








What is Hex?

 Hex is a two-player game invented by John Nash and Piet Hein 
(independently).

 Players take turns placing tiles on any cell of their choosing.

 Players win by connecting a chain of tiles, such that they form a line 
spanning from one edge of the board to the opposite edge.

 Hex is a game commonly studied by Mathematicians in Computer
Science in order to shed light on topics including: graph theory, 
combinatorics, game theory, and AI. 

 In 11×11 Hex, there are approximately 2.4×1056 possible legal positions! 
(Approximated using an exponential function and branching factor 
analysis) 



What are we Investigating?

 What are the different paradigms in which we can encode the rules of 

Hex?

 How does each paradigm perform (relatively)?



Why Logic Programming? (GDL)

 Testing Games in a Generalizable Fashion: Logic Programming is the 

methodology of describing games in the field General Gameplaying. GDL 

is widely accepted as the language of General Gameplaying!

 Condition Testing: We are really just solving a condition problem, namely: 

given this set of data, is X true? Logic Programming is very good for that!

 Avoiding the “background implementations”: In a traditional imperative 
programming language, we would have to focus on building the “back-

end” framework from game-to-game; logic programming avoids that!



General Observations:  

 We can assign each cell in the Hex board a 

numerical index.

 In this way, we can codify mathematical 

rules defining adjacency: 

 E.g. Cells X & Y are adjacent if Y = X + 1

 One tile must be in each column (or row) in 

order for a player to have won (as a 

necessary, but not sufficient condition) 

1 2 3 4 5 6 7 8 9

10

19

28

37

55

64

73

46

…



Approach #1: Naïve Implementation

 What if you abstracted half of the problem away from logic

programming?

 Use logic programming as a “verifier” and another language (Python) to 

generate the “Winning Sets”.

 E.g. {1,2,3,4,5,6,7,8,9} ∈

 After every move, check if the cells “controlled” by a given player is a 

superset of the winning set.





Approach #2: Power-set Constraints 

5

2
46

18

10
34

67

1. Maintain set of all 

cells controlled by 

player p

{28, 2, 12, 13, 42, 16, 8, 45}

{55, 11, 3, 31, 21, 42, 8, 27}

…

2. Generate all* 9-length subsets s.t.

each 𝐸𝑖 (element in the ith position) 

is a member of the ith column

73

𝑛 − 8

𝑛 + 1

65 ∈ 𝑆 ?

74 ∈ 𝑆 ?

3. For each element in a set, check if 

the subsequent element obeys an 

“adjacency” rule. 

*To avoid repeatedly checking non-winning sets, one can 

preserve all previous non-winning sets and check all new sets 

generated by replacing the corresponding column entry in the

previously generated sets

{𝐶𝑂𝑙𝑑
(6)

՜𝐶𝑁𝑒𝑤
(6)

} in all sets

E.g. If you play in Column 6 … 



Power-set Constraints: Worst-Case Analysis

{28, 2, 12, 13, 42, 16, 8, 45}

{55, 11, 3, 31, 21, 42, 8, 27}

…

2. Generate all 9-length subsets s.t.

each 𝐸𝑖 (element in the ith position) 

is a member of the ith column

Note: 

What if we generated all 9-length subsets without
our unique column restriction?  

Suppose player p controls n cells (nmax = 81):

81
9

vs.
260887834350

387420489

≈ x674 more computations! 

99



But wait! It isn’t that simple!

This winning sequence 

is 61 tiles long!



Approach #2: Power-set Constraints* 

5

2
46

18

10
34

67

1. Maintain set of all 

cells controlled by 

player p

{28, 2, 12, 13, 42, 16, 8, 45}

{55, 11, 3, 31, 21, 42, 8, 27}

…

2. Generate all* 9-length subsets n-

length subsets [9, 61], s.t. each

𝐸𝑖 (element in the ith position) is a 

member of the ith column

73

𝑛 − 8

𝑛 + 1

65 ∈ 𝑆 ?

74 ∈ 𝑆 ?

3. For each element in a set, check if 

the subsequent element obeys an 

“adjacency” rule. 𝑛 − 9?



Approach #3: Following the Line

1. For a given player p, consider each cell they 

control in column 1 (Indices: 1, 10, 19, … ,73)

64

28
64

𝑛 − 8

𝑛 + 10

56

74

𝑛 + 1 65

𝑛 − 8

𝑛 + 10

57

76

𝑛 + 1 66 …

Column 2 Column 3

Column 1

2. Using the adjacency rules, compute all in the 

next column (column i + 1) that would be 

adjacent to the current cell (in column i). 

3. If player p controls any of the adjacent cells, 

repeat the adjacency check. If you can “follow 

the line” all the way to the end column, the 

player has won! 



Approach #4 : Minimal Spanning Tree

Credit: M. Genersereth, CS 151,
Lecture 12 (Optimization)

1. Define a “connected” relation: connected(TREE_NUM, ROW, COL)  

2. After each turn, update the connected relations in the dataset: 

3. The game is won if there is some set of connected relations s.t.

there exists some “connected(NWIN, R1, C)” and “connected(NWIN, 

R8, C)” (with analogous reasoning extending to spanning a 
column). This set of connected relations defines the eponymous 

minimal spanning tree

MRG

approved



Beyond the Paradigm: 

General Optimization Techniques (GOT)

Grounding: Sub-goal Reordering: Sub-goal Pruning: 



GOT Efficiency Analysis?:  

 Conjecture: The majority of the time is spent in verifying whether a victory 

exists or not.

 Technique: Devise a particularly difficult example, and see if the verifier 

can(not) detect a victory. 

 Analysis was conducted on a board with 34 tiles filled, and no victory 

determined. 



Without grounding and sub-goal reordering

With grounding and sub-goal reordering 



Hex as a Maker-Breaker Game

 A “Maker-Breaker” game can be thought of a game with two distinct players: 

 Maker: wins by taking elements from a finite set until they have a winning set

 Breaker:  wins by stopping the Maker 

 Framing Hex as a Maker-Breaker game: 

 Don’t think: “Has Red won? Has Blue won?” 

 Think: “Has Red won? Has Red lost? (Can Red still win?)” 

 Hex implementation: 

 After each play, populate all blank cells with red tiles 

 On Blue’s turn, if a red path still exists, then Red hasn’t lost

 On Red’s turn, if a red path still exists, then Red can still win! 

 Maker-Breaker general strategy: populating available moves with Maker’s 
moves   



Questions? 


