
Logic Programming
Query Evaluation

Michael Genesereth
Computer Science Department

Stanford University

Query Semantics

Dataset: {p(b), p(c), p(d), q(d)}

Rule:
goal(X) :- p(X) & ~q(X)

Instances:
goal(a) :- p(a) & ~q(a)
goal(b) :- p(b) & ~q(b)
goal(c) :- p(c) & ~q(c)
goal(d) :- p(d) & ~q(d)

Result: {goal(b), goal(c)}

Query Semantics

Dataset: {p(b), p(c), p(d), q(d)}

Rule:
goal(f(X)) :- p(X) & ~q(X)

Instances:
goal(a) :- p(a) & ~q(a)

goal(f(a)) :- p(f(a)) & ~q(f(a))
goal(f(f(a))) :- p(f(f(a))) & ~q(f(f(a)))

…

Result: {goal(b), goal(c)}

Programme

Evaluation Procedure
 Evaluating ground queries
 Matching
 Evaluating queries with variables

Computational Analysis
 Unindexed datasets
 Indexing

Evaluating Ground Queries

Evaluation of Ground Queries

Given a query rule, call the procedure eval on the body. The
result is a boolean. The result is the singleton set of the head
if true; else, the empty set.

Dataset: {p(a,b), p(a,c), p(b,c), p(c,d)}

Query: goal(c) :- p(c,d) & ~p(d,c)
Body: p(c,d) & ~p(d,c)
Result: true

Answer: {goal(c)}

For ground queries, there is just one instance. Duh.

(1) If the body of a query rule is an atom, we check whether that
atom is contained in our dataset. If so, the body is true.

Dataset: {p(a,b), p(a,c), p(b,c), p(c,d)}
Query: goal(a) :- p(a,b)
Result: {goal(a)}

Dataset: {p(a,b), p(a,c), p(b,c), p(c,d)}
Query: goal(a) :- p(b,a)
Result: {}

Evaluating Atoms

(2) If the body is a negation, we check whether the atom is contained
in our dataset. If so, the body is false. If the atom is not contained in
our dataset, then the body is true.

Dataset: {p(a,b), p(a,c), p(b,c), p(c,d)}
Query: goal(b) :- ~p(b,c)
Result: {}

Dataset: {p(a,b), p(a,c), p(b,c), p(c,d)}
Query: goal(b) :- ~p(c,b)
Result: {goal(b)}

Evaluating Negations

(3) If the body is a conjunction of literals, we execute this procedure
on the first conjunct. If the answer is true, we move on to the next
conjunct and so forth until we are done. If the answer to any one of
the conjuncts is false, then the value of the body as a whole is false.

Dataset: {p(a,b), p(a,c), p(b,c), p(c,d)}
Query: goal(c) :- p(c,d) & ~p(d,c)
Result: {goal(c)}

Dataset: {p(a,b), p(a,c), p(b,c), p(c,d)}
Query: goal(c) :- p(c,d) & p(d,c)
Result: {}

Evaluating Conjunctions

The value of a query with multiple rules is the union of the
values of each of the rules in the query.

Dataset: {p(a,b), p(a,c), p(b,c), p(c,d)}

Query: goal(a) :- p(a,b)
goal(b) :- ~p(b,c)
goal(c) :- p(c,d) & ~p(d,c)

Result: {goal(a)} ∪ {} ∪ {goal(c)}
 {goal(a), goal(c)}

Evaluation of Ground Queries

Matching

Unification

Matching is the process of determining whether a pattern
(an expression with or without variables) matches an
instance (an expression without variables), i.e. whether the
two expressions can be made identical by appropriate
substitutions for the variables in the pattern.

Unification

A substitution is a finite set of pairs of variables and terms,
called replacements.

{X←a, Y←b}

The result of applying a substitution σ to an expression φ is
the expression φσ obtained from φ by replacing every
occurrence of every variable with a binding in the
substitution by the term to which it is bound.

p(X,b){X←a, Y←b} = p(a,b)
q(X,Y,X){X←a, Y←b} = q(a,b,a)

Substitutions

Most General Unifier

A substitution σ is a matcher for a pattern and an instance if
and only if applying the substitution to the pattern results in
the given instance.

p(X,b){X←a, Y←b} = p(a,b)

q(X,Y,X){X←a, Y←b} = q(a,b,a)

Here, {X←a, Y←b} is a matcher for p(X,b) and p(a,b).
It is also a matcher for q(X,Y,X) and q(a,b,a).

Matcher

(1) If the pattern is a symbol and the instance is the same symbol, then the
procedure succeeds, returning the unmodified substitution as result. If the
pattern is a symbol and the instance is a different symbol or a compound
expression, then the procedure fails.

(2) If the pattern is a variable with a binding, we compare the binding for
the variable with the given instance. If they are identical, the procedure
succeeds, returning the unmodified substitution as result; otherwise it
fails. If the pattern is a variable without a binding, we include a binding
for the variable in the given instance and we return that substitution as a
result.

(3) If the pattern is a compound expression and the instance is a
compound expression of the same length, we iterate across the pattern and
the instance. If the pattern is a compound expression and the instance is a
symbol or a compound expression of a different length, we fail.

Matching Procedure

Example
Compare: p(X,Y), p(a,b), {}
 Compare: p, p, {}
 Result: {} N.B.: {} is not the same as false.
 Compare: X, a, {}
 Result: {X←a}
 Compare: Y, b, {X←a}
 Result: {X←a, Y←b}
Result: {X←a, Y←b}

Example

Example
Compare: p(X,X), p(a,a), {}
 Compare: p, p, {}
 Result: {}
 Compare: X, a, {}
 Result: {X←a}
 Compare: X, a, {X←a}
 Compare: a, a, {X←a}
 Result: {X←a}
 Result: {X←a}
Result: {X←a}

Example

Example
Compare: p(X,X), p(a,b), {}
 Compare: p, p, {}
 Result: {}
 Compare: X, a, {}
 Result: {X←a}
 Compare: X, b, {X←a}
 Compare: a, b, {X←a}
 Result: false
 Result: false
Result: false

Example

Evaluation with Variables

Evaluation with Variables

Given a query rule, call the procedure eval (to be described)
on the body and an empty substitution. The result is a list of
substitutions that satisfy the body. The value of the rule is
obtained by applying the substitutions to the head of the rule.

Dataset: {p(a,b), p(a,c), p(b,c), p(c,d)}
Query: goal(Y) :- p(a,Y) & p(Y,Z)

 Call eval: p(a,Y) & p(Y,Z), {}
 Exit eval: {{Y←b, Z←c}, {Y←c, Z←d}}

Value of query: {goal(b), goal(c)}

(1) If the expression is an atom, we try matching the atom to the
factoids in our dataset. For each factoid that matches the atom, we
add the corresponding substitution to our answer set; and we return
the set of all substitutions obtained in this way.

Dataset: {p(a,b), p(a,c), p(b,c), p(c,d)}

Call eval: p(a,Y), {}
Exit eval: {{Y←b}, {Y←c}} (two results)

Evaluating Atoms

(2) If the expression is a negation, we call eval on the target of the
negation and the given substitution. If the result is a non-empty set,
then the negation is false and we return the empty set. If the result of
the recursive call is the empty set, then the negation is true and we
return the singleton set containing the input substitution as a result.

Dataset: {p(a,b), p(a,c), p(b,c), p(c,d)}

Call eval: ~p(Y,d), {Y←b}
Exit eval: {{Y←b}} (just one result)

Call eval: ~p(Y,d), {Y←c}
Exit eval: {} (no results)

Evaluating Negations

(3) If the expression is a conjunction, we call eval on the first
conjunct and the given substitution. We iterate over the list of
answers, for each calling eval on the remaining conjuncts.

Dataset: {p(a,b), p(a,c), p(b,c), p(c,d)}

Call eval: p(a,Y) & ~p(Y,d), {}
 Call eval: p(a,Y), {}
 Exit eval: {{Y←b}, {Y←c}}

 Call eval: ~p(Y,d), {Y←b}
 Exit eval: {{Y←b}} (just one result)
 Call eval: ~p(Y,d), {Y←c}
 Exit eval: {} (no results)

Exit eval: {{Y←b}} (just one result)

Evaluating Conjunctions

Evaluation with Variables

Given a query rule, call the procedure eval (to be described)
on the body and an empty substitution. The result is a list of
substitutions that satisfy the body. The value of the rule is
obtained by applying the substitutions to the head of the rule.

Dataset: {p(a,b), p(a,c), p(b,c), p(c,d)}
Query: goal(Y) :- p(a,Y) & ~p(Y,d)

Call eval: p(a,Y) & ~p(Y,d), {}
Exit eval: {{Y←b}}

Answer: {goal(b)}

Computational Analysis

Worst Case Analysis based on number of unifications
 n objects in Herbrand Universe

Assumptions:
 All rules applied
 Subgoals processed left to right

(1) We will first consider analysis with no indexing.
(2) Then we will look at analysis with indexed data.

Optimizations not considered (until next lesson):
 Dropping redundant rules or subgoals
 Reordering of subgoals
 Caching

Assumptions

Example

goal(a,c) :- p(a,Y) & p(Y,c)

Cost of computing whether goal(a,c) is true

Example

Example

goal(a,c) :- p(a,Y) & p(Y,c)

Cost of computing whether goal(a,c) is true

n^2 + n*n^2 = n^2 + n^3

Suppose n = 3

3^2 + 3*3^2 = 3^2 + 3^3 = 36

Example

Example

goal(X,Z) :- p(X,Y) & p(Y,Z)

Cost of computing all instances of goal

Example

Example

goal(X,Z) :- p(X,Y) & p(Y,Z)

Cost of computing all instances of goal

n^2 + n^2*n^2 = n^2 + n^4

Suppose n = 3

3^2 + 3^2*3^2 = 3^2 + 3^4 = 90

Example

In full indexing, each factoid appears on the list of factoids
associated with each constant in that factoid.

Example: {p(a,b), p(b,c), q(b), q(c)}

Index on p: {p(a,b), p(b,c)}
Index on q: {q(b), q(c)}

Index on a: {p(a,b)}
Index on b: {p(a,b), p(b,c), q(b)}
Index on c: {p(b,c), q(c)}

NB: No compound indices (e.g. all factoids with a and b).

Full Indexing

Example:
 p(a,a) p(b,a) p(c,a)
 p(a,b) p(b,b) p(c,b)
 p(a,c) p(b,c) p(c,c)

Index on p: {p(a,a), ... , p(c,c)}
Index on a: {p(a,a), p(a,b), p(a,c), p(b,a), p(c,a)}
Index on b: {p(a,b), p(b,a), p(b,b), p(b,c), p(c,b)}
Index on c: {p(a,c), p(b,c), p(c,a), p(c,b), p(c,c)}

Worst Case

Example
goal(a,c) :- p(a,Y) & p(Y,c)

Cost of computing goal(a,c) without indexing
n^2 + n*n^2 = n^2 + n^3

Suppose n = 3
3^2 + 3*3^2 = 3^2 + 3^3 = 36

Cost of computing whether goal(a,c) with indexing
(2n-1) + n*(2n-1) = 2n^2 + n - 1

Suppose n = 3
2*3^2 + 3 - 1 = 18 + 2 = 20

Example with Indexing

Example
goal(X,Z) :- p(X,Y) & p(Y,Z)

Cost of computing goal(X,Z)without indexing
n^2 + n^2*n^2 = n^2 + n^4

Suppose n = 3
3^2 + 3^2*3^2 = 3^2 + 3^4 = 90

Cost of computing all instances with indexing:
n^2 + n^2*(2n-1) = n^2 + 2n^3 - n^2 = 2n^3

Suppose n = 3
2*3^3 = 54

Example with Indexing

Pipelining

Normal Evaluation of Conjuncts: (1) Call eval on the first conjunct
and a given substitution. (2) Collect all answers. (3) Then iterate
over answers, for each calling eval on the remaining conjuncts.

All answers to the first conjunct are computed before working on
subsequent conjuncts.

Pipelined Evaluation of Conjuncts: (1) Call eval on the first
conjunct and a given substitution. (2) Compute just one substitution.
(3) Call eval on remaining conjuncts with the resulting substitution.
Once done, back up and compute another solution to the first
conjunct and repeat.

One answer to the first conjunct is computed and then used before
generating additional answers to the first conjunct.

Basic Idea

Dataset: {p(a,b), p(b,c), q(b), q(c)}

Call eval: p(X,Y) & q(Y), {}
 Call eval: p(X,Y), {}
 Exit eval: {{X←a,Y←b}, {X←b,Y←c}}

 Call eval: q(Y), {X←a,Y←b}
 Exit eval: {{X←a,Y←b}}
 Call eval: q(Y), {X←b,Y←c}
 Exit eval: {{X←b,Y←c}}

Exit eval: {{X←a,Y←b}, {X←b,Y←c}}

Normal Evaluation

Dataset: {p(a,b), p(b,c), q(b), q(c)}

Call eval: p(X,Y) & q(Y), {}
 Call eval: p(X,Y), {}
 Exit eval: {X←a,Y←b}
 Call eval: q(Y), {X←a,Y←b}
 Exit eval: {X←a,Y←b}

 Redo eval: p(X,Y), {}
 Exit eval: {X←b,Y←c}
 Call eval: q(Y), {X←b,Y←c}
 Exit eval: {X←b,Y←c}

Exit eval: {{X←a,Y←b}, {X←b,Y←c}}

Pipelined Evaluation

