Logic Programming Datalog

Michael Genesereth Computer Science Department

Stanford University

What is Hex?

- Hex is a two-player game invented by John Nash and Piet Hein (independently).
- Players take turns placing tiles on any cell of their choosing.
- Players win by connecting a chain of tiles, such that they form a line spanning from one edge of the board to the opposite edge.
- Hex is a game commonly studied by Mathematicians in Computer Science in order to shed light on topics including: graph theory, combinatorics, game theory, and AI.
- In 11×11 Hex, there are approximately 2.4×10^{56} possible legal positions! (Approximated using an exponential function and branching factor analysis)

What are we Investigating?

- What are the different paradigms in which we can encode the rules of Hex?
- How does each paradigm perform (relatively)?

Why Logic Programming? (GDL)

- Testing Games in a Generalizable Fashion: Logic Programming is the methodology of describing games in the field General Gameplaying. GDL is widely accepted as the language of General Gameplaying!
- Condition Testing: We are really just solving a condition problem, namely: given this set of data, is X true? Logic Programming is very good for that!
- Avoiding the "background implementations": In a traditional imperative programming language, we would have to focus on building the "backend" framework from game-to-game; logic programming avoids that!

General Observations:

- We can assign each cell in the Hex board a numerical index.
- In this way, we can codify mathematical rules defining adjacency:
- E.g. Cells X \& Y are adjacent if $Y=X+1$
- One tile must be in each column (or row) in order for a player to have won (as a necessary, but not sufficient condition)

Approach \# 1 : Naïve Implementation

- What if you abstracted half of the problem away from logic programming?
- Use logic programming as a "verifier" and another language (Python) to generate the "Winning Sets".
- E.g. $\{1,2,3,4,5,6,7,8,9\} \in \mathcal{W}$
- After every move, check if the cells "controlled" by a given player is a superset of the winning set.
> $\exists w \in \mathcal{W} . w \subseteq M$, where M is the set of cells p has played.

Approach \#2: Power-set Constraints

1. Maintain set of all cells controlled by player p
$\{28,2,12,13,42,16,8,45\}$
$\{55,11,3,31,21,42,8,27\}$
2. Generate all* 9-length subsets s.t. each E_{i} (element in the ith position) is a member of the ith column
*To avoid repeatedly checking non-winning sets, one can preserve all previous non-winning sets and check all new sets generated by replacing the corresponding column entry in the previously generated sets
E.g. If you play in Column 6 ...

$$
\left\{C_{\text {old }}^{(6)} \rightarrow C_{\text {New }}^{(6)}\right\} \text { in all sets }
$$

Power-set Constraints: Worst-Case Analysis

$\{28,2,12,13,42,16,8,45\}$
$\{55,11,3,31,21,42,8,27\}$
2. Generate all 9-length subsets s.t. each E_{i} (element in the ith position) is a member of the ith column

Note:
What if we generated all 9-length subsets without our unique column restriction?

Suppose player p controls n cells ($n_{\max }=81$):

$$
\binom{81}{9} \text { vs. } 9^{9} \longrightarrow \frac{260887834350}{387420489}
$$

$\approx x 674$ more computations!

But wait! It isn't that simple!

Approach \#2: Power-set Constraints*

1. Maintain set of all cells controlled by player p
$\{28,2,12,13,42,16,8,45\}$
$\{55,11,3,31,21,42,8,27\}$
2. Generate all* g-length subsets n length subsets [9, 61], s.t. each
E_{i} (element in the ith position) is a member of the ith column

Approach \#3: Following the Line

Column $2 \quad$ Column 3

1. For a given player p, consider each cell they control in column 1 (Indices: 1, 10, 19, ... ,73)
2. Using the adjacency rules, compute all in the next column (column $i+1$) that would be adjacent to the current cell (in column i).
3. If player p controls any of the adjacent cells, repeat the adjacency check. If you can "follow the line" all the way to the end column, the player has won!

Approach \#4 : Minimal Spanning Tree

1. Define a "connected" relation: connected(TREE_NUM, ROW, COL)
2. After each furn, update the connected relations in the dataset:

Credit: M. Genersereth, CS 151, Lecture 12 (Optimization) $\mathrm{R}_{8}, \mathrm{C}$)" (with analogous reasoning extending to spanning a column). This set of connected relations defines the eponymous minimal spanning tree

Beyond the Paradigm: General Optimization Techniques (GOT)

Grounding:

Lambda:	x
$p(X)$: - index(X)	
index(1)	
index(2)	
index(3)	
$\mathrm{p}(1)$:- index(1)	
$p(2)$:- index(2)	
$p(3)$:- index(3)	
index(1)	
index(2)	
index(3)	

Sub-goal Reordering:

GOT Efficiency Analysis?:

- Conjecture: The majority of the time is spent in verifying whether a victory exists or not.
- Technique: Devise a particularly difficult example, and see if the verifier can(not) detect a victory.
- Analysis was conducted on a board with 34 tiles filled, and no victory determined.

Javascript:

grindem(compfinds(read('winner (X)'), read('winner (X)'), repository,library))

Eval

Output:

127448 milliseconds

```
winner (red)
```

Without grounding and sub-goal reordering

Javascript:

```
grindem(compfinds(read('winner(X)'),read('winner(X)'),repository,library))
```


Eval

Output:
16 milliseconds
winner (red)

With grounding and sub-goal reordering

Hex as a Maker-Breaker Game

- A "Maker-Breaker" game can be thought of a game with two distinct players:
- Maker: wins by taking elements from a finite set until they have a winning set
- Breaker: wins by stopping the Maker
- Framing Hex as a Maker-Breaker game:
- Don't think: "Has Red won? Has Blue won?"
- Think: "Has Red won? Has Red lost? (Can Red still win?)"
- Hex implementation:
- After each play, populate all blank cells with red tiles
- On Blue's turn, if a red path still exists, then Red hasn't lost
- On Red's turn, if a red path still exists, then Red can still win!
- Maker-Breaker general strategy: populating available moves with Maker's moves

Questions?

