in order to find a useful evaluation function.

Another approach to dealing with size is abstraction. In some cases, it is
possible to reformulate a state graph into a more abstract state graph with the
property that any solution to the abstract problem has a solution when refined
to the full state graph. In such cases, it may be possible to find a guaranteed
solution or a good evaluation function for the full graph. Various researchers
have proposed techniques along these lines [5, 3], but more work is needed.

The third issue is not so much a problem as an opportunity: multi-game
commonalities. After playing multiple instances of a single game or after playing
multiple games against a given player, it may be possible to identify common
lessons that can be transferred from one game instance to another. A player
that is capable of learning such lessons and transferring them to other game
instances is likely to do better than one without this capability.

One difficulty with this approach is that, in our current framework, players
are not told the names of games, only the axioms. In order to transfer such
lessons, a player must be able to recognize that it is the same game as before.
If it is a slightly different game, the player must realize which lessons still apply
and which are different.

Another difficulty, specific to this year’s competition, is that players are not
told the identity of the other players. So, lessons specific to players cannot be
transferred, unless a player is able to recognize players by their style of play.
(In future years, the restriction on supplying identity information about players
may be removed, making such learning more useful.)

5 Game Management Infrastructure

In order to engage in competitive play, general game players need a central
mediator to distribute game axioms, maintain an official game state, update it
with player moves, verify the legality of those moves, and determine winners.
Gamemaster is a generally-available web service designed to assist the General

11

Game Playing community in developing and testing general game players by
performing these functions. It is also intended to be used in managing tourna-
ments such as this summer’s GGP Competition.

Gamemaster has three major components— the Arcade, the Game Editor,
and the Game Manager. The Arcade is a database of information about games,
players, and matches. The Game Editor assists individuals in creating and
analyzing games. The Game Manager is responsible for running games or,
precisely, matches, i.e. instances of games. Of these components, the Game
Manager is the most relevant to the theme of this paper. In the interest of
brevity, we skip over the details of the Arcade and the Game Editor and devote
the remainder of this section to the Game Manager. Figure 3 illustrates Game
Manager operation.

Graphics for

Spectators

Game N
Descriptions
Game Manager » Temporary
State Data
Match)
Records ;
TCP/IP
oo Player Player Player Ce

Figure 3: Game Manager

In order to run a match with Gamemaster, an individual (hereafter called
the game director) first creates a match by specifying (1) a game already known
to the system, (2) the requisite number of players, (3) a startclock value (in
seconds) and (4) a playclock value (in seconds).

Once this is done, the director can cause the match at any time by pressing
the start button associated with the match he has created. The Game Manager

12

then assumes all responsibiity for running the game (unless the director presses
the stop button to abort the match). It communicates with players via messages
using HTTP.

The process of running a game goes as follows: upon receiving a request
to run a match, the Game Manager first sends a Start message to each player
to initiate the match. Once game play begins, it sends Play messages to each
player to get their plays and simulates the results. This part of the process
repeats until the game is over. The Manager then sends Stop messages to each
player. Figure 4 illustrates these exchanges for a game of Tic-Tac-Toe, showing
just the messages between the Game Manager and one of the players

] Game Manager Message | Game Player Response
(START MATCH.435 WHITE READY
description 90 30)

(PLAY MATCH.435 (NIL NIL)) (MARK 2 2)
(PLAY MATCH.435 ((MARK 2 2) NOOP)) NOQOP

(PLAY MATCH.435 (NOOP (MARK 1 3)) (MARK 1 2)
(PLAY MATCH.435 ((MARK 1 2) NOOP)) NOOP
(STOP MATCH.435 ((MARK 3 3) NOOP) DONE

Figure 4: Game Communication

The Start message lists the name of the match, the role the player is to
assume (e.g. white or black in Chess), a formal description of the associated
game (in GDL), and the startclock and playclock associated with the match.
The startclock determines how much time remains before play begins. The
playclock determines ho much time each player has to make each move once
play begins.

Upon receiving a Start message, each player sets up its data structures and
does whatever analysis it deems desirable in the time available. It then replies
to the Game Manager that it is ready for play. Having sent the Start message,
the Game Manager waits for replies from the players. Once it has received these
replies or once the startclock is exhausted, the Game Manager commences play.

On each step, the Game Manager sends a Play message to each player. The
message includes information about the actions of all players on the preceding
step. (On the first step, the argument is “nil”). On receiving a Play message,
players spend their time trying to decide their moves. They must reply within
the amount of time specified by the match’s playclock.

The Game Manager waits for replies from the players. If a player does
not respond before the playclock is exhausted, the Game Manager selects an
arbitrary legal move. In any case, once all players reply or the playclock is
exhausted, the Game Manager takes the specified moves or the legal moves it
has determined for the players and determines the next game state. It then

13

evaluates the termination condition to see if the game is over. If the game is
not over, the Game Manager sends the moves of the players to all players and
the process repeats.

Once a game is determined to be over, the Game Manager sends a Stop
message to each player with information about the last moves made by all
players. The Stop message allows players to clean up any data structures for
the match. The information about previous plays is supplied so that players
with learning components can profit from their experience. Having stopped all
payers, the Game Manager then computes the rewards for each player, stores
this information together with the play history in the Arcade database, and
ceases operation.

6 Competition Details

The AAAI competition is designed to test the abilities of General Game Playing
systems by comparing their performance on a variety of games. The competition
will consist of two phases: a qualification round and a runoff competition.

In the qualification round, entrants will play several different types of games,
including single player games (such as maze search), competitive games (such
as Tic-Tac-Toe or some variant of Chess), games with both competitors and
cooperators. In some cases, the game will be exhaustively searchable (as in
Tic-Tac-Toe); in other cases, this will not be possible (as in Chess). Players
will have to handle these possibilities. For this year’s competition, in all cases,
complete information of the game will be available (as in Chess or Tic-Tac-
Toe); in future competitions, only partial information will be available (as in
Battleship). Entrants will be evaluated on the basis of consistent legal play,
ability to attain winning positions, and overall time; and the best will advance
to the second round.

In the runoff round, the best of the qualifiers will be pitted against each
other in a series of games of increasing complexity. The entrant to win the most
games in this round will be the winner of the overall competition.

A $10,000 prize will be awarded to the winning entrant. The competition is
open to all computer systems, except those generated by affiliates of Stanford
University. Clearly, no human players are allowed.

The competition website, (http://games.stanford.edu), contains further de-
tails, including the description of the underlying framework, the game descrip-
tion language, and the programmatic interfaces necessary to play the games.

7 Conclusion

General Game Playing is a setting within which Al is the essential technology.
It certainly concentrates attention on the notion of specification-based systems
(declarative systems, self-aware systems, and, by extension reconfigurable sys-
tems, self-organizing systems, and so forth). Building systems of this sort dates

14

from the early years of Al

In 1958, John McCarthy invented the concept of the “advice taker.” The
idea was simple: he wanted a machine that he could program by description. He
would describe the intended environment and the desired goal, and the machine
would use that information in determining its behavior. There would be no
programming in the traditional sense. McCarthy presented his concept in a
paper that has become a classic in the field of Al:

The main advantage we expect the advice taker to have is that its be-
havior will be improvable merely by making statements to it, telling
it about its ...environment and what is wanted from it. To make
these statements will require little, if any, knowledge of the program
or the previous knowledge of the advice taker. [4]

An ambitious goal! But that was a time of high hopes and grand ambitions.
The idea caught the imaginations of numerous subsequent researchers — notably
Bob Kowalski, the high priest of logic programming, and Ed Feigenbaum, the
inventor of knowledge engineering. In a paper written in 1974, Feigenbaum gave
his most forceful statement of McCarthy’s ideal.

The potential use of computers by people to accomplish tasks can
be one-dimensionalized into a spectrum representing the nature of
the instruction that must be given the computer to do its job. Call
it the what-to-how spectrum. At one extreme of the spectrum, the
user supplies his intelligence to instruct the machine with precision
exactly how to do his job step-by-step At the other end of
the spectrum is the user with his real problem He aspires to
communicate what he wants done ...without having to lay out in
detail all necessary subgoals for adequate performance. [1]

Some have argued that the way to achieve intelligent behavior is through
specialization. That may work so long as the assumptions one makes in build-
ing such systems are true. General intelligence, however, requires general in-
tellectual capabilities, and generally intelligent systems shoud be capable of
performing well in a wide variety of tasks. In the words of Robert Heinlein,

A human being should be able to change a diaper, plan an invasion,
butcher a hog, conn a ship, design a building, write a sonnet, balance
accounts, build a wall, set a bone, comfort the dying, take orders,
give orders, cooperate, act alone, solve equations, analyze a new
problem, pitch manure, program a computer, cook a tasty meal,
fight efficiently, die gallantly. Specialization is for insects. [2]

We may wish to require the same of intelligent computer systems.

15

References

[1]

Edward Feigenbaum. Artificial intelligence research: What is it? what has
it achieved? where is it going? In Symposium on Artificial Intelligence,
Canberra, Australia, 1974.

Robert Heinlein. Time Enough for Love. Berkely Books, 1973.

Craig A. Knoblock. Search reduction in hierarchical problem solving. In Pro-
ceedings of the Ninth National Conference on Artificial Intelligence, Menlo
Park, CA, 1991. AAAT Press.

John McCarthy. Programs with common sense. In Proceedings of the Ted-
dington Conference on the Mechanization of Thought Processes, pages 75-91,
London, 1959. Her Majesty’s Stationary Office.

E. D. Sacerdoti. Planning in a hierarchy of abstraction spaces. Artificial
Intelligence, 5(2):115-135, 1974.

16

