
Logic Programming
View Evaluation

Michael Genesereth
Computer Science Department

Stanford University

Bottom-Up Evaluation

Method
 Start with dataset
 Apply rules repeatedly to produce closure
 Repeat up the stratum hierarchy
 Evaluate query on the result

Disadvantages
 Generates large numbers of irrelevant conclusions
 Does not work with infinite extensions

Method
 Start with query to be answered
 Apply rules repeatedly to reduce to subqueries
 Continue until reaching data level
 Match base level subgoals against dataset

Disadvantages
 Slightly harder to understand
 Sometimes recomputes subgoals
 Susceptible to avoidable infinite loops

Top-Down Evaluation

Top-Down Processing of Ground Goals and Rules

Unification

Top-Down Processing of Goals and Rules with Variables

Programme

Ground Goals and Rules

Given a query, a dataset, and a ruleset, do the following.

(1) If the predicate in the query is a base predicate,
succeed if and only if query is in dataset.

(2) If the query is a negation, evaluate target and succeed if
and only if fail to prove.

(3) If the query is a conjunction, succeed iff succeed on all
conjuncts.

(4) If the predicate in the query is a view predicate,
evaluate the body of each rule defining that predicate and
succeed if and only if succeeds on at least one rule.

Sketch of Procedure for Ground Case

Dataset Ruleset
 p(a) s(c) :- p(a) & q(b)
 p(b) s(c) :- p(b) & t(c)
 p(c) s(c) :- p(c) & ~q(c)
 q(d) t(c) :- p(a) & p(d)

Example

Dataset Ruleset
 p(a) s(c) :- p(a) & q(b)
 p(b) s(c) :- p(b) & t(c)
 p(c) s(c) :- p(c) & ~q(c)
 q(d) t(c) :- p(a) & p(d)

Top Down Evaluation
 s(c)?

p(a) & q(b)? p(b) & t(c)? p(c) & ~q(c)?
 X Success

 p(a) & p(d)?
 X

Example

Unification

Unification

Unification is the process of determining whether two
expressions can be unified, i.e. made identical by
appropriate substitutions for their variables.

Example: p(a,Y) and p(X,b) can be unified. If we
replace X by a and Y by b, we end up with p(a,b) in both
cases.

Unification

A substitution is a finite set of pairs of variables and terms,
called replacements.

{X←a, Y←f(b), Z←V}

Domain: {X, Y, Z}
Range: {a, f(b), V}

NB: Domain elements must be variables.
NB: Replacements may contain variables.

Substitutions

The result of applying a substitution σ to an expression ϕ is
the expression ϕσ obtained from ϕ by replacing every
occurrence of every variable in the substitution by its
replacement.

q(X,Y) {X←a, Y←f(b), Z←V} = q(a,f(b))
q(X,X) {X←a, Y←f(b), Z←V} = q(a,a)
q(X,W) {X←a, Y←f(b), Z←V} = q(a,W)
q(Z,V) {X←a, Y←f(b), Z←V} = q(V,V)

Application

r(X,Y,Z){x←a, y←f(U), Z←V} = r(a,f(U),V)

r(a,f(U),V){U←d, V←e, Z←g} = r(a,f(d),e)

r(X,Y,Z){X←a, Y←f(d), Z←e, U←d, V←e} = r(a,f(d),e)

Cascaded Substitutions

Composition of Substitutions

The composition of substitution σ and τ is the substitution
(written compose(σ,τ) or, more simply, στ) obtained by
(1) applying τ to the replacements in σ
(2) adding to σ pairs from τ with different variables
(3) deleting any assignments of a variable to itself.

 {X←a, Y←U, Z←V}{U←d, V←e, Z←g}
 = {X←a, Y←d, Z←e}{U←d, V←e, Z←g}
 = {X←a, Y←d, Z←e, U←d, V←e}

Composition of Substitutions

Unification

A substitution σ is a unifier for an expression ϕ and an
expression ψ if and only if ϕσ=ψσ.

p(X,Y){X←a, Y←b, V←b} = p(a,b)
p(a,V){X←a, Y←b, V←b} = p(a,b)

If two expressions have a unifier, they are said to be
unifiable. Otherwise, they are nonunifiable.

p(X,X)
p(a,b)

Unification

Non-Uniqueness of Unification

Unifier 1:
p(X,Y){X←a, Y←b, V←b} = p(a,b)
p(a,V){X←a, Y←b, V←b} = p(a,b)

Unifier 2:
p(X,Y){X←a, Y←f(W), V←f(W)} = p(a,f(W))
p(a,V){X←a, Y←f(W), V←f(W)} = p(a,f(W))

Unifier 3:
p(X,Y){X←a, Y←V} = p(a,V)
p(a,V){X←a, Y←V} = p(a,V)

Non-Uniqueness of Unification

Most General Unifier

A substitution σ is a most general unifier (mgu) of two
expressions if and only if it is as general as or more general
than any other unifier.

Theorem: If two expressions are unifiable, then they have an
mgu that is unique up to variable permutation.

p(X,Y){X←a, Y←V} = p(a,V)
p(a,V){X←a, Y←V} = p(a,V)

p(X,Y){X←a, V←Y} = p(a,Y)
p(a,V){X←a, V←Y} = p(a,Y)

Most General Unifier

Unification Procedure

One good thing about our language is that there is a simple
and inexpensive procedure for computing a most general
unifier of any two expressions if it exists.

Unification Procedure

Each expression is treated as a sequence of its immediate
subexpressions.

Linear Version:
p(a, f(b, c), d)

Structured Version:

p a d

f b c

Expression Structure

(1) If two expressions being compared are identical, succeed.

(2) If neither is a variable and at least one is a constant, fail.

(3) If one of the expressions is a variable, proceed as described
shortly.

(4) If both expressions are sequences, iterate across the
expressions, comparing each subexpression as described above.

Unification Procedure

If one of the expressions is a variable, check whether the
variable has a binding in the current substitution.

(a) If so, try to unify the binding with the other expression.

(b) If no binding, check whether the other expression contains
the variable. If the variable occurs within the expression, fail.
Otherwise, set the substitution to the composition of the old
substitution and a new substitution in which variable is bound
to the other expression.

Dealing With Variables

Example
Call: p(X,b), p(a,Y), {}

 Call: p, p, {}
 Exit: {}

 Call: X, a, {}
 Exit: {}{X←a} = {X←a}

 Call: b, Y, {X←a}
 Exit: {X←a} {Y←b} = {X←a, Y←b}

Exit: {X←a, Y←b}

Example

ExampleExample
Call: p(X,X), p(a,Y), {}

 Call: p, p, {}
 Exit: {}

 Call: X, a, {}
 Exit: {}{X←a} = {X←a}

 Call: X, Y, {X←a}
 Call: a, Y, {X←a}
 Exit: {X←a} {Y←a} = {X←a, Y←a}
 Exit: {X←a, Y←a}

Exit: {X←a, Y←a}

ExampleExample
Call: p(X,X), p(a,b), {}

 Call: p, p, {}
 Exit: {}

 Call: X, a, {}
 Exit: {}{X←a} = {X←a}

 Call: X, b, {X←a}
 Call: a, b, {X←a}
 Exit: false
 Exit: false

Exit: false

ExampleExample
Call: p(X,X), p(Y,f(Y)), {}

 Call: p, p, {}
 Exit: {}

 Call: X, Y, {}
 Exit: {}{X←Y} = {X←Y}

 Call: X, f(Y), {X←Y}
 Call: Y, f(Y), {X←Y}
 Exit: false
 Exit: false

Exit: false

Reason

Circularity Problem:
 {X←f(Y), Y←f(Y)}

Unification Problem:
 p(X,X){X←f(Y), Y←f(Y)} = p(f(Y),f(Y))
 p(Y,f(Y)){X←f(Y), Y←f(Y)} = p(f(Y),f(f(Y)))

Before assigning a variable to an expression, first check
that the variable does not occur within that expression.

This is called the occur check test.

Prolog does not do the occur check (and is proud of it).
But it can give incorrect answers as a result.

Reason

General Goals and Rules

Procedure without variables uses equality tests.
 p(a,b)
 p(b,c)
 s(a,c) :- p(a,b) & p(b,c)

 s(a,c)?

Procedure with variables uses unification.
 p(a,b)
 p(b,c)
 s(X,Z) :- p(X,Y) & p(Y,Z)

 s(a,c)?

Procedure With Variables

Given an atom with a base relation and a substitution:

(a) Compare the goal to each factoid in our dataset.

(b) If there is an extension of the given substitution that
unifies the goal and the factoid, add to our list of answers.

(c) Once all relevant factoids examined, return answers.

Step 1 - Atoms with Base Relations

Goal: p(X,Y)
Substitution: {X←a}
Dataset: {p(a,b), p(a,c), p(b,c)}

Result: [{X←a, Y←b}, {X←a, Y←c}]

Example 1 - Atoms with Base Relations

Given a negation and a substitution:

(a) Execute the procedure on the target of the negation and
the given substitution.

(b) If the result is empty, return a singleton list containing
the given substitution, indicating success.

(c) Otherwise, return the empty list of answers, indicating
failure.

Step 2 - Negations

Goal: ~p(X,Y)
Substitution: {X←a, Y←d}
Dataset: {p(a,b), p(a,c), p(b,c)}
Result: [{X←a, Y←d}]

Goal: ~p(X,Y)
Substitution: {X←a, Y←c}
Dataset: {p(a,b), p(a,c), p(b,c)}
Result: []

Example 2 - Negations

Given a conjunction and a substitution:

(a) Execute our procedure on the first conjunct and the
given substitution to get a list of answers.

(b) Iterate through the list of substitutions, calling the
procedure recursively on the remaining conjuncts with each
substitution in turn.

(c) Collect the answers from recursive calls and return.

Step 3 - Conjunctions

Goal: p(X,Y) & p(Y,Z)
Substitution: {X←a}
Dataset: {p(a,b), p(a,c), p(b,c)}

Call: p(X,Y), {X←a}
Result: [{X←a, Y←b},{X←a, Y←c}]

 Call: p(Y,Z), {X←a, Y←b}
 Result: [{X←a, Y←b, Z←c}]

 Call: p(Y,Z), {X←a, Y←c}
 Result: []

Overall Result: [{X←a, Y←b, Z←c}]

Example 3 - Conjunctions

Given atom with view relation and a substitution:
(a) Iterate through the rules in our program.
(b) Copy each rule, replacing variables with new variables.
(c) Try to unify the given goal and the new rule head.
(d) Call the procedure recursively on the body of the rule.
(e) Return substitutions from all successful cases.

Step 4 - Atoms with View Relations

Goal: q(X,Y)
Substitution: {X←a}
Rule: q(X,Z) :- p(X,Y) & p(Y,Z)
Dataset: {p(a,b), p(a,c), p(b,c)}

Copy of rule: q(U,W) :- p(U,V) & p(V,W)

Unification: q(U,W) q(X,Y) {X←a}
Result: {U←a,W←Y,X←a}

New Goal: p(U,V) & p(V,W)
New Substitution: {U←a,W←Y,X←a}

Result: [{U←a,W←c,X←a,V←b,Y←c}]

Example 4 - Atoms with View Relations

Compound terms compound the difficulty.

Rule
 s(X,f(Y,Z)) :- p(X,g(Y)) & p(Y,X)

Query
 s(h(X),X)

Subgoal
 p(h(f(Y,Z)),g(Y)) & p(Y,h(f(Y,Z)))

Compound Terms

Multiple substitutions
 Different substitutions used for goals and rules
 Good: Rules are not copied

Evaluation of conjuncts is pipelined
 Once each answer to a conjunct is computed,
 the other conjuncts are checked immediately;
 then other answers generated and checked.
 Good: Saves work when only few answers needed.
 Good: Avoids problems due to infinite answer sets.

Upshot: This is complicated. Don't try this at home. Leave
it to the professionals.

Efficiency Enhancements

Facts and Rules
 p(a,b)
 p(b,c)
 s(X,Z) :- p(X,Y) & p(Y,Z)

Trace
 Call: s(X,Z)
 | Call: p(X,Y)
 | Exit: p(a,b)
 | Call: p(b,Z)
 | Exit: p(b,c)
 Exit: s(a,c)

Tracing

Facts and Rules
 p(a,b)
 p(b,c)
 s(X,Z) :- p(X,Y) & p(Y,Z)

Trace
 Call: s(X,Z) Redo: s(X,Z)
 | Call: p(X,Y) | Redo: p(b,Z)
 | Exit: p(a,b) | Fail: p(b,Z)
 | Call: p(b,Z) | Redo: p(X,Y)
 | Exit: p(b,c) | Exit: p(b,c)
 Exit: s(a,c) | Call: p(c,Z)
 | Fail: p(c,Z)
 Fail: s(X,Z)

Backup Tracing

Summary

Bottom-Up Evaluation
 Easy to understand
 Computes all results
 Computes subresults just once
 Wasteful when want just one or a few answers, not all
 Problematic on logic programs with infinite models

Top-Down Evaluation
 Less waste when want one or a few answers
 More complicated
 Subqueries evaluated multiple times
 Possibility of infinite loops on programs w/ finite models

Comparison of Evaluation Strategies

Bottom-Up Evaluation
 Can be focussed using Magic Sets

Top-Down Evaluation
 Top-Down can avoid duplication through caching
 Infinite Loops can be avoided using iterative deepening

The arms race continues.

But …

Sierra

Sierra is browser-based IDE (interactive development
environment) for Epilog.

 Saving and loading files

 Viewing and Editing datasets
 Querying datasets
 Transformation tools for datasets

 Interpreter (for view definitions, action definitions)
 Trace capability (useful for debugging rules)
 Analysis tools (error checking and optimizing rules)

http://epilog.stanford.edu/homepage/sierra.php

Sierra

