# Logic Programming <br> Query Optimization 

## Michael Genesereth <br> Computer Science Department <br> Stanford University

## Semantic Equivalence

Two queries are semantically equivalent if and only if they produce identical results for every dataset.

Query 1:

$$
\text { goal(X,Y) :- } p(X) \& r(X, Y) \& q(X)
$$

Query 2:

$$
\text { goal(X,Y) :- } p(X) \& q(X) \& r(X, Y)
$$

## Computational Disparity

Syntactically different but semantically equivalent queries may have different computational properties.

Query 1: O( $n^{\wedge 4)}$

$$
\text { goal(X,Y) :- } p(X) \& r(X, Y) \& q(X)
$$

Query 2: $\mathrm{O}\left(n^{\wedge} 3\right)$

$$
\text { goal(X,Y) :- } p(X) \& q(X) \& r(X, Y)
$$

## Optimization

## Types of Reformulation

Logical - deleting and/or rearranging subgoals and rules
Conceptual - changing vocabulary

## Types of Logical Reformulation

Rule Removal
Subgoal Removal
Subgoal Ordering
Types of Conceptual Reformulation
Triples vs Wide Relations
Minimal Spanning Trees
Reification and Relationalization

Rule Removal

## Useless Rules

Example:

$$
\text { goal }(X):-p(X, Y) \& q(Y) \& \text { false }
$$

Example:

$$
\text { goal (X) : - } p(X, Y) \& q(Y) \& \sim q(Y)
$$

Useless rules produce no results.

## Redundant Rules

Example:

$$
\begin{aligned}
& \operatorname{goal}(X):-p(X, Y) \& q(Y) \& r(Y) \\
& \operatorname{goal}(X):-p(X, Y) \& q(Y)
\end{aligned}
$$

Redundant rules produce only results produced by other rules, i.e. answers to one rule are a subset of answers to the other.

## Trickier Cases

Redundant Rules:

$$
\begin{aligned}
& \text { goal }(X):-p(X, b) \& q(b) \& r(Z) \\
& \operatorname{goal}(X):-p(X, Y) \& q(Y) \& r(Z)
\end{aligned}
$$

Non-Redundant Rules:

$$
\begin{aligned}
& \operatorname{goal}(X):-p(X, b) \& q(b) \& r(Z) \\
& \operatorname{goal}(X):-p(X, Y) \& q(Y) \& r(c)
\end{aligned}
$$

## Subsumption

A rule $r 1$ subsumes a rule $r 2$ if and only if it is possible to replace some or all of the variables of $r 1$ in such a way that the heads are the same and all of subgoals of $r l$ are members of the body of $r 2$.

$$
\begin{aligned}
& \text { goal }(X):-p(X, Y) \& q(Y) \\
& \text { goal }(X):-p(X, b) \& q(b) \& r(Z)
\end{aligned}
$$

Here, the first rule subsumes the second. We just replace X in the first rule by itself and replace Y by b , with the following result.

$$
\text { goal(X) :- } p(x, b) \& q(b)
$$

## Subsumption Technique

Start with rule 1 and rule 2 as inputs where (a) the heads are identical and (b) neither rule contains any negations.
(1) Create a substitution in which each variable in rule 2 is bound to a distinct, new symbol.
(2) Create a canonical dataset consisting of the subgoals of rule 2 where all variables are replaced by these bindings.
(3) Substitute the bindings for the head variables in rule 1.
(4) Evaluate this modified rule on the dataset created in (2). If there are answers, then rule 1 subsumes rule 2 . If not, then rule 1 does not subsume rule 2 .

## Example

Inputs

$$
\begin{aligned}
& \text { goal(X) :- } p(X, Y) \& q(Y) \\
& \operatorname{goal}(X):-p(X, b) \& q(b) \& r(Z)
\end{aligned}
$$

Substitution: $\{\mathrm{X} \leftarrow \mathrm{c} 1, \mathrm{z} \leftarrow \mathrm{c} 3\}$
Canonical Dataset: $\{p(c 1, b), q(b), r(c 3)\}$
Evaluate: $\mathrm{p}(\mathrm{c} 1, \mathrm{Y}) \& \mathrm{q}(\mathrm{Y})$
Result: $\{\mathrm{Y} \leftarrow \mathrm{b}\}$
The first rule does subsume the second.

## Example

Inputs

$$
\begin{aligned}
& \text { goal(X) :- } p(X, b) \& q(b) \& r(Z) \\
& \text { goal(X) }:-p(X, Y) \& q(Y)
\end{aligned}
$$

Substitution: $\{\mathrm{X} \leftarrow \mathrm{c} 1, \mathrm{Y} \leftarrow \mathrm{C} 2\}$
Canonical Dataset: $\{p(c 1, c 2), q(c 2)\}$
Evaluate: $p(c 1, b) \& q(b) \& r(z)$
Result: failure

The first rule does not subsume the second.

## Rule Removal Technique

Compare every rule to every other rule (quadratic). If one rule subsumes another, it is okay to drop the subsumed rule.

NB: Applies only to rules with no negative subgoals and no predefined relations.

NB: The technique is sound in that it is guaranteed to produce an equivalent query.

NB: In the absence of any constraints on datasets to which the rules are applied, it is also guaranteed to be complete in that all surviving rules are needed for some dataset.

NB: In the face of constraints, it may be possible to drop rules that are not detected by this method, i.e not complete.

## Extensions

If heads are not identical, they can sometimes be made identical by consistently replacing variables while avoiding clashes.

Original rules:

$$
\begin{aligned}
& \text { goal }(X):-p(X, b) \& q(b) \& r(Z) \\
& \operatorname{goal}(U):-p(U, V) \& q(V)
\end{aligned}
$$

Equivalent rules:

$$
\begin{aligned}
& \text { goal(X) :- } p(X, b) \& q(b) \& r(Z) \\
& \text { goal(X) }:-p(X, V) \& q(V)
\end{aligned}
$$

There are other extensions for dealing with rules involving negations and built-ins and constraints.

## Subgoal Removal

## Subgoal Removal

Original Rule:

$$
\text { goal }(X, Y):-p(X, Y) \& q(Y) \& q(Z)
$$

Equivalent Reformulation:

$$
\text { goal }(X, Y):-p(X, Y) \& q(Y)
$$

## Subgoal Removal Technique

Accept query rule as input.
(1) Delete a subgoal.
(2) Check whether the resulting rule subsumes the original.
(3) If yes, continue. If no, try a different subgoal.

Output the result.

## Example

Original Rule:

$$
\text { goal }(X, Y):-p(X, Y) \& q(Y) \& q(Z)
$$

Delete first subgoal - does not subsume (and not safe):
goal(X,Y) :- q(Y) \& q(Z) X

Delete second subgoal - does not subsume:

$$
\text { goal }(X, Y) \text { :- } p(X, Y) \& q(Z) \quad X
$$

Delete third subgoal - subsumes original:

$$
\text { goal(X,Y) :- } p(X, Y) \& q(Y)
$$

## Soundness

This technique is sound in that it is guaranteed to produce an equivalent query.

## Completeness

In the absence of any constraints, this method is guaranteed to be complete in that all surviving subgoals are needed for some dataset.

In the presence of constraints, it may be possible to drop more subgoals, i.e not complete.
goal(X,Y) :- father(X,Y) \& male(X)

There are extensions that deal with constraints. See literature on the chase.

## Subgoal Ordering

## Subgoal Ordering

Original Rule

$$
\text { goal(X,Y) :- } p(X) \& r(X, Y) \& q(X)
$$

Reformulation

$$
\text { goal(X,Y) :- } p(X) \& q(X) \& r(X, Y)
$$

## Analysis

Original Rule

$$
\begin{aligned}
& \text { goal }(\mathrm{X}, \mathrm{Y}):-\mathrm{p}(\mathrm{X}) \& \mathrm{r}(\mathrm{X}, \mathrm{Y}) \& \mathrm{q}(\mathrm{X}) \\
& \left(n^{\wedge} 2+2 n\right)+n^{*}\left(\left(n^{\wedge} 2+2 n\right)+n^{*}\left(n^{\wedge} 2+2 n\right)\right)= \\
& n^{\wedge} 4+3 n^{\wedge} 3+3 n^{\wedge} 2+2 n
\end{aligned}
$$

Reformulation

$$
\text { goal(X,Y) :- } p(X) \& q(X) \& r(X, Y)
$$

## Analysis

Original Rule

$$
\begin{aligned}
& \text { goal }(\mathrm{X}, \mathrm{Y}):-\mathrm{p}(\mathrm{X}) \& \mathrm{r}(\mathrm{X}, \mathrm{Y}) \& \mathrm{q}(\mathrm{X}) \\
& \left(n^{\wedge} 2+2 n\right)+n^{*}\left(\left(n^{\wedge} 2+2 n\right)+n^{*}\left(n^{\wedge} 2+2 n\right)\right)= \\
& n^{\wedge} 4+3 n^{\wedge} 3+3 n^{\wedge} 2+2 n
\end{aligned}
$$

Reformulation

$$
\text { goal }(X, Y):-p(X) \& q(X) \& r(X, Y)
$$

$$
\left(n^{\wedge} 2+2 n\right)+n^{*}\left(\left(n^{\wedge} 2+2 n\right)+1^{*}\left(n^{\wedge} 2+2 n\right)\right)=
$$

$$
2 n^{\wedge} 3+5 n^{\wedge} 2+2 n
$$

## Subgoal Ordering Technique

Accept query rule as input.
(1) Create new query with head of input and empty body.
(2) Iterate through subgoals. On encountering one with all variables bound in subgoals of new query, add to new query and remove from original query. If none found, remove first subgoal, add to new query, and repeat.

Output the new query.
Example:

$$
\begin{aligned}
& \text { goal }(X, Y) \text { :- } p(X) \& r(X, Y) \& q(X) \\
& \text { goal }(X, Y) \text { :- }
\end{aligned}
$$

## Subgoal Ordering Technique

Accept query rule as input.
(1) Create new query with head of input and empty body.
(2) Iterate through subgoals. On encountering one with all variables bound in subgoals of new query, add to new query and remove from original query. If none found, remove first subgoal, add to new query, and repeat.

Output the new query.
Example:

$$
\begin{aligned}
& \text { goal }(X, Y):-p(X) \& r(X, Y) \& q(X) \\
& \text { goal }(X, Y) \text { : } p(X)
\end{aligned}
$$

## Subgoal Ordering Technique

Accept query rule as input.
(1) Create new query with head of input and empty body.
(2) Iterate through subgoals. On encountering one with all variables bound in subgoals of new query, add to new query and remove from original query. If none found, remove first subgoal, add to new query, and repeat.

Output the new query.
Example:

$$
\begin{aligned}
& \text { goal(X,Y) :- } p(X) \& r(X, Y) \& q(X) \\
& \text { goal }(X, Y) \text { :- } p(X) \& q(X)
\end{aligned}
$$

## Subgoal Ordering Technique

Accept query rule as input.
(1) Create new query with head of input and empty body.
(2) Iterate through subgoals. On encountering one with all variables bound in subgoals of new query, add to new query and remove from original query. If none found, remove first subgoal, add to new query, and repeat.

Output the new query.
Example:

$$
\begin{aligned}
& \text { goal }(X, Y):-p(X) \& r(X, Y) \& q(X) \\
& \text { goal }(X, Y):-p(X) \& q(X) \& r(X, Y)
\end{aligned}
$$

## Example

## Example

## SEND <br> +MORE

MONEY

## One Solution

| digit(1) | digit(6) |
| :--- | :--- |
| digit(2) | digit(7) |
| digit(3) | digit(8) |
| digit(4) | digit(9) |
| digit(5) | digit(0) |

goal(S,E,N,D,M,O,R,Y):-
digit(S) \& digit(E) \& digit(N) \& digit(D) \& digit(M) \& digit(O) \& digit(R) \& digit(Y) \& $S!=0 \& E!=S \& N!=S \& N!=E \& D!=S \& D!=E \& D!=N \&$
$M!=0 \& M!=S \quad \& M!=E \quad \& M!=N \& M!=D \&$
$\mathrm{O}!=\mathrm{S} \& \mathrm{O}!=\mathrm{E} \& \mathrm{O}!=\mathrm{N} \& \mathrm{O}!=\mathrm{D} \& \mathrm{O}!=\mathrm{M} \&$
$R!=S$ \& $R!=E \& R!=N \& R!=D \& R!=M \& R!=O \&$
$Y!=S \quad \& \quad Y!=E \quad \& \quad Y!=N \quad \& \quad Y!=D \quad \& \quad Y!=M \quad \& \quad Y!=O \quad \& \quad Y!=R$
evaluate (S*1000+E*100+N*10+D,U) \&
evaluate ( $\mathrm{M} * 1000+0 * 100+\mathrm{R} * 10+\mathrm{E}, \mathrm{V}) ~ \&$ evaluate ( $\mathrm{M} * 10000+\mathrm{O}$ * $1000+\mathrm{N} * 100+\mathrm{E} * 10+\mathrm{Y}, \mathrm{W}) ~ \&$ evaluate(plus(U,V),W)

## Computational Analysis

## Data

$$
\begin{array}{ll}
\text { digit(1) } & \text { digit(6) } \\
\text { digit(2) } & \text { digit(7) } \\
\text { digit(3) } & \text { digit(8) } \\
\text { digit(4) } & \text { digit(9) } \\
\text { digit(5) } & \text { digit(0) }
\end{array}
$$

## Rule

```
goal(S,E,N,D,M,O,R,Y) :-
    digit(S) & digit(E) & digit(N) & digit(D) &
    digit(M) & digit(O) & digit(R) & digit(Y) & ...
```

Analysis
$10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10=10^{\wedge} 8=100,000,000$ cases
111,111,110 unifications
Running time $\sim$ minutes

## Another Solution

$$
\begin{aligned}
& \text { goal(S, E,N,D,M,O,R,Y):- } \\
& \text { digit(S) \& S!=0 \& } \\
& \text { digit(E) \& E!=S \& } \\
& \text { digit(N) \& N! }=\text { S \& N!=E \& } \\
& \text { digit(D) \& D!=S \& D!=E \& D!=N \& } \\
& \operatorname{digit}(M) \& M!=0 \& M!=S \quad \& M!=E \& M!=N \& M!=D \& \\
& \operatorname{digit}(O) \& O!=S \& O!=E \& O!=N \& O!=D \& O!=M \& \\
& \text { digit(R) \& R!=S \& R!=E \& R!=N \& R!=D \& } \\
& \text { R!=M \& R!=O \& } \\
& \text { digit( } Y \text { ) \& } Y!=S \text { \& } Y!=E \& Y!=N \& Y!=D ~ \& ~ \\
& Y!=M \& Y!=O \& Y!=R \& \\
& \text { evaluate (S*1000+E*100+N*10+D, U) \& } \\
& \text { evaluate ( } \mathrm{M} * 1000+0 * 100+\mathrm{R} * 10+\mathrm{E}, \mathrm{~V} \text { ) \& } \\
& \text { evaluate (M*10000+O*1000+N*100+E*10+Y,W) \& } \\
& \text { evaluate(plus (U,V),W) }
\end{aligned}
$$

## Another Solution

```
goal(S,E,N,D,M,O,R,Y) :-
    digit(S) & mutex(S,O) &
    digit(E) & mutex(S,E) &
    digit(N) & mutex(S,E,N) &
    digit(D) & mutex(S,E,N,D) &
    digit(M) & distinct(M,O) & mutex(S,E,N,D,M) &
    digit(O) & mutex(S,E,N,D,M,O) &
    digit(R) & mutex(S,E,N,D,M,O,R) &
    digit(Y) & mutex(S,E,N,D,M,O,R,Y) &
    evaluate(S*1000+E*100+N*10+D,XX) &
    evaluate(M*1000+O*100+R*10+E,YY) &
    evaluate(M*10000+O*1000+N*100+E*10+Y),ZZ) &
    evaluate(XX+YY,ZZ)
```


## Computational Analysis

## Goal

```
goal(S,E,N,D,M,O,R,Y) :-
    digit(S) & mutex(S,O) &
    digit(E) & mutex(S,E) &
    digit(N) & mutex(S,E,N) &
    digit(D) & mutex(S,E,N,D) &
    digit(M) & distinct(M,O) & mutex(S,E,N,D,M) &
    digit(O) & mutex(S,E,N,D,M,O) &
    digit(R) & mutex(S,E,N,D,M,O,R) &
    digit(Y) & mutex(S,E,N,D,M,O,R,Y) & ...
```


## Analysis

$$
10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3=1,814,400 \text { cases }
$$

5,989,558 unifications
Running time $\sim 20$ seconds

## Computational Analysis

## Goal

```
goal(S,E,N,D,M,O,R,Y) :-
    digit(S) & mutex(S,O) &
    digit(E) & mutex(S,E) &
    digit(N) & mutex(S,E,N) &
    digit(D) & mutex(S,E,N,D) &
    digit(M) & same(M,1) & mutex(S,E,N,D,M) &
    digit(O) & mutex(S,E,N,D,M,O) &
    digit(R) & mutex(S,E,N,D,M,O,R) &
    digit(Y) & mutex(S,E,N,D,M,O,R,Y) & ...
```


## Analysis

$10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3=320,400$ cases
$\mathbf{6 9 9}, 858$ unifications
Running time $<2$ seconds

## Computational Analysis

## Data

digit(9)
digit(5)
digit(6)
digit(7)
digit(1)
digit(0)
digit(8)
digit(2)
digit(3)
digit(4)
Analysis

$$
\begin{gathered}
1+2+3+4+5+6+7+8=\mathbf{3 6} \text { cases } \\
\text { Interpreted } \sim 0 \text { seconds }
\end{gathered}
$$

## Computational Analysis

## Data

digit(9)
digit(5)
digit(6)
digit(7)
digit(1)
digit(0)
digit(8)
digit(2)
digit(3)
digit(4)

## Analysis

$$
\begin{gathered}
1+2+3+4+5+6+7+8=\mathbf{3 6} \text { unifications } \\
\text { Interpreted } \sim 0 \text { seconds }
\end{gathered}
$$

Narrow and Wide Relations

## Triples

Represent wide relations as collections of binary relations.
Wide Relation:

```
    student(Student,Department,Advisor,Year)
```

Binary Relations:
student.major(Student, Department)
student.advisor (Student,Faculty)
student.year(Student,Year)

Always works when there is a field of the wide relation (called the key) that uniquely specifies the values of the other elements. If none exists, possible to create one.

## Abstract Example

## Wide Relation:

$$
\begin{aligned}
& p(a, d, e) \\
& p(b, d, e) \\
& p(c, d, e)
\end{aligned}
$$

## Triples:

$$
\begin{array}{ll}
\mathrm{p} 1(\mathrm{a}, \mathrm{~d}) & \mathrm{p} 2(\mathrm{a}, \mathrm{e}) \\
\mathrm{p} 1(\mathrm{~b}, \mathrm{~d}) & \mathrm{p} 2(\mathrm{~b}, \mathrm{e}) \\
\mathrm{p} 1(\mathrm{c}, \mathrm{~d}) & \mathrm{p} 2(\mathrm{c}, \mathrm{e})
\end{array}
$$

## Analysis

## Wide Relation:

$$
\begin{aligned}
& \mathrm{p}(\mathrm{a}, \mathrm{~d}, \mathrm{e}) \\
& \mathrm{p}(\mathrm{~b}, \mathrm{~d}, \mathrm{e}) \\
& \mathrm{p}(\mathrm{c}, \mathrm{~d}, \mathrm{e})
\end{aligned}
$$

Query: goal(X) :- p(X,d,e)
Cost without indexing: 3 Cost with indexing: 3
Triples:
$\begin{array}{ll}\mathrm{p} 1(\mathrm{a}, \mathrm{d}) & \mathrm{p} 2(\mathrm{a}, \mathrm{e}) \\ \mathrm{p} 1(\mathrm{~b}, \mathrm{~d}) & \mathrm{p} 2(\mathrm{~b}, \mathrm{e}) \\ \mathrm{p} 1(\mathrm{c}, \mathrm{d}) & \mathrm{p} 2(\mathrm{c}, \mathrm{e})\end{array}$
Query: goal(X) :- p1(X,d) \& p2(X,e)
Cost without indexing: 24 Cost with indexing: 9

## Minimal Spanning Trees

## Social Isolation Cells



## Representation

## Vocaulary:

People - a, b, c, d, e, f, g, h, i, j, ... Interaction - $\mathrm{r} / 2$

## Example:

$$
\begin{aligned}
& r(a, b) \\
& r(a, e) \\
& r(b, a) \\
& r(b, c) \\
& r(c, b) \\
& r(d, e) \\
& r(e, d) \\
& r(e, d)
\end{aligned}
$$



NB: Possible to represent undirected with only one factoid per arc rather than two, but we will ignore that for now.

## Computational Analysis

Are two people are in the same cell?

```
goal(a,e) :- r(a,e)
goal(a,e) :- r(a,Y) & r(Y,e)
goal(a,e) :- r(a,Y1) & r(Y1,Y2) & r(Y2,e)
goal(a,e) :- r(a,Y1) & r(Y1,Y2) & r(Y2,Y3) & r(Y3,e)
```

Number of unifications for goal (a,e) (with indexing):

$$
\begin{gathered}
8 \\
8+4^{*} 8=40 \\
\left.8+4^{*}\left(8+4^{* 8}\right)\right)=168 \\
8+4^{*}\left(8+4^{*}\left(8+4^{*} 8\right)\right)=680
\end{gathered}
$$

Total: 896

## Alternative Representation

Precompute and store the transitive closure of $r$

| $r(a, b)$ | $r(b, a)$ | $r(c, a)$ | $r(d, a)$ | $r(e, a)$ |
| :--- | :--- | :--- | :--- | :--- |
| $r(a, c)$ | $r(b, c)$ | $r(c, b)$ | $r(d, b)$ | $r(e, b)$ |
| $r(a, d)$ | $r(b, d)$ | $r(c, d)$ | $r(d, c)$ | $r(e, c)$ |
| $r(a, e)$ | $r(b, e)$ | $r(c, e)$ | $r(d, e)$ | $r(e, d)$ |

Are two people are in the same cell?
goal(a,e) :-r(a,e)

Number of unifications for goal ( $a, e$ ) (with indexing): 8

Number of factoids for $n$ objects:

$$
8^{*} n
$$

## MST Representation

Assign a number for each group and store with people

| $r(a, 1)$ | $r(f, 2)$ | $\ldots \cdot$ |
| :--- | :--- | :--- |
| $r(b, 1)$ | $r(g, 2)$ | $\ldots$ |
| $r(c, 1)$ | $r(h, 2)$ | $\ldots$ |
| $r(d, 1)$ | $r(i, 2)$ | $\ldots$. |
| $r(e, 1)$ | $r(j, 2)$ | $\ldots$ |

Are two people are in the same cell?

$$
\text { goal }(a, e):-r(a, N) \& r(e, N)
$$

Number of unifications for goal ( $\mathrm{a}, \mathrm{e}$ ) (with indexing): 2

Number of factoids for $n$ objects:





