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1 Features

For my project I created a worksheet for a Five-Card Draw video poker game.
The program allows the user to adjust their bet by increments of 1 or 10 before
dealing the initial hand of five cards, one at a time, all of which are displayed
using actual card images. Then the user selects and deselects which cards to
“hold” by clicking on them, before trading the remaining cards for new ones.
Then, the user receives a payout proportional to their bet according to what
kind of poker hand they have (two pair, full house, etc.), and the cards are
reshuffled and the process repeated. I used the most common scoring method
that most video poker games do, Jacks or Better. The payouts for each hand
are displayed on the bottom right, and they change to reflect changes in the
user’s bet, as well as light up according to which hand the user ended up with.
The buttons dynamically become enabled and disabled as the state of the game
changes, such as not allowing the user to lower their bet below 1, deal while in
the holding stage, or bet more than their current balance.

2 Some Implementation Decisions

• Initially, I chose to represent each card as its own constant, but I quickly
realized that a constructor card(value, suit) was a much more use-
ful representation, since I only use one 52 card deck and thus every card
can be defined exactly as its value-suit pair. Instead of needing data like
suit(2 clubs, clubs) or value(7 hearts, 7), the value and suit of
cards are immediately available. This was most useful in defining the hand
types, allowing for very concise and elegant rules like hand type(card(V0,

), card(V0, ), card(V0, ), card(V1, ), card(V1, ), "Full House").

• The only relevant information about each card is its current location in
the game: it can either be in the deck, hand, or discarded after not be-
ing held. I began by using predicates like in deck(card(3, hearts)),

in hand(card(12, spades)), which was motivated by intuitions from
iterative programming where I would put the cards into different data
structures corresponding to different locations. However, I decided to use
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a binary predicate loc instead, e.g. loc(card(3, hearts), deck). This
allowed for a more elegeant approach to a couple parts of the game, such
as reshuffling the cards: instead of negating the facts about each location
and adding new ones for the deck, I could simply change the location of
every card to the deck in one rule.

• I decided to use a decent number of static CSS rules to position elements
along with many dynamic CSS rules using the worksheets.js interface.
The look and feel of any casino game is as important as the game itself,
so I wanted to make sure the interface was clean and fun to use, hence the
dramatic one-at-a-time dealing and the way the balanced goes up when
scoring.

3 Optimizations

The only real performance issue that came up was calculating the payout for the
user. My approach test each of the 5! = 120 possible permutations for the user’s
hand against each different hand type, like hand type(card(V, ), card(V,

), card(V, ), , , "Three of a Kind"). While there surely are more ef-
ficient ways of finding the best hand, this allowed for a particularly clean way
of defining each hand type, and I think it exemplifies the kind of elegance logic
programming is often conducive of. I made sure to only do this calculation once
per round, materializing the rule as a fact instead of recalculating as the value
was needed so that the user does not experience any delays.

4 Logic Programming

Clearly, logic programming is not necessary to implement video poker: it’s been
done countless times using iterative languages. There are many places in the
code where rules are effectively just changing variables, e.g. ==> ~bet(Bet) &

bet(Bet ) & ~balance(Bal) & balance(Bal ), which, while not necessarily
bad, is less elegant and much more bug prone than the usual iterative approach.
Additionally, video poker is at its core a very sequential experience, so han-
dling the different state transitions was a bit tricky at some points. However,
I do think that logic programming had many strengths here. As mentioned
previously, calculating the best hand was very easy. Enabling and disabling the
buttons according to different rules was also perfectly suited to epilog. Styling
the various HTML elements was helped greatly, too, as it allowed for a much
cleaner approach than my previous experiences with javascript styling. Overall,
I think logic programming was a good fit for the problem, as I rarely had to
worry about the underlying system, which is usually the strongest indicator that
logic programming is not well-suited to the problem. I also ended up with much
fewer lines of code compared to what I would have with an iterative approach.

2


