Logic Programming
Datalog

Michael Genesereth
Computer Science Department
Stanford University

What is Hexe

Hex is a two-player game invented by John Nash and Piet Hein
(independently).

Players take turns placing tiles on any cell of their choosing.

Players win by connecting a chain of tiles, such that they form a line
spanning from one edge of the board to the opposite edge.

Hex is a game commonly studied by Mathematicians in Computer
Science in order to shed light on topics including: graph theory,
combinatorics, game theory, and Al.

In 11x11 Hex, there are approximately 2.4x10% possible legal positions!
(Approximated using an exponential function and branching factor
analysis)

What are we Investigating?

What are the different paradigms in which we can encode the rules of
Hexe

How does each paradigm perform (relatively)e

Why Logic Programming?¢ (GDL)

Testing Games in a Generalizable Fashion: Logic Programming is the
methodology of describing games in the field General Gameplaying. GDL
is widely accepted as the language of General Gameplaying!

Condition Testing: We are really just solving a condition problem, namely:
given this set of datq, is X fruee Logic Programming is very good for that!

Avoiding the “background implementations”: In a fraditional imperative
programming language, we would have to focus on building the “back-
end” framework from game-to-game; logic programming avoids that!

General Observations:

We can assign each cell in the Hex board a
numerical index.

In this way, we can codify mathematical
rules defining adjacency:

E.g. Cells X & Y are adjacentif Y =X + 1

One file must be in each column (or row) in
order for a player to have won (as a
necessary, but not sufficient condition)

Approach #1: Naive Implementation

What if you abstracted half of the problem away from logic
programminge

Use logic programming as a “verifier and another language (Python) to
generate the “Winning Sets”.

E.g.{1.2,3,4,5,67,89} € W

After every move, check if the cells “controlled” by a given player is @
superset of the winning set.

Jw e W. w C M, where M is the set of cells p has played.

Approach #2: Power-set Constraints

{28, 2, 12, 13, 42, 16, 8, 45}

{55, 11, 3,31, 21, 42, 8, 27}

1. Maintain set of all 2. Generate all* 9-length subsets s.t.
cells controlled by each E; (element in the ith position)
player p is a member of the ith column

*To avoid repeatedly checking non-winning sets, one can
preserve all previous non-winning sets and check all new sefs
generated by replacing the corresponding column enfry in the
previously generated sets

—> n—8 — 65€S57¢

> n+1 — 74€S5°¢

3. For each element in a set, check if
the subsequent element obeys an
“adjacency” rule.

E.g. If you play in Column 6 ...

i

New] IN Qll sets

Power-set Constraints: Worst-Case Analysis

{28, 2, 12, 13, 42, 16, 8, 45}

{55, 11, 3,31, 21, 42, 8, 27}

2. Generate all 9-length subsefts s.t.
each E; (element in the ith position)
is a member of the ith column

Nofte:
What if we generated all 9-length subsets without
our unigue column restrictione

Suppose player p controls n cells (n,, o= 81):

(81) s 99 260887834350
9 | | 387420489

= X674 more computations!

H
Q
k<
Vo)
s
on
P -
e
G
K-
e
=
O
2
>
af

This winning sequence

is 61 files long!

Approach #2: Power-set Constraints*

1. Maintain set of all
cells controlled by

player p

{28, 2, 12, 13, 42, 16, 8, 45}

{55, 11, 3,31, 21, 42, 8, 27}

2. Generate all* 2-length-subsets n-
length subsets [?, 61], s.t. each

E; (element in the ith position) is a
member of the ith column

—> n—8 — 65€S57¢

—— /3 =

> n+1 — 74€S5°¢

‘ 3. For each element in a set, check if

9 the subsequent element obeys an
n—9: “adjacency” rule.

Approach #3: Following the Line

Column 2 Column 3

— n-8 — 5669 [n—-8 — 57

Column 1
64 — > n+1 — 65 —— n+1 — 66
— n+10— 7469 — n+10— 76
1. For a given player p, consider each cell they 2. Using the adjacency rules, compute allin the 3. If player p controls any of the adjacent cells,
control in column 1 (Indices: 1, 10, 19, ... ,73) next column (columni + 1) that would be repeat the adjacency check. If you can “follow
adjacent to the current cell (in columni). the line” all the way to the end column, the

player has won!

MRG

approved

Approach #4 : Minimal Spanning Tree

1. Define a “connected” relation: connected(TREE_NUM, ROW, COL)

2. After each turn, update the connected relations in the dataset:

Lambda: x
— —> | connected(1,2,1)
Lambda: x
—_ ——» | connected(2,2,1)
connected(2,2,2)

3. The game is won if there is some set of connected relations s.t. |
there exists some “connected(Nyn. Ry, C)" and “connected(Nyn. Credit: M. Genersereth, CS 151,
Rs, C)” (with analogous reasoning extending to spanning a Lecture 12 (Optimization)
column). This set of connected relations defines the eponymous
minimal spanning tree

Beyond the Paradigm:

General Optimization Techniques (GOT)

Grounding: Sub-goal Reordering: Sub-goal Pruning:
Lambda: X
P(X) 1- index(X)
R | s(X,Y) - p(X) & r(X,Y) & q(X) I r(X,Y) - p(X,Y) & q(Y) & q(Z)
index(3)
p(1) :- index(1) 1 l
p(2) :- index(2)
p(3) :- index(3)
index
indox(2) | S(,Y) :- p(X) & q(X) & P(X,Y)l r(X,Y) - p(X,Y) & q(Y)
index(3)

GOT Efficiency Analysise:

Conjecture: The majority of the time is spent in verifying whether a victory
exists or not.

Technique: Devise a particularly difficult example, and see if the verifier
can(not) detect a victory.

Analysis was conducted on a board with 34 tiles filled, and no victory
determined.

Javascript:

grindem(compfinds (read('winner(X) '), read('winner(X) '), repository,library))

Eval

Output:
127448 milliseconds

winner (red)

Without grounding and sub-goal reordering

Javascript:

grindem(compfinda (read('winner(¥) ') ,read('winner(¥X) '), repository,library))

Eval

Output:
16 milliseconds

winner (red)

L

With grounding and sub-goal reordering

Hex as a Maker-Breaker Game

A “Maker-Breaker” game can be thought of a game with two distinct players:
Maker: wins by taking elements from a finite set until they have a winning set
Breaker: wins by stopping the Maker

Framing Hex as a Maker-Breaker game:

Don’t think: “Has Red won? Has Blue wong”

Think: *Has Red won<¢ Has Red loste (Can Red still wing)”
Hex implementation:

After each play, populate all blank cells with red tiles

On Blue's turn, if a red path still exists, then Red hasn't lost

On Red’s turn, if a red path still exists, then Red can still win!

Maker-Breaker general strategy: populating available moves with Maker's
moves

Questions?e

