








What is Hex?

 Hex is a two-player game invented by John Nash and Piet Hein 
(independently).

 Players take turns placing tiles on any cell of their choosing.

 Players win by connecting a chain of tiles, such that they form a line 
spanning from one edge of the board to the opposite edge.

 Hex is a game commonly studied by Mathematicians in Computer
Science in order to shed light on topics including: graph theory, 
combinatorics, game theory, and AI. 

 In 11×11 Hex, there are approximately 2.4×1056 possible legal positions! 
(Approximated using an exponential function and branching factor 
analysis) 



What are we Investigating?

 What are the different paradigms in which we can encode the rules of 

Hex?

 How does each paradigm perform (relatively)?



Why Logic Programming? (GDL)

 Testing Games in a Generalizable Fashion: Logic Programming is the 

methodology of describing games in the field General Gameplaying. GDL 

is widely accepted as the language of General Gameplaying!

 Condition Testing: We are really just solving a condition problem, namely: 

given this set of data, is X true? Logic Programming is very good for that!

 Avoiding the “background implementations”: In a traditional imperative 
programming language, we would have to focus on building the “back-

end” framework from game-to-game; logic programming avoids that!



General Observations:  

 We can assign each cell in the Hex board a 

numerical index.

 In this way, we can codify mathematical 

rules defining adjacency: 

 E.g. Cells X & Y are adjacent if Y = X + 1

 One tile must be in each column (or row) in 

order for a player to have won (as a 

necessary, but not sufficient condition) 

1 2 3 4 5 6 7 8 9

10

19

28

37

55

64

73

46

…



Approach #1: Naïve Implementation

 What if you abstracted half of the problem away from logic

programming?

 Use logic programming as a “verifier” and another language (Python) to 

generate the “Winning Sets”.

 E.g. {1,2,3,4,5,6,7,8,9} ∈

 After every move, check if the cells “controlled” by a given player is a 

superset of the winning set.





Approach #2: Power-set Constraints 

5

2
46

18

10
34

67

1. Maintain set of all 

cells controlled by 

player p

{28, 2, 12, 13, 42, 16, 8, 45}

{55, 11, 3, 31, 21, 42, 8, 27}

…

2. Generate all* 9-length subsets s.t.

each 𝐸𝑖 (element in the ith position) 

is a member of the ith column

73

𝑛 − 8

𝑛 + 1

65 ∈ 𝑆 ?

74 ∈ 𝑆 ?

3. For each element in a set, check if 

the subsequent element obeys an 

“adjacency” rule. 

*To avoid repeatedly checking non-winning sets, one can 

preserve all previous non-winning sets and check all new sets 

generated by replacing the corresponding column entry in the

previously generated sets

{𝐶𝑂𝑙𝑑
(6)

՜𝐶𝑁𝑒𝑤
(6)

} in all sets

E.g. If you play in Column 6 … 



Power-set Constraints: Worst-Case Analysis

{28, 2, 12, 13, 42, 16, 8, 45}

{55, 11, 3, 31, 21, 42, 8, 27}

…

2. Generate all 9-length subsets s.t.

each 𝐸𝑖 (element in the ith position) 

is a member of the ith column

Note: 

What if we generated all 9-length subsets without
our unique column restriction?  

Suppose player p controls n cells (nmax = 81):

81
9

vs.
260887834350

387420489

≈ x674 more computations! 

99



But wait! It isn’t that simple!

This winning sequence 

is 61 tiles long!



Approach #2: Power-set Constraints* 

5

2
46

18

10
34

67

1. Maintain set of all 

cells controlled by 

player p

{28, 2, 12, 13, 42, 16, 8, 45}

{55, 11, 3, 31, 21, 42, 8, 27}

…

2. Generate all* 9-length subsets n-

length subsets [9, 61], s.t. each

𝐸𝑖 (element in the ith position) is a 

member of the ith column

73

𝑛 − 8

𝑛 + 1

65 ∈ 𝑆 ?

74 ∈ 𝑆 ?

3. For each element in a set, check if 

the subsequent element obeys an 

“adjacency” rule. 𝑛 − 9?



Approach #3: Following the Line

1. For a given player p, consider each cell they 

control in column 1 (Indices: 1, 10, 19, … ,73)

64

28
64

𝑛 − 8

𝑛 + 10

56

74

𝑛 + 1 65

𝑛 − 8

𝑛 + 10

57

76

𝑛 + 1 66 …

Column 2 Column 3

Column 1

2. Using the adjacency rules, compute all in the 

next column (column i + 1) that would be 

adjacent to the current cell (in column i). 

3. If player p controls any of the adjacent cells, 

repeat the adjacency check. If you can “follow 

the line” all the way to the end column, the 

player has won! 



Approach #4 : Minimal Spanning Tree

Credit: M. Genersereth, CS 151,
Lecture 12 (Optimization)

1. Define a “connected” relation: connected(TREE_NUM, ROW, COL)  

2. After each turn, update the connected relations in the dataset: 

3. The game is won if there is some set of connected relations s.t.

there exists some “connected(NWIN, R1, C)” and “connected(NWIN, 

R8, C)” (with analogous reasoning extending to spanning a 
column). This set of connected relations defines the eponymous 

minimal spanning tree

MRG

approved



Beyond the Paradigm: 

General Optimization Techniques (GOT)

Grounding: Sub-goal Reordering: Sub-goal Pruning: 



GOT Efficiency Analysis?:  

 Conjecture: The majority of the time is spent in verifying whether a victory 

exists or not.

 Technique: Devise a particularly difficult example, and see if the verifier 

can(not) detect a victory. 

 Analysis was conducted on a board with 34 tiles filled, and no victory 

determined. 



Without grounding and sub-goal reordering

With grounding and sub-goal reordering 



Hex as a Maker-Breaker Game

 A “Maker-Breaker” game can be thought of a game with two distinct players: 

 Maker: wins by taking elements from a finite set until they have a winning set

 Breaker:  wins by stopping the Maker 

 Framing Hex as a Maker-Breaker game: 

 Don’t think: “Has Red won? Has Blue won?” 

 Think: “Has Red won? Has Red lost? (Can Red still win?)” 

 Hex implementation: 

 After each play, populate all blank cells with red tiles 

 On Blue’s turn, if a red path still exists, then Red hasn’t lost

 On Red’s turn, if a red path still exists, then Red can still win! 

 Maker-Breaker general strategy: populating available moves with Maker’s 
moves   



Questions? 


