
Adding AI to Web Services

Charles Petrie1, Michael Genesereth1, Hans Bjornsson1, Rada Chirkova1,
Martin Ekstrom1, Hidehito Gomi2, Timothy Hinrichs1, Rob Hoskins1, Michael
Kassoff1, Daishi Kato2, Kyohei Kawazoe3, Jung Ung Min1, and Waqar Mohsin1

1 Stanford Computer Science Department
Stanford University,

Stanford, CA 94305, USA
{petrie, all}@stanford.edu
http://logic.stanford.edu

2 NEC Corporation
7-1, Shiba 5-chome

Minato-ku, Tokyo 108-8001, Japan
daishi@cb.jp.nec.com, gomi@az.jp.nec.com

3 Intec Web and Genome Corp.
1010 El Camino Real #370
Menlo Park, CA 94025, USA

Abstract. The FX-Agents project consisted of members of the Stanford
Logic Group and industrial visitors from NEC and Intec Web & Genome
working together to develop new technologies based upon the combina-
tion of Web services and techniques from artificial intelligence, using our
experience in AI-based software agents. This two-year project ran from
April 2001 until March 2002 and explored the then emerging functional-
ity of Web services. This paper is a result of our findings. In particular,
this paper discusses the shortcomings of current Web service standards
like WSDL and how logical AI techniques like declarative commands,
agents, and planning can be used to address some of these shortcom-
ings. The primary problems that we address are automated Web service
discovery and composition of Web services.

1 Introduction

A key topic in knowledge management is the discovery of useful structured in-
formation when it is required. Web services generalize this issue to discovery of
useful actions as well as information. By “Web services,” we do not mean just
any standard way to access business logic. We mean a way of publishing an ex-
plicit, machine-readable, common standard description of how to use a service
and access it via another program using some standard message transport. If
one is to use agents, one must have a machine readable format, preferably one
that industry will use.

Fortunately, the use of SOAP4 and WSDL5 has been strongly embraced by
industry and has become a major standard for such Web services. WSDL has
4 http://www.w3.org/TR/SOAP/
5 http://www.w3.org/TR/wsdl

had fast industrial acceptance, not in spite of its simplicity in comparison with
more advanced systemic standards such as ebXML6, but because of it.

The importance of SOAP and WSDL is that they offer the possibility of a
simple industrial standard for reading what input and output messages a service
accepts and sends, and then sending those messages over a standard transport.
This loose coupling means it is irrelevant what kind of client or server software
is at either end. Since WSDL is machine-readable and since SOAP allows loose-
coupling, in principle it is possible to use arbitrarily complex software programs
to read WSDL and use SOAP to invoke services by exchanging messages. On
the Web service-enabled Internet, no one knows if you are a software agent.

However, there are problems with WSDL. The object-oriented community
with experience in distributed transactions has already pointed out some of the
problems with these standards [4]. Moreover, there is has been an expectation
that we will be able to achieve the goal of discovering services when we need
them, and, what is more, assembling them into new composite services, dynam-
ically on-the-fly, as needed.

We show thatWSDL-related technologies, such asWSCI7,WSCL8, XLANG9,
and WSFL10 (the latter two having morphed into BPEL4WS11), which collec-
tively we refer to as “WSxL” standards, are inadequate for dynamic discovery
and integration, and thus inadequate for virtual enterprises (VEs). We also dis-
cuss the issues in providing the missing functionality.

2 Ultimate Requirements for Deployment of Web Service
Agents

Ultimately, there are four primary functions we need to automate in building a
network of service agents:

– Discovery, consisting of information sufficient for:
• Search
• Use

– Service Integration
– Process Integration
– Process Control

6 http://www.ebxml.org/
7 http://wwws.sun.com/software/xml/developers/wsci/
8 http://www.w3.org/TR/wscl10/
9 http://www.gotdotnet.com/team/xml wsspecs/xlang-c/default.htm

10 http://www-4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf
11 http://www-106.ibm.com/developerworks/library/ws-bpel/

We require that the information about the Web services be sufficiently machine-
readable so that the above functions can be automated. Further, use of these
functions should follow two Fundamental Principles:
Any publicly registered Web service can be consumed:

– by anyone, without requiring any change to the service
(the Democratic Principle); and
– at any time, without prior arrangement
(the Just-in-Time Principle).

The FX-Agents approach is to identify the deficiencies of WSDL and associ-
ated technologies, and then to address them with the universality and flexibility
of Declarative Logic.

3 Why UDDI and WSDL Aren’t Enough

The most widely deployed emerging technology for Web service search is UDDI12.
But a slight bit of experimentation will reveal that this technology, as it stands,
is not adequate to allow service agents, or even humans, to discover new services.
First consider the discovery component of Service Search.

Try an experiment. Go to https://uddi.ibm.com/ubr/registry.html and
ask the computer equivalent of “Are there any Web services that book flights?”

UDDI Find allows you to search using the directory’s taxonomy, but still you
will not be able to search on services that “book flights.” This is because UDDI
does not contain the actual service descriptions which are distributed.
But UDDI does not perform distributed search.

Suppose it did and found theWSDL description of the service and its oper-
ations. How would a software program know if a service booked flights or not?

To continue our experiment with the UDDI registry, if one searches the tax-
onomy “WAND” for “Travel,” one finds “Travel Adventures Unlimited.” One
can then manually find the WSDL. Note that a program can find the WSDL
too, but UDDI provides no search capability for the WSDL.

From examining the WSDL, one can see that:

– WSDL operations have names like “P3Type3”
– The Input Message Part Name for this operation is “airlineID”
– The Output Message Part Name is “body”
– No sequence of operations is specified.
– There is no specification of what the operations do

This can be seen in another (vendor-neutral) service registry and with a com-
pletely different example. Search http://www.xmethods.com/ for a lookup ser-
vice for Swedish telephone numbers and somehow find http://www.marotz.se/
scripts/searchperson.exe/wsdl/ISearchSwedishPerson, which has five op-
erations:
12 http://www.uddi.org/specification.html

– “HTMLSearchAddress”
– “HTMLSearchPhone”
– “XMLSearchAddress”
– “XMLSearchPhone”
– “IsAlive”

The input message name is “HTMLSearchAddressRequest.” That message
has part names of:

– “fName”
– “lName”
– “Address”
– “ZipCode”
– “City”

It will be very difficult for automatic software in real time to understand
what these terms mean. And the output message has a single part: “return.”

The first and fundamental technical requirement we can see from this is
that we require semantics to understand the terms in this XML structure. The
second fundamental requirement is that we require additional information to be
specified in the WSDL. I.e., we need “WSDL++.” As these technologies stand
today, UDDI/WSDL are Inadequate for Search.

If we consider the last example in thinking about solutions,

– Airline ID, City can possibly be unified using distributed ontologies or in-
dustry taxonomies.
– The W3C answer is OWL13 based upon DAML+OIL14

DAML-S may be too “heavyweight” for industry, but some set of distributed
taxonomies about the service components, rather than just the businesses and
kinds of services is necessary. Industry should develop its own simple taxonomy,
starting with UBL15 as a kernel. In any case, suppose we understand the terms
of the operations messages.

4 Understanding What Web Services Do

The FX-Agents project created a set of Web services that performed actions
in the world. One of these that we studied extensively was a Catering Service
that was created from the Waiter.com Web site. We learned that the required
application functions could be expressed as a sequence of WSDL operations16.

Furthermore, there is at least one WSDL-based technology that can handle
the expression of such a sequence. W3C/HP WSCL can describe the sequence
of operations
13 http://www.w3.org/TR/owl-guide/
14 http://www.w3.org/TR/daml+oil-reference based on the Resource Description

Framework.
15 http://www.oasis-open.org/committees/ubl/
16 http://fxagents.stanford.edu/∼gomi/CateringService.wsdl

1. Get types of restaurants
2. Select type, get names of restaurants
3. Select restaurant, get menu
4. Select menu item, get set of choices (like pizza toppings)

So UDDI/WSDL needs something like WSCL. Then, what else would be re-
quired? The FX-Agents project team noted the following issues were not ad-
dressed by WSDL-based technologies:

– Unplanned options are not handled by WSDL:
Preplanned sequence specifications, such as WSCL, are inadequate. For ex-
ample, id = pizzas is a special case that may require a choice of toppings,
that change often, and these values may affect the proper process sequence.
– No standard representation of authorization mechanisms.
The membership registration is required for this case, but WSDL provides
no standard way of discovering this.
– No standard representation of cancellation terms.
By what hour/day could one cancel with what penalties?
– No standard representation of effects.
What are the specific actions of this service? In this case, food ships 90
minutes after order. And there is a phone call and email sent.
– No standard representation of pre-conditions.

• The minimum order is $80.
• Delivery hours are different than takeout hours
• No deliveries on Mondays.

– No standard representation of payment terms
• There is a delivery charge of $8.95.
• A 15% driver support charge is added to each order.

From this simple case, we can see that as a minimum, we need to be able to
represent in machine-readable format:

– Pre-conditions and actions of each operation
– Tags that refer to protocols/terms of

• Payment
• Cancellation
• Authorization
and
– Representation for dynamic options

The W3C/DARPA DAML-S17 is one solution to representing the precondi-
tions and side-effects of Web services. DAML-S

– Provides an ontology of services and processes
– Is based on DAML+OIL/RDF
– Is being integrated with UDDI
– Could be too “heavyweight” but does address these issues

17 http://www.daml.org/services/

– Does not provide distributed search

And, importantly, because it uses the current UDDI T-Model mechanism, it only
describes pre-conditions and effects of the whole Web service, but not of the
individual operations.

To really implement our democratic and just-in-time service principles, or-
dinary Web services are not enough. If we augment them with pre-conditions,
effects, payment methods, authentication, etc., then we have what we may call
Business Services. The FX-Agents project aims to show how this can be done,
especially for financial services using logic-based technologies.

5 FX-Agents Approach

The FX-Agents project took a different but compatible approach. We built a
Business Service Directory (BSD) based on Infomaster [2] that provides
distributed search using logic as “glue.” In addition, we have constructed a pro-
totype Internet Naming Service (INS) to provide universal non-ambiguous reso-
lution of all names. And finally, the prototype Kiosk provides the semantics for
terms used in the descriptions of the services and their operations in the BSD.

In building the BSD, we wanted for humans to be able to use it as a Web ser-
vice browser. In addition to the other defficiencies of WSDL, it does not contain
enough information to dynamically generate a Graphical User Interface (GUI)
for invoking Web services. So the group developed the Web Service GUI (WS-
GUI) Engine [1], which does allow dynamic GUI Generation.

Web
Service

HTML
Browser

WSGUI
Engine

(4) SOAP Request

(5) SOAP Request (1) Request
 − URL of GUIDD
 − Name of Page

(2) HTML
 Form

(3) Post
 Data

(6) HTML
 Response

Fig. 1. WSGUI Architecture

In particular, WSGUI

– allows encoding of an abstract interface

– combines with stylesheet for concrete interface
– provides pull-down menus and similar standards
– enables dynamic enumeration specification
E.g., new pizza toppings
– and allows virtual operations to be defined that allow Web services to be
composed and invoked with default parameters.

6 Incremental Automation

With the ability to browse Web services, we investigated the issue of how peo-
ple could easily build macroservices. These are an integrated set of services
connected by a process. Unlike industrial approaches, our process will not be
completely defined prior to runtime. A macroservice is a process of integrated
Web services that can be encapsulated as a type of business service, but would
be difficult and perhaps impossible to encapsulate as a simple Web service, be-
cause of the complexity of the messages that may be required to accomplish
the task. I.e., we want to avoid the necessity of claiming a simple Web service
encapsulation is possible for the complex processes we are investigating.

The major point here is to determine what information software agents would
need to integrate services in a dynamic process, but also be able to easily be
instructed by people about this integration. Before we program software agents
to use Web services, we should understand how a person could do it.

Suppose we wanted to compose a set of Web services, and do so incrementally
over a period of time as we discovered more useful services from the BSD. What
are the issues involved? To investigate this, we constructed an application and
populated it with Web services.

Fig. 2. Event Planning System

We decided upon event planning as a macroservice application as it was one
that we understood. We further constructed Web services from existing Web-

based services. The result is a set of SOAP-accessible services, with WSDL,
and also a GUIDD, new format for specifying presentation using WSGUI, that
allowed dynamic Web generation, and additional information in the BSD about
pre- and post-conditions, as well as logic axioms, that allowed these services to
be “glued” together easily.

Only the Gates room reservation system, already build on Infomaster, had an
existing SOAP interface. The rest were constructed by initially screen-scraping,
and then building a SOAP wrapper that sends HTTP messages to the original
Web-based applications as if they were being sent by a Web browser.

The reader may ask the difference between this and a registry of existing
Web-based services, since the latter already have Web interfaces defined. The
difference is that the information about the Web services, and their interfaces,
is now declared in a machine-readable format. Further, the presentation has
now been separated from the application semantics. We thus built a sandbox for
agents and Web services.

7 Steps in Automating Web Service Composition and
Integration

Our strategy for producing the technology for agent-based Web service integra-
tion may summarized as follows:

Web Service Browsing by humans
(using BSD and WSGUI)⇒

DECLARATIVE WEB:
Incremental Automation

(using logic hidden by GUI and virtual operations)⇒
Agent-Mediated IA:

Software Agents consuming and integrating Web services
(using wrappers and logic-based interactions)⇒

Condition-based Integration
(service description allows dynamic planning)

Fig. 3. Sevice Integration Strategy

As we moved beyond the Web service browser capability, we entered a broad
area of capability and approach we call the Declarative Web in which we take
advantage of the fact that we had not only made machine-readable descriptions
of the Web services, but have used logic to declare what the Web services do.
We increasingly take advantage of this declarative logic in the sophistication of
the integration of Web services.

8 Incremental Automation is an Alternative to Industry
Approaches

In our next steps, we would like to provide a more dynamic alternative to the
industrial standards for Web service integration and composition. As described
in [3], these approaches are inadequate as they:

– require a static process model;
– are not easily changed, maintained, or controlled; and
– change requires coding of new WSDL operations by the service provider.

Such alternatives strongly violate our democratic and just-in-time principles.
As a first step beyond a Wizard and towards sophisticated dynamic Web

service integration, we can note that if integrated applications require some
coding in advance, then we can at least we can take advantage of Web services,
software agents, and computational logic and avoid coding of new Web services
by the service provider as is required with, say, BPEL4WS.

As indicated above, the first step of Incremental Automation is to provide
an overall GUI that, together with Virtual Operations describing some logic
functionality, allows the user to manage macroservices. Initially, we constructed
a “Wizard” to guide humans through the use of the event planning services to
create a new event. We used this application to organize at least one Steering
Committee Meeting, including ordering lunch.

B

C

D

CONTROL

A

B

C

D

Data
Shared Process Model

Central Workflow

Business
Process Engine

WIzard
WS

Output Data
Input Data

Web Service

WS Monitor

Rules

Incremental Automation

Fig. 4. Incremental Automation

The Immediate advantages of the IA/Wizard approach are that no service-
side code changes are needed to add new services, and the user has complete
control of the integration, instead of the process being controlled by a workflow
engine of some kind. Further, it is now easy to provide a monitoring capability
so that Web services are invoked whenever some condition changes, detected by

polling the Web services every so often. Nothing needs to be changed on the ser-
vice provider side and our democratic and just-in-time principles are preserved.

We intended further to build a human interface for building rules to inte-
grate the Web services as a next step in Incremental Automation. Since each
Web service operation has a set of well-defined inputs and outputs, as well as
pre- and post-conditions, it is possible to display each operation as a table of
parameters, with inputs and outputs. Then one can use a pull-down menu of
operators and relations to create conditions among these parameters, including
critical values (numbers or symbols pulled from the XML schemas) with ac-
tions being to transfer output values from the invocation of one Web service to
another.

The only hard part about this idea was design of the user interface. While
working on this, we decided to skip it and go directly to the next stage of service
integration automation. It remains as an easy idea for someone to implement
and could result in a commercial product.

9 Agent-Mediated Incremental Automation

The Wizard can guide the user in direct manipulation and integration of Web
services. What we would like to do next is to construct more of a “cockpit” for
the user.

Fig. 5. Cockpit Analogy

We want the user to be able to refer to a system of controls that perform
actions in the world, which are not directly related to the services themselves,
but directly related to actions of the enterprise the user is running. These actions
are then related to a composite of Web service actions. I.e., the user sees complex
actions directly related to what is desired, just as a pilot desires to “fly North at
10,000 feet” and this is enabled by a sequence of flaps and motor changes that
correspond to the primitive Web services require to “make it so.” Our approach
is to use software agents to mediate between the user cockpit controls and the
actual Web services.

Because we ultimately wanted to work on a financial system of some kind,
we chose to implement a Multi-Bank Cash Management System. In this
application, the “cockpit” is a Corporate Treasury Workstation. The Treasurer
is the user and desires to manipulate the various bank accounts of the enterprise
so as to optimize the cash flow, including managing Accounts Payables and
Receivables.

This process is informed by a standard mathematical model called theMiller-
Orr model, so we needed a specialized agent that, given the required inputs,
would return a target distribution of cash among liquid and interest-bearing
accounts. We also required a Plan Revision Agent that would generate and revise
plans for transferring cash at different dates during the target period of time.

Workstation

Client
Cockpit

Integrator
Agent

Agent
Monitor

Web Service

Invocators

(SOAP/ACL/KIF)

Plan Revision
Agent

Agent−Mediated
Web Service Integration
Framework

Bank 1 Bank 2 Bank 3

Treasury

Warehouse

Agent

Manager

Agent

Agent
Miller−Orr

Fig. 6. Cash Management System

As can be seen from Figure 6, these were two special agents. Also the Treasury
cockpit had to be designed especially for the application because the GUI has to
be special in particular. The banks are assumed to have existing Web services
for account information and transfer. With respect to this application, such Web
services are legacy systems even though at the time of this work, they are just
being constructed by real banks.

The mauve-colored agents in between the special agents and the legacy Web
services comprise a reusable Agent-mediated WS Integration (AWSI) system and
comprises a new type of Declarative Web.

– AWSI Agents “hold” KIF knowledge and are reusable.
– There is no coding by service providers.
– The agents speak an Agent Communication Language (ACL) among them-
selves and are capable of arbitrarily complex behavior, including negotiation.
– And users, such as a Corporate Treasurer, can “program” using IA rules.

Further contributing to the reusuability and easy development of the agents
is that they are built on top of the reusable JKIP platform.

Fig. 7. JKIP Architecture

The Java Knowledge Interchange Platform (JKIP) is another technology from
this project that allows agents to be easily built from Java templates and run
inside one computer with a single IP address, but separately addressable from
the outside.

That the AWSI agents use Logic-Based Integration also makes them
reusable. They each are capable of holding whatever axioms and statements
are useful to any application. The Integrator agent theorem-proves over results
from other agents and the Manager agent knows what predicates handled by
what agents. The Manager agent uses the special predicate Specialty to relate
task predicates to the application agents, such as:

– Specialty convert FX
– Specialty plan Monitor
– Specialty bank.units Warehouse
– Specialty balance Warehouse
– Specialty minimum.balance Miller-Orr

An example of the kind of information the Integrator agent has for this ap-
plication is:

(≤ (request-transfer ?amount ?bank1 ?bank2 ?account)
(> (- (balance ?bank1) ?account) (min-balance ?bank1 ?account))
(= (bank.units ?bank1)(bank.units ?bank2))
(do (transfer ?amount ?bank1 ?new-amount ?bank2 ?account)))

This logic18 states that a requested transfer of an amount from any bank1 to
any bank2 should be done, if this will not cause the balance of the bank1 to drop
below its minimum, and if both banks use the same units of currency. If the last
condition does not hold, then another rule will come into play that ensures the
best conversion of currency.

Fig. 8. Cash Plan

This is an example of a Cash Plan that may be displayed at the Treasury
Workstation. Here, we do not address how such a plan is prepared. It may be done
by a standard Integer Programming system. The first point is to encapsulate such
systems as either Web services or agents. Next, we would like to make it easy
for the Treasurer to create incrementally constraints on the rules while asking
for a change to the plan.

10 Cash Plan Change Becomes a Rule

Logic allows us to create arbitrarily complex requests for changes to the cash
plan (and to format such requests in the language that the cash plan mechanism
understands), and also to record such requests as rules. The hardest part is
to develop the appropriate GUI for this capability. GUI development was not
a focus of our research. The above example is a very simple way to represent
constraints over single variables as a result of plan changes. In this example,
the Treasurer would like the duration of the total plan not to exceed three days
and this is simply expressed in a KIF rule. It could also have been expressed
more simply in an advanced GUI by allowing the user to select from a pull-down

18 In this notation, “?” denotes a logical variable that will be unified.

Fig. 9. Plan Change

menu of all variables (selecting “total-time” in this case), selecting a relationship
(“<”), input a number (3), and select units (“days”). The conversion to KIF on
the backend is trivial. But more complicated rules would require a more complex
GUI. We simply left this as an SEP (Someone Else’s Problem)

The important point is that we can write rules that would be interesting to
a Treasurer. For instance:

– If the cash balance at a bank will fall below the minimum for that bank if
payment is not received by an account known to be unreliable, then make a
contingency plan.
– If the cash balance at a certain bank will fall below the minimum, find a
high-interest account to transfer from.
– If money needs to be converted from Yen to USD, find the best rate, including
transfer fees.

Such rules can be easily expressed in logic, with logical unification providing
the “glue” among constraints and Web Service preconditions, postconditions,
and axioms. Furthermore, they can refer to conditions in the world, such as the
current US treasury index, and make actions happen. This can be done today
with procedural encoding. The point here is that logic is a much more flexible
way to encode such business logic, and is more easily maintained.

11 Declarative Web: Condition-based Integration

Our final step takes full advantage of the fact that we have business services,
with pre-conditions and effects, rather than just Web services.

Fig. 10. Architecture of Logic-Based Integration

We have constructed this prototype logic-based integration of services and
tested it with the event planning system (we have not found an appropriate
financial application though the home mortgage process is one that we have
examined and remains a candidate.) With such a system, we have any possible
integration of any registered services
for any application, anytime.

This works as follows. A user requests that some large action be taken in
the world, such as preparing for an event. The user simply says something like
“make it so.” This request is formatted and passed on to an Incremental Planning
Engine and Facilitator in step 1. In steps 2 and 3, a set of services are extracted
from a BSD, using the pre-conditions and effects of the services. This set of
actions and associated axioms are then passed to a general theorem prover in
step 4 and a plan is returned in step 5.

In steps 6 and 7, the user reviews and approves the plan, or asks for a
change. The central planner and facilitator then requests execution of the plan
and monitors the execution.

The “magic” is that we are able to take advantage of a suite of well-understood
AI planning technologies for sequencing actions in a consistent way to achieve
complex goals. With business services, we can move from specialized systems
(military logistics for instance) to a general way to run business systems in the
real world.

However, there is an important piece of this that we are skipping over. Such a
general solution requires semantics and naming from INS/Kiosk, which are still
under development. The good news is that not only the Stanford Logic Group
but also a large number of both academic and industrial groups are attempting
to solve the problem of semantic integration.

Fig. 11. Plan Result

12 Good Research Issues Opened

I.e., lots of hard work to be done.

– How to make a real usable Business Service Registry based on the BSD
– How to integrate AWSI systems, more dynamically?
– How to account for real business processes?
– How to make sophisticated GUIs for this technology?
– How to generate logical constraints from simple GUIs?
– How to generally monitor and control?
I.e., consider a recursive value network and the unsolved problem of control-
ling it while protecting information access.

This last research issue involves not just advanced development, but must ad-
dress difficult computer science issues of distributed computing with robustness
and security as well as control of information transparency.

13 Acknowledgments

The FX-Agents project concluded in March of 2003, but this research and de-
velopment continues, most notably in cooperation with and supported by Com-
merceNet. We thank not only CommerceNet but also Christoph Bussler of Oracle
for help in our Web service technology analysis.

References

1. M. Kassoff, D. Kato, and W. Mohsin, “Creating GUIs for Web Services,” Internet
Computing, September/October 2003, 7 5.
Available at http://logic.stanford.edu/∼mkassoff/papers/wsgui.pdf.

2. M. Genesereth, Keller, and Duschka, “Infomaster: An Information Integration
System,” Proc. 1997 ACM SIGMOD Conference, May 1997.

3. C. Petrie and C. Bussler, “Service Agents and Virtual Enterprises: A Survey,”
Internet Computing, July/August 2003, 7 4.
Available at http://snrc.stanford.edu/∼petrie/fx-agents/xserv/icpaper/.

4. S. Vinoski “Web Services Interaction Models Part 1: Current Practice,” Internet
Computing, May/June 2002 6 3, pp. 89-81.

