Logic Programming
 Operation Definitions

Michael Genesereth
 Computer Science Department
 Stanford University

Datasets

$p(a, b)$
$p(b, c)$
$p(c, d)$

Views

Operations

Operations

Operation Definitions

View Definitions

$$
\begin{aligned}
& r(X, Y):-p(X, Y) \& \sim q(Y) \\
& S(X, Y):-r(X, Y) \& r(Y, Z)
\end{aligned}
$$

Operation Definitions

$$
\begin{aligned}
& \text { flip(X) : : } p(X) \& \sim q(X)==>\sim p(X) \& q(X) \\
& \text { flop(X) : }: r(X, Y)==>f l i p(X) \& f l o p(Y)
\end{aligned}
$$

Program Sheets

Demonstration

Portico (Symbium)

Demonstration

Trifecta

Demonstration

Solar System

Demonstration

Syntax

Operation Constants

Operation constants represent operations.

tick - tick of the clock

click - click a button on a web page
stack - place one block on another
mark - place a specific mark in a row and a column
Same spelling conventions as other constants.
Like constructors, and predicates, each has a specific arity.

```
tick/0
click/1
stack/2
mark/3
```


Actions

An action is an application of an operation to objects.
In what follows, we denote actions using a syntax similar to that of compound terms, viz. an n-ary operation constant followed by n terms enclosed in parentheses (as appropriate) and separated by commas.

Examples:
tick
click(a)
stack (a,b)
$\operatorname{mark}(x, 2,3)$
Syntactically, actions are treated as terms.

Operation Definition

$$
\underbrace{\mathrm{c}(\mathrm{a})}_{\begin{array}{c}
\text { conditions }
\end{array}}:: \underbrace{\mathrm{p}(\mathrm{a}, \mathrm{~b}) \& \underbrace{\mathrm{q}}_{\text {(offects }}(\mathrm{a})==>\sim \mathrm{q}(\mathrm{a}) \& \mathrm{ction})}_{\begin{array}{c}
\mathrm{pead}
\end{array}} \mathrm{c}(\mathrm{~b})
$$

Variables

$c(X):: p(X, Y) \& q(X)==>\sim q(X) \& c(Y)$

Safety

A operation rule is safe if and only if every variable in every literal on the right hand side appears in the head or in a positive literal on the left hand side. Also, every variable in a negative literal on the left hand side appears in a prior positive literal.

Safe Operation Rule

```
C(X) : :
    p(X,Y) & ~q(X) ==>
    ~p(X,Y) & q(X) & C(Y)
```


Unsafe Operation Rule

c(X) : :

$$
\begin{aligned}
& p(X, Y) \& \sim q(Z)==> \\
& \sim p(X, Y) \& q(W) \& c(Y)
\end{aligned}
$$

Degenerate Rules

Degenerate Rule

$$
c(X):: \text { true }==>\sim p(X) \& q(X)
$$

Shorthand

$$
c(X):: \sim p(X) \& q(X)
$$

Dynamic Logic Programs

An operation definition is a finite collection of operation rules with the same operation in the head.

Example

$$
\begin{aligned}
& c(X):: p(X) \& q(X) \\
& c(X):: \sim r(X)==>\sim p(X) \& r(X)
\end{aligned}
$$

A dynamic logic program is a collection of view definitions and operation definitions.

Semantics

Intuition

Given a dynamic logic program, the result of applying an action to a dataset is the dataset that results from
(1) deleting all of the negative effects of the action and then
(2) adding in all of the positive effects.

Active and Inactive Rule Instances

Given a ruleset Ω with dataset Δ and a set Γ of actions, an instance of an operation rule in Ω is active if and only if
(1) the head of the rule is in Γ
(2) the conditions of the rule are all true in Δ.

Otherwise, the instance is inactive.

Example

Data: $p(a), p(b), p(c), q(a), q(b), q(c), r(b)$
Rule:
$u(X): ~: ~ p(X) \& q(X) \& \sim r(X)==>\sim p(X) \& r(X)$
Action: u(a)

Active Instance:
$u(a): ~: p(a) \& q(a) \& \sim r(a)==>\sim p(a) \& r(a)$
Inactive Instances:
$u(b):: p(b) \& q(b) \& \sim r(b)==>\sim p(b) \& r(b)$
$u(c):: p(c) \& q(c) \& \sim r(c)==>\sim p(c) \& r(c)$

Expansion

The expansion* of an action set with respect to a rule set is the set of all effects in any active instance of any operation definition.

The positive updates of an action with respect to a rule set are the positive literals in the expansion.

The negative updates of an action with respect to a rule set are the negative literals in the expansion.
*Simple version

Example

```
Data: \(p(a), p(b), p(c), \quad q(a), q(b), q(c), \quad r(b)\)
```


Rule:

$u(X): ~: ~ p(X) \& q(X) \& \sim r(X)==>\sim p(X) \& r(X)$
Action: u(a)
Active Instance:

$$
u(a):: p(a) \& q(a) \& \sim r(a)==>\sim p(a) \& r(a)
$$

Expansion: $\sim p(a), r(a)$
Negative Update: $\mathrm{p}(\mathrm{a})$
Positive Update: r(a)

Result

Given a rule set, the result of applying an action set to dataset Δ is the set consisting of all factoids in Δ minus the negative updates plus the positive updates.

$$
\Delta \text { - negatives } \cup \text { positives }
$$

Example

Data: $p(a), p(b), p(c), \quad q(a), q(b), q(c), \quad r(b)$
Rule:
$u(X): ~: ~ p(X) \& q(X) \& \sim r(X)==>\sim p(X) \& r(X)$
Action: u(a)

Negative Updates: p (a)
Positive Updates: $r(a)$

Result: $\mathrm{p}(\mathrm{b}), \mathrm{p}(\mathrm{c}), \quad \mathrm{q}(\mathrm{a}), \mathrm{q}(\mathrm{b}), \mathrm{q}(\mathrm{c}), \quad \mathrm{r}(\mathrm{a}), \mathrm{r}(\mathrm{b})$

Multiple Rules

Dataset: $p(a), p(b), p(c), q(a), q(b), q(c), \quad r(b)$
Rule:
$u(X):: p(X) \& q(X) \& \sim r(X)==>\sim p(X)$
$u(X):: p(X) \& q(X) \& \sim r(X)==>r(X)$
Action: u(a)

Negative effects: p (a)
Positive effects: $r(a)$

Result: $\mathrm{p}(\mathrm{b}), \mathrm{p}(\mathrm{c}), \quad \mathrm{q}(\mathrm{a}), \mathrm{q}(\mathrm{b}), \mathrm{q}(\mathrm{c}), \quad \mathrm{r}(\mathrm{a}), \mathrm{r}(\mathrm{b})$

Weird Case

Dataset: $\{p(a), p(b), p(c), q(a), q(b), q(c)\}$
Rule:
$u(X):: p(X) \& q(X)==>\sim r(X)$
$u(X):: p(X) \& q(X)==>r(X)$
Action: $u(a)$

Negative effects: $r(a)$
Positive effects: r (a)

Result: $\mathrm{p}(\mathrm{a}), \mathrm{p}(\mathrm{b}), \mathrm{p}(\mathrm{c}), \mathrm{q}(\mathrm{a}), \mathrm{q}(\mathrm{b}), \mathrm{q}(\mathrm{c}), \quad \mathrm{r}(\mathrm{a})$

Simultaneous Actions

Data: $p(a), p(b), p(c), \quad q(a), q(b), q(c), \quad r(b)$
Rule:
$u(X): ~: ~ p(X) \& q(X) \& \sim r(X)==>\sim p(X) \& r(X)$
Actions: $u(a), u(b), u(c)$

Active Instances:

$$
\begin{aligned}
& u(a):: p(a) \& q(a) \& \sim r(a)==>\sim p(a) \& r(a) \\
& u(c):: p(c) \& q(c) \& \sim r(c)==>\sim p(c) \& r(c)
\end{aligned}
$$

Inactive Instance:

$$
u(b):: p(b) \& q(b) \& \sim r(b)==>\sim p(b) \& r(b)
$$

Simultaneous Actions

Data: $p(a), p(b), p(c), \quad q(a), q(b), q(c), \quad r(b)$
Rule:
$u(X): ~: ~ p(X) \& q(X) \& \sim r(X)==>\sim p(X) \& r(X)$
Actions: $u(a), u(b), u(c)$

Expansion: $\sim p(a), \sim p(c), r(a), r(c)$
Negative Updates: $p(a), p(c)$
Positive Updates: $r(a), r(c)$
Result: $\mathrm{p}(\mathrm{b}), \mathrm{q}(\mathrm{a}), \mathrm{q}(\mathrm{b}), \mathrm{q}(\mathrm{c}), \quad \mathrm{r}(\mathrm{a}), \mathrm{r}(\mathrm{b}), \mathrm{r}(\mathrm{c})$

Derived Actions

Data: $p(a), p(b), p(c), \quad q(a), q(b), q(c), \quad r(b)$
Rule:
$u(X): ~: ~ p(X) \& q(X)==>\sim p(X) \& r(X) \& u(c)$
Input Action: $u(a) \quad$ Derived action: $u(c)$

Expansion: $\sim p(a), \sim p(c), r(a), r(c), u(a), u(c)$
Negative Updates: $\{p(a), p(c)\}$
Positive Updates: $\{r(a), r(c)\}$

Result: $\mathrm{p}(\mathrm{b}), \mathrm{q}(\mathrm{a}), \mathrm{q}(\mathrm{b}), \mathrm{q}(\mathrm{c}), \mathrm{r}(\mathrm{a}), \mathrm{r}(\mathrm{b}), \mathrm{r}(\mathrm{c})$

Expansion

Given a rule set Ω and a dataset Δ a set Γ of actions, consider the following series.
$\Gamma 0=\Gamma$
$\Gamma_{n+1}=$ the set of all effects of Γ in any active rule instance
The expansion* of Γ with respect to Ω and Δ is the fixpoint of this series.

The positive updates of an action with respect to a rule set are the positive literals in the full expansion.

The negative updates of an action with respect to a rule set are the negative literals in the full expansion.
*Exact version

Interchange

$$
\begin{aligned}
& \text { function interchange () } \\
& \begin{array}{l}
\{x=y ; \\
y=x\}
\end{array} \\
& {[x, y]} \\
& {[3,4]} \\
& \text { interchange() } \\
& {[x, y]} \\
& {[4,4]} \\
& \text { function interchange () } \\
& \{\text { var } z=x ; \\
& x=y ; \\
& y=z\}
\end{aligned}
$$

Interchange

interchange :

$$
\begin{aligned}
& \operatorname{val}(x, X) \& \operatorname{val}(y, Y)==> \\
& \sim \operatorname{val}(x, X) \& \sim \operatorname{val}(y, Y) \& \\
& \operatorname{val}(x, Y) \& \operatorname{val}(y, X)
\end{aligned}
$$

val(x,3)
val(y,4)
Execute: interchange
val(x,4)
val(y,3)

Production Systems

A production system is a set of condition-action rules. On each step in the execution of a production system, an active rule is chosen and the actions are performed. The cycle then repeats on the new state.
if $p(X)$, then del $p(X)$ and add $q(X)$
if $q(X)$, then del $q(X)$ and add $p(X)$
Before: $\{p(a), q(b)\}$
Step 1: $\{q(a), q(b)\}$
Step 2: $\{p(a), q(b)\}$ or $\{p(b), q(a)\}$
When do we stop?

Dynamic Logic Programs

Dynamic logic programs differ from production systems in that all active transition rules "fire" at the same time. (1) All updates are computed before any changes are made, and (2) all changes are made simultaneously.

$$
\begin{aligned}
& \text { tick :: } p(X)==>\sim p(X) \& q(X) \\
& \operatorname{tick}:: q(X)==>\sim q(X) \& p(X)
\end{aligned}
$$

Before: $\{p(a), q(b)\}$
After: $\{p(b), q(a)\}$

Blocks World

Blocks World

External Actions

Describing States

Operation Definitions

Operations:
$u(x, y)$ means that x is moved from y to the table. $s(x, y)$ means that x is moved from the table to y.

Operation Definitions:

```
u(X,Y) : :
    clear(X) & on(X,Y)
    ==> ~on(X,Y) & table(X) & clear(Y)
```


Operation Definitions

Operations:
$u(x, y)$ means that x is moved from y to the table. $s(x, y)$ means that x is moved from the table to y.

Operation Definitions:

```
u(X,Y) ::
    clear(X) & on(X,Y)
    ==> ~on(X,Y) & table(X) & clear(Y)
s(X,Y) ::
    table(X) & clear(X) & clear(Y)
    ==> ~table(X) & ~clear(Y) & on(X,Y)
```


The Game of Life

World

Rules of the Game

(1) Any live cell with two or three live neighbors lives on to the next generation.
(2) Any live cell with fewer than two live neighbors dies (as if caused by underpopulation).
(3) Any live cell with more than three live neighbors dies (as if by overpopulation).
(4) Any dead cell with exactly three live neighbors becomes a live cell (as if by reproduction).

Vocabulary

Symbols: c11, c12, ...

Unary Predicates:
on - cell is live cell - true of cells

Binary Predicates:
neighbor - cells are neighbors

Starvation

Any live cell with fewer than two live neighbors dies.
tick : :
on $(Y) \&$ countofall $(X$, neighbor $(X, Y) \& o n(X), 0)$ $==>\sim o n(Y)$
tick : :
on(Y) \& countofall(X, neighbor (X,Y)\&on(X), 1)
$==>\sim$ ○ (Y)

Overcrowding

Any live cell with more than three live neighbors dies.
tick : :
on (Y) \&
countofall(X, neighbor (X,Y)\&on(X),N) \&
leq (4, N)
==> ~on(Y)

Transition Rules

Any dead cell with exactly three live neighbors becomes live.
tick : :
cell(Y) \& ~on(Y) \&
countofall(X, neighbor $(\mathrm{X}, \mathrm{Y}) \& o n(\mathrm{X}), 3$)
==> on(Y)

Example

Demonstration

Tic Tac Toe

States

$\operatorname{cell}(1,1, \mathrm{x})$
$\operatorname{cell}(1,2, \mathrm{~b})$
$\operatorname{cell}(1,3, \mathrm{~b})$
$\operatorname{cell}(2,1, \mathrm{~b})$
$\operatorname{cell}(2,2, \mathrm{o})$
$\operatorname{cell}(2,3, \mathrm{~b})$
$\operatorname{cell}(3,1, \mathrm{~b})$
$\operatorname{cell}(3,2, \mathrm{~b})$
$\operatorname{cell}(3,3, \mathrm{x})$
$\operatorname{control}(\mathrm{o})$

Legal Moves

legal(M,N) :- cell(M,N,b)

State:

$$
\begin{aligned}
& \operatorname{cell}(1,1, x) \\
& \operatorname{cell}(1,2, b) \\
& \operatorname{cell}(1,3, b) \\
& \operatorname{cell}(2,1, b) \\
& \operatorname{cell}(2,2, o) \\
& \operatorname{cell}(2,3, b) \\
& \operatorname{cell}(3,1, b) \\
& \operatorname{cell}(3,2, b) \\
& \operatorname{cell}(3,3, x) \\
& \operatorname{control}(o)
\end{aligned}
$$

Legal Moves:

mark (1, 2) $\operatorname{mark}(1,3)$ mark (2,1) mark (2, 3) $\operatorname{mark}(3,1)$ mark(3,2)

Actions

$\operatorname{mark}(\mathrm{M}, \mathrm{N})::$
control(Z) ==> ~cell(M,N,b) \& cell(M,N,Z)
$\operatorname{mark}(\mathrm{M}, \mathrm{N}):$:
control(x) ==> ~control(x) \& control(o)
$\operatorname{mark}(\mathrm{M}, \mathrm{N}):$:
control(o) ==> ~control(o) \& control(x)

```
cell(1,1,x)
cell(1,2,b)
cell(1,3,b)
cell(2,1,b)
cell(2,2,o)
cell(2,3,b)
cell(3,1,b)
cell(3,2,b)
cell(3,3,x)
control(o)
```

$\operatorname{cell}(1,1, \mathrm{x})$
$\operatorname{cell}(1,2, \mathrm{~b})$
$\operatorname{cell}(1,3, o)$
$\operatorname{cell}(2,1, \mathrm{~b})$
$\operatorname{cell}(2,2, o)$
$\operatorname{cell}(2,3, \mathrm{~b})$
$\operatorname{cell}(3,1, \mathrm{~b})$
$\operatorname{cell}(3,2, b)$
$\operatorname{cell}(3,3, \mathrm{x})$
$\operatorname{control}(\mathrm{x})$

Supporting Concepts

```
row(M,Z) :- cell(M,1,Z) & cell(M,2,Z) & cell(M,3,Z)
col(M,Z) :- cell(1,N,Z) & cell(2,N,Z) & cell(3,N,Z)
diag(Z) :- cell(1,1,Z) & cell(2,2,Z) & cell(3,3,Z)
diag(Z) :- cell(1,3,Z) & cell(2,2,Z) & cell(3,1,Z)
line(Z) :- row(M,Z)
line(Z) :- col(M,Z)
line(Z) :- diag(Z)
win(x) :- line(x)
win(o) :- line(o)
terminal :- win(Z)
terminal :-
    evaluate(countofall([M,N],cell(M,N,b)),0)
```


Example

Tic Tac Toe

Click in a clear square to mark that square.

Reset

\mathbf{x}	\mathbf{o}
50	50

Demonstration

Assignments

Assignment - Sierra

The goal of this exercise is for you to familiarize yourself with the Sierra capabilities for editing and using action definitions. Go to http://epilog.stanford.edu and click on the Sierra link.

In a separate window, open the documentation for Sierra. To access the documentation, go to http://epilog.stanford.edu, click on Documentation, and then click on the Sierra item on the resulting drop-down menu.

Read though Sections 7 and 8 of the documentation and reproduce the examples in the Sierra window you opened earlier. Once you have done this, experiment on your own. Try different data and different actions.

Assignment - Nineboard Tic Tac Toe

http://logicprogramming.stanford.edu/assignments/nineboard/index.html

http://logicprogramming.stanford.edu/assignments/pelicanhunters/index.html
$\left.\begin{array}{cccc}\begin{array}{ccc}\text { STANFORD UNIVERSITY } \\ \text { Computer Science Department } \\ \text { Program Sheet }\end{array}\end{array}\right]$

Prerequisites:
CS 109 is a prerequisite for CS 229 CS 145 is a prerequisite for CS 345 CS 154 is a prerequisite for CS 254 CS 157 is a prerequisite for CS 227 CS 157 is a prerequisite for CS 345

Schedule

Course	Room	Time
cs151	ง	$\stackrel{\rightharpoonup}{*}$
cs157	ث	$\stackrel{\rightharpoonup}{*}$
cs161	-	$\stackrel{\rightharpoonup}{*}$

Schedule	g100	g200	g300
morning	$\stackrel{\rightharpoonup}{*}$	ง	ث
afternoon	ث	ث	ث
evening	ث	\dagger	ث

http://logicprogramming.stanford.edu/assignments/schedule/index.html

Term Project Proposal

Term Project

