Inconsistency in Rule Processing

Eric Kao
Stanford University
erickao@stanford.edu

Joint work with Tim Hinrichs, Michael Kassoff, Michael Genesereth
Inconsistencies

- Occasional errors and disagreements are unavoidable in real-world data.
 - Data acquisition error
 - Out-of-sync
 - Genuine disagreement: Julius Caesar birth year
 - Semantic disagreement: measuring GDP
 - Entity-resolution errors
 - Approximation – apparent contradictions
Example

Data:
- birth(adam, 1980)
- reces(1980)
- reces(1991)

Rules:
- adult(x) :- birth(x,z) & z < 1990
- rBorn(x) :- birth(x,y) & reces(y)
- rbAdult(x) :- rBorn(x) & adult(x)

Constraint:
:- birth(x,y) & birth(x,z) & y ≠ z
Example

- **Data:**
 - birth(adam, 1980)
 - reces(1980)
 - birth(cody, 1984)
 - birth(cody, 1991)
 - reces(1991)

- **Rules:**
 - adult(x) :- birth(x,z) & z < 1990
 - rBorn(x) :- birth(x,y) & reces(y)
 - rbAdult(x) :- rBorn(x) & adult(x)

- **Constraint:**
 - :- birth(x,y) & birth(x,z) & y ≠ z
Ignore constraints?

• Data:
 birth(adam, 1980)
 reces(1980)
 birth(cody, 1984)
 birth(cody, 1991)
 reces(1991)

• Rules:
 adult(x) :- birth(x,z) & z < 1990
 rBorn(x) :- birth(x,y) & reces(y)
 rbAdult(x) :- rBorn(x) & adult(x)
Ignore constraints?

- **Data:**
 - birth(adam, 1980)
 - reces(1980)
 - birth(cody, 1984)
 - birth(cody, 1991)
 - reces(1991)

- **Rules:**
 - adult(x) :- birth(x,z) & z < 1990
 - rBorn(x) :- birth(x,y) & reces(y)
 - rbAdult(x) :- rBorn(x) & adult(x)
Ignore constraints?

• Data:
 birth(adam, 1980)
 reces(1980)
 birth(cody, 1984)
 birth(cody, 1991)
 reces(1991)

• Rules:
 adult(x) :- birth(x,z) & z < 1990
 rBorn(x) :- birth(x,y) & reces(y)
 rbAdult(x) :- rBorn(x) & adult(x)
Ignore constraints?

- **Data:**
 - birth(adam, 1980)
 - reces(1980)
 - birth(cody, 1984)
 - birth(cody, 1991)
 - reces(1991)

- **Rules:**
 - adult(x) :- birth(x,z) & z < 1990
 - rBorn(x) :- birth(x,y) & reces(y)
 - rbAdult(x) :- rBorn(x) & adult(x)
Existential Answers

- Data:

 birth(adam, 1980)
 reces(1980)

 birth(cody, 1984)

 birth(cody, 1991)
 reces(1991)

 adult(adam)
 rBorn(adam)
 rbAdult(adam)

 adult(cody)

 rBorn(cody)

 rbAdult(cody)

[Sources: Elvang-Goranson & Hunter, Kassoff & Genesereth]
Existential Answers

• Given
 • \(R \): a set of rules (Datalog)
 • \(C \): a set of constraints
 • \(D \): a set of ground atoms
 • \(D, R, C \models_e a \)
 \(\iff\)
 exists \(D^* \subseteq D \) s.t.
 • \(D^*, R \) is consistent with \(C \), and
 • \(D^*, R \models a \)
Naïve Method

- Consider every subset D^*
- If it is consistent with C, test if $D^*, R \models a$
- Impractical because there are $2^{|D|}$ many subsets
- Check only maximal, consistent subsets
 Still exponential in worst case.
 - e.g. $2^{|D|/2}$
Lineage Approach

birth(adam, 1980) -> adult(adam) -> rbAdult(adam)

reces(1980) -> rBorn(adam)

birth(cody, 1984) -> adult(cody) -> rbAdult(cody)

reces(1991) -> rBorn(cody)

birth(cody, 1991)

Kassoff & Genesereth
Widom et al. (TRIO)
Lineage Approach

birth(adam, 1980) adult(adam) rbAdult(adam)

reces(1980) rBorn(adam)

birth(cody, 1984) adult(cody) rbAdult(cody)

birth(cody, 1991) rBorn(cody)

reces(1991)

Kassoff & Genesereth
Widom et al. (TRIO)
Lineage Approach

birth(adam, 1980)

reces(1980)

adult(adam)

rbAdult(adam)

rBorn(adam)

birth(cody, 1984)

adult(cody)

rbAdult(cody)

rBorn(cody)

birth(cody, 1991)

reces(1991)

Kassoff & Genesereth
Widom et al. (TRIO)
Lineage Approach

birth(adam, 1980) => adult(adam) => rbAdult(adam)

reces(1980)

birth(cody, 1984) => adult(cody) => rbAdult(cody)

birth(cody, 1991) => rBorn(cody)

reces(1991)

Kassoff & Genesereth
Widom et al. (TRIO)
Lineage Approach

birth(adam, 1980)

adult(adam)

rbAdult(adam)

rBorn(adam)

reces(1980)

birth(cody, 1984)

adult(cody)

rbAdult(cody)

rBorn(cody)

reces(1991)

birth(cody, 1991)

reces(1991)

Kassoff & Genesereth
Widom et al. (TRIO)
Features

- **Advantage:**
 - Polynomial data-complexity for nonrecursive Datalog

- **Disadvantage:**
 - Nontrivial changes to rule processing infrastructure
Rule-rewriting approach

\[\text{R : Rules} \quad \rightarrow \quad \text{Rewrite} \quad \rightarrow \quad \text{R' : Rules} \]

\[\text{C : Constraints} \]
Rule-rewriting approach

\[D, R, C \models^E a \iff D, R' \models a \]

Hinrichs, Kao & Genesereth
Constraint: :- birth(x,y) & birth(x,z) & y≠z

- adult(x) :- birth(x,z) & z < 1990
- rBorn(x) :- birth(x,y) & reces(y)
- rbAdult(x) :- rBorn(x) & adult(x)
Constraint: \(-\) birth(x,y) & birth(x,z) & y\neq z

- adult(x) :- birth(x,z) & z < 1990
 rBorn(x) :- birth(x,y) & reces(y)
 rbAdult(x) :- rBorn(x) & adult(x)

 \[
 \text{unroll}
 \]

- rbAdult(x) :- birth(x,z) & z < 1990
 & birth(x,y) & reces(y)
Constraint: :- birth(x,y) & birth(x,z) & y≠z

- adult(x) :- birth(x,z) & z < 1990
 rBorn(x) :- birth(x,y) & reces(y)
 rbAdult(x) :- rBorn(x) & adult(x)

- rbAdult(x) :- birth(x,z) & z < 1990
 & birth(x,y) & reces(y)

- rbAdult(x) :- birth(x,z) & z < 1990
 & birth(x,y) & reces(y)
 & y=z
Augment for Inconsistency

- **Rule:**
 \[r(Z) :- p(X,Y) \& q(Z,1) \]

- **Rule body:**
 \[b: \ p(X,Y) \& q(Z,1) \]

- **Constraint:**
 \[c: \ :- p(2,U) \& q(U,V) \]

- **c,b inconsistent \[\iff\] X = 2 \& Y = Z**

- **Augmented rule:**
 \[r(Z) :- p(X,Y) \& q(Z,1) \& \neg [X = 2 \& Y = Z] \]
Features

• Polynomial data complexity
• Rewrite and send
• Reuse on different/evolving data
• Limitation:
 Does not work for recursive rules
Recursive Rules

- **R:**

 \[
 \text{reach}(X,Y) \leftarrow \text{link}(X,Z,T) \land \text{reach}(Z,Y)
 \]
 \[
 \text{reach}(X,Y) \leftarrow \text{link}(X,Y,T)
 \]

- **C:**

 \[
 \neg \text{p}(X,Y,T) \land \neg \text{p}(X',Y',T) \land X\neq X' \land Y\neq Y'
 \]

- Appears to be no Datalog rewriting

- **Theorem:**

 Unless P = NP, some recursive rule sets do not have existential answers rewriting in Datalog
Other Answer Semantics

- \(\text{Con}(D,R,C) := \{D^* \subseteq D \mid D^*,R \text{ consistent w } C\} \)
- \(\text{MaxCon}(D,R,C) := \text{Maximal sets in } \text{Con}(D,R,C) \)
- \(\text{Free}(D,R,C) := \text{intersection of } \text{MaxCon}(D,R,C) \)
- \(D,R,C \models_u a \)
 \[\iff\]
 for all \(D^* \) in \(\text{MaxCon}(D,R,C), \)
 \(D^*, R \models a \)
- \(D,R,C \models_f a \)
 \[\iff\]
 \(\text{Free}(D,R,C), R \models a \)
*Assume Con(D,R,C) non-empty
Summary

- Existential Answers Semantics
- Lineage approach
- Rewriting approach
- Future
 - Rewriting approach for some recursive rule sets
 - Hybrid approach?
 - Degree of trustworthiness