
Logic Programming
Datasets

Michael Genesereth
Computer Science Department

Stanford University

Datasets

Dataset - collection of simple facts about state of "world"
 Facts in dataset are assumed to be true
 Facts not in dataset are assumed to be false
 i.e. datasets are complete; there are no unknowns

Role #1 - Datasets as (trivial) logic programs
 used by themselves as standalone databases
 used in combination with rules to define "virtual" relations

Role #2 - Datasets as basis for semantics of logic programs

Basics

Conceptualization

Objects - e.g. people, companies, cities
 concrete (person) or abstract (number, set, justice)
 primitive (auto wheel) or composite (car)
 real (earth) or fictitious (Sherlock Holmes)

Relationships
 properties of objects or relationships among objects
 e.g. Joe is a person
 e.g. Joe is the parent of Bill
 e.g. Joe likes Bill more than Harry

Graphical Representation

cal cam cat coe

bob bea

art

Tabular Representation

parent
art bob
art bea
bob cal
bob cam
bea cat
bea coe

Natural Language Representation

 Art is the parent of Bob.
 Art is the parent of Bea.
 Bob is the parent of Cal.
 Bob is the parent of Cam.
 Bea is the parent of Cat.
 Bea is the parent of Coe.

Mathematical Notation

 parent(art,bob)
 parent(art,bea)
 parent(bob,cal)
 parent(bob,cam)
 parent(bea,cat)
 parent(bea,coe)

Constants are strings of lower case letters, digits,
underscores, and periods or strings of arbitrary ascii
characters within double quotes.

Examples:
 joe, bill, cs151, 3.14159
 person, worksfor, office.occupant
 the_house_that_jack_built,
 “Mind your p’s & q’s!”

Non-examples:
 Art, p&q, the-house-that-jack-built

A set of constants is called a vocabulary.

Constants

Symbols / object constants represent objects.
 joe, bill, harry, a23, 3.14159
 the_house_that_jack_built
 “Mind your p’s & q’s!”

Constructors / function constants represent functions.
 cell, pair, triple,set

Predicates / relation constants represent relations.
 person, parent, prefers

Types of Constants

The arity of a predicate is the number of arguments that can
be associated with the predicate in writing sentences.

Unary predicate (1 argument): person(joe)
Binary predicate (2 arguments): parent(art,bob)
Ternary predicate (3 arguments): prefers(art,bob,bea)

In talking about vocabulary, we sometimes notate the arity
of a predicate by annotating with a slash and the arity, e.g.
male/1, parent/2, and prefers/3.

Arity

In some logic programming languages (e.g. Prolog), types
and arities determine syntactic legality; and they are
enforced by interpreters and compilers.

In other languages (e.g. Epilog), types and arities suggest
their intended use. However, they do not determine
syntactic legality, and they are not enforced by interpreters
and compilers.

In our examples, we use Epilog; but, in this course, we
specify types and arities where appropriate and we try to
adhere to them.

Formality and Informality

A datum / factoid is an expression formed from an n-ary
predicate and n symbols enclosed in parentheses and
separated by commas.

Symbols: a, b
Predicate: p/2, q/1

Sample Datum: p(a,a)
Sample Datum: p(a,b)
Sample Datum: q(a)
Sample Datum: q(b)

Data / Factoids

The Herbrand base for a vocabulary is the set of all
factoids that can be formed from the vocabulary.

Symbols: a, b
Predicate: p/2, q/1

Herbrand Base:
{p(a,a), p(a,b), p(b,a), p(b,b), q(a), q(b)}

Herbrand Base

A dataset is any set of factoids that can be formed from a
vocabulary, i.e. a subset of the Herbrand base.

Symbols: a, b
Predicates: p/2, q/1
Herbrand Base:

{p(a,a), p(a,b), p(b,a), p(b,b), q(a), q(b)}

Dataset: {p(a,b), p(b,a), q(a)}
Dataset: {}
Dataset: {p(a,a), p(a,b), p(b,a), p(b,b), q(a), q(b)}

We use datasets to characterize states of the world. The
facts in a dataset are assumed to be true and those that are
not in the dataset are assumed to be false.

Datasets

Vocabulary
 Symbols: a, b
 Predicates: p/2, q/1

Questions
 How many symbols in our vocabulary?
 How many elements in the Herbrand base?
 How many possible datasets?

Exercise

Spelling carries no meaning in logic programming (except
as informal documentation for programmers).

 parent(art,bob)
 parent(bob,cal)

 p(a,b)
 p(b,c)

 coulish(widget,gadget)
 coulish(gadget,framis)

The meaning of a constant in logic programming is
determined solely by the sentences that mention it.
Exception: numbers (23) and strings ("Like this!").

Note on Spelling

The order of arguments in an instance of a relation is
determined by one’s understanding of the relation.

Example:
prefers(art,bea,bob)

For me, this sentence means that Art prefers Bea to Bob.
Other interpretations are possible; the important thing is
to be consistent - once you choose, stick with it.

Note on Order of Arguments

Kinship

Parentage

cal cam cat coe

bob bea

art

Kinship Relations

cal cam cat coe

bob bea

art

cal cam cat coe

bob bea

art

cal cam cat coe

bob bea

art

cal cam cat coe

bob bea

art

Degenerate Relations

cal cam cat coe

bob bea

art

cal cam cat coe

bob bea

art

 parent(art,bob)
 parent(art,bud)
 parent(bob,cal)
 parent(bob,cam)
 parent(bea,cat)
 parent(bea,coe)

Parent

cal cam cat coe

bob bea

art

 grandparent(art,cal)
 grandparent(art,cam)
 grandparent(art,cat)
 grandparent(art,coe)

cal cam cat coe

bob bea

art

Grandparent

 sibling(bob,bea)
 sibling(bea,bob)
 sibling(cal,cam)
 sibling(cam,cal)
 sibling(cat,coe)
 sibling(coe,cat) cal cam cat coe

bob bea

art

Sibling

 ancestor(art,bob)
 ancestor(art,bea)
 ancestor(art,cal)
 ancestor(art,cam)
 ancestor(art,cat)
 ancestor(art,coe)
 ancestor(bob,cal)
 ancestor(bob,cam)
 ancestor(bea,cat)
 ancestor(bea,coe)

cal cam cat coe

bob bea

art

Ancestor

Other Relations
Unary Relations:
 male(art)
 male(bob)
 male(cal)
 male(cam)

 female(bea)
 female(cat)
 female(coe)

Ternary Relations:
 prefers(art,bob,bea)
 prefers(bob,cam,cal)
 prefers(bea,cat,coe)

cal cam cat coe

bob bea

art

?

Some relations definable in terms of others
 e.g. we can define grandparent in terms of parent
 e.g. we can define sibling in terms of parent
 e.g. we can define ancestor in terms of parent
 e.g. we can define parent in terms of ancestor
 See upcoming material on view definitions

Some combinations of arguments do not make sense
 e.g. parent(art,art)
 e.g. parent(art,bob) and parent(bob,art)
 e.g. old(art) and young(art)
 See upcoming material on constraints

Comments

Blocks World

Blocks World

Symbols: a, b, c, d, e

Unary Predicates:
 clear - blocks with no blocks on top.
 table - blocks on the table.

Binary Predicates:
 on - pairs of blocks in which first is on the second.
 above - pairs in which first block is above the second.

Ternary Predicates:
 stack - triples of blocks arranged in a stack.

Vocabulary

clear(a)
clear(d)

table(c)
table(e)

on(a,b)
on(b,c)
on(d,e)

above(a,b)
above(b,c)  
above(a,c)  
above(d,e)

stack(a,b,c)

Dataset

University

Students: Departments: Faculty: Years:
 aaron architecture alan freshman
 belinda computers cathy sophomore
 calvin english donna junior
 george physics frank senior

Predicate:
 student(Student,Department,Advisor,Year)

Dataset:
 student(aaron,architecture,alan,freshman)
 student(belinda,computers,cathy,sophomore)
 student(calvin,english,donna,junior)
 student(george,physics,frank,senior)

University

Suppose a student has not declared a major.
What if a student does not have an advisor?

Leave out fields (syntactically illegal):
 student(aaron,,,freshman)

Add suitable values to vocabulary (new symbol):
 student(aaron,undeclared,orphan,freshman)

Database nulls (new linguistic feature):
 student(aaron,null,null,freshman)

Missing Values

Suppose a student has two majors.

Multiple Rows (storage, update inconsistencies):
 student(calvin,english,donna,junior)
 student(calvin,physics,donna,junior)

Multiple fields (storage, extensibility?):
 student(calvin,english,physics,donna,junior)
 student(george,physics,physics,frank,senior)

Use compound symbols:
student(calvin,english_physics,donna,junior)

Multiple Values

Represent wide relations as collections of binary relations.

Wide Relation:
 student(Student,Department,Advisor,Year)

Binary Relations:
 student.major(Student,Department)
 student.advisor(Student,Faculty)
 student.year(Student,Year)

Always works when there is a field of the wide relation
(called the key) that uniquely specifies the values of the
other elements. If none exists, possible to create one.

Triples

 student.major(aaron,architecture)
 student.advisor(aaron,alan)
 student.year(aaron,freshman)

 student.year(belinda,sophomore)

 student.major(calvin,english)
 student.major(calvin,physics)
 student.advisor(calvin,donna)
 student.year(calvin,senior)

 student.major(george,physics)
 student.advisor(george,frank)
 student.year(george,senior)

Triples

Classes
 student, department, faculty, year

Attributes (binary relations associated with a class):
 student.major(Student,Department)
 student.advisor(Student,Faculty)
 student.year(Student,Year)

Properties of Attributes:
 domain is class of objects in first position (arguments)
 codomain is class of objects in second position (values)
 unique if at most one value for each argument
 total if at least one value for each argument

Terminology

Missing information
 there is a value but we do not know it.
 e.g. Aaron has an advisor but we do not know who it is.

Non-existent value
 there is no value
 e.g. Aaron does not have an advisor.

For now, in talking about datasets, we assume full info.
If a value is missing, it means that there is no value.

Subtlety

Sales

In 2015, Art sold Arborhouse to Bob for $1000000.
In 2016, Bob sold Pelicanpoint to Carl for $2000000.
In 2016, Carl sold Ravenswood to Dan in $2000000.
In 2017, Dan sold Ravenswood to Art for $3000000.

Sales Ledgers

People: Properties: Years: Money:
 art arborhouse 2015 1000000
 bob pelicanpoint 2016 2000000
 carl ravenswood 2017 3000000
 dan arborhouse

Relation Constant:
 sale(Year,Seller,Property,Buyer,Amount)

Dataset:
 sale(2015,art,arborhouse,bob,1000000)
 sale(2016,art,pelicanpoint,bob,2000000)
 sale(2016,carl,ravenswood,dan,2000000)
 sale(2017,dan,arborhouse,art,3000000)

Real Estate Ledger

In 2015, Art sold Arborhouse to Bob for $1000000.
In 2016, Bob sold Pelicanpoint to Carl for $2000000.
In 2016, Carl sold Ravenswood to Dan in $2000000.
In 2017, Dan sold Ravenswood to Art for $3000000.

In 2015, Art sold Bob a widget for $10.
In 2016, Art sold Bob a gadget for $20.
In 2016, Art sold Bob a gadget for $20.
In 2017, Art sold Bob a framis for $30.

Sales Ledgers

Different sale!

People: Items: Years: Money:
 art widget 2015 10
 bob gadget 2016 20
 carl framis 2017 30
 dan

Relation Constant:
 sale(Year,Seller,Item,Buyer,Amount)

Dataset:
 sale(2015,art,widget,bob,10)
 sale(2016,art,gadget,bob,20)
 sale(2016,art,gadget,bob,20)
 sale(2017,art,framis,bob,30)

Sales Ledger

Duplicate factoid!?

Sales: People: Items: Years: Money:
 t1 art widget 2015 10
 t2 bob gadget 2016 20
 t3 carl framis 2017 30
 t4 dan

Relation Constant:
 sale(Sale,Year,Seller,Item,Buyer,Amount)

Dataset:
 sale(t1,2015,art,widget,bob,10)
 sale(t2,2016,art,gadget,bob,20)
 sale(t3,2016,art,gadget,bob,20)
 sale(t4,2017,art,framis,bob,30)

Sales Ledger

Compound Names

We sometimes want to talk about complex objects made up
of simpler structures.

Examples:
 the list of a, b, and c
 the cell in row 2 and column 3

Alternative 1: Symbols (structure implicit):
 the_list_of_a_b_c
 cell_2_3

Alternative 2: Compound names (structure explicit):
 [a,b,c]
 cell(2,3)

Problem

Symbols / object constants represent objects.
 joe, bill, harry, a23, 3.14159
 the_house_that_jack_built
 “Mind your p’s & q’s!”

Constructors / function constants
 cell, pair, triple,set

Predicates / relation constants represent relations.
 person, parent, prefers

Types of Constants

Symbols / object constants represent objects.
 joe, bill, harry, a23, 3.14159
 the_house_that_jack_built
 “Mind your p’s & q’s!”

Constructors / function constants
 cell, pair, triple,set

Predicates / relation constants represent relations.
 person, parent, prefers

Types of Constants

The arity of a predicate is the number of arguments that can
be associated with the predicate in writing sentences.

Unary predicate (1 argument): person(joe)
Binary predicate (2 arguments): parent(art,bob)
Ternary predicate (3 arguments): prefers(art,bob,bea)

In talking about vocabulary, we sometimes notate the arity
of a predicate by annotating with a slash and the arity, e.g.
male/1, parent/2, and prefers/3.

Arity

The arity of a constructor or a predicate is the number of
arguments that can be associated with the constructor or
predicate in writing complex expressions in the language.

Unary constructor (1 argument): successor(1)
Binary constructor (2 arguments): pair(1,2)
Ternary constructor (3 arguments): triple(1,2,3)
Unary predicate (1 argument): person(joe)
Binary predicate (2 arguments): parent(art,bob)
Ternary predicate (3 arguments): prefers(art,bob,bea)

In talking about vocabulary, we sometimes notate the arity
of a constructor or predicate by annotating with a slash and
the arity, e.g. successor/1, pair/2, triple/3, male/1,
parent/2, and prefers/3.

Arity

A compound name is an expression formed from an n-ary
constructor and n symbols enclosed in parentheses and
separated by commas.

Symbols: a, b
Constructor: f/2, g/1

Compound Names: f(a,b), f(b,a), g(a), g(b)

This allows us to refer to complex objects made up of simple
objects. How do we refer to complex objects made up of
other complex objects?

Compound Names (version 1)

A compound name is an expression formed from an n-ary
constructor and n symbols or compound names enclosed in
parentheses and separated by commas.

Symbols: a, b
Constructor: f/2, g/1

Compound Names: f(a,b), f(b,a), g(a), g(b)
Compound Names: f(g(a),b), g(f(a,b))
Compound Names: g(g(a)), g(f(g(a),g(b)))
Compound Names: g(g(g(a)))

Compound Names (version 2)

A ground term is either a symbol or a compound name.

The adjective ground here means that the term does not
contain any variables (which we discuss in later lessons).

Ground Terms

The Herbrand universe for a vocabulary is the set of all
ground terms that can be formed from the symbols and
constructors in the vocabulary.

Herbrand Universe

A datum / factoid is an expression formed from an n-ary
predicate and n ground terms enclosed in parentheses and
separated by commas.

Symbols: a, b
Constructor: f/2, g/1
Predicate: p/2

Sample Datum: p(a,g(a))
Sample Datum: p(f(a,b),g(b))

Data / Factoids

The Herbrand universe for a vocabulary is the set of all
ground terms that can be formed from the symbols and
constructors in the vocabulary.

The Herbrand base for a vocabulary is the set of all
factoids that can be formed from the vocabulary.

A dataset is any set of factoids that can be formed from a
vocabulary, i.e. a subset of the Herbrand base.

Other Notions

Vocabulary
 Symbols: a, b
 Predicates: p/2, q/1

Questions
 How many symbols in the Herbrand universe?
 How many elements in the Herbrand base?
 How many possible datasets?

Exercise

Vocabulary
 Symbols: a, b
 Constructor: f/1, g/1
 Predicates: p/2, q/1

Questions
 How many elements in the Herbrand universe?
 How many elements in the Herbrand base?
 How many possible datasets?

Exercise

Sierra

Sierra is browser-based IDE (interactive development
environment) for Epilog.

 Saving and loading files

 Visualization of datasets
 Querying datasets
 Transforming datasets

 Interpreter (for view definitions, action definitions)
 Trace capability (useful for debugging rules)
 Analysis tools (error checking and optimizing rules)

http://epilog.stanford.edu/sierra/sierra.html

Sierra

Assignments

Required:
 Reading - Datasets

Background:
 Reading - Programs with Common Sense
 Reading - Logic Programming

Optional Readings

The goal of this exercise is for you to familiarize yourself
with the updates mechanism of Sierra. As always, go to
http://epilog.stanford.edu and click on the Sierra link.

In a separate window, open the documentation for Sierra. To
access the documentation, go to http://epilog.stanford.edu,
click on Documentation, and then click on the Sierra item
on the resulting drop-down menu.

Read Sections 1-3 of the documentation and reproduce the
examples in the Sierra window you opened earlier. Read
section 9 and play around with saving and loading data and
configurations.

Assignment 1.1 - Sierra

Consider a vocabulary that includes the following relations.

movie.instance(x) means that x is a movie.
actor.instance(x) means that x is an actor.
director.instance(x) means that x is a director.
year.instance(x) means that x is a year.
title.instance(x) means that x is a title.

movie.star(x,y) means that movie x stars actor y.
movie.director(x,y) means that movie x was directed by y.
movie.year(x,y) means that movie x was released in year y.
movie.title(x,y) means that movie x has the title y.

Choose symbols for a few movies, actors, directors, years, and
titles, and encode the relevant data about these entities using this
vocabulary.

Assignment 1.2 - Movies

Consider a vocabulary that includes the following relations.

type.instance(x) means that x is a type.
type.predicate(x,y) means that type x has predicate y.
type.attribute(x,y) means that type x was attribute y.

predicate.instance(x) means that x is a predicate.
predicate.domain(x,y) means that predicate x has domain y.

attribute.instance(x) means that x is an attribute.
attribute.domain(x,y) means that attribute x has domain y.
attribute.codomain(x,y) means that x has codomain y.
attribute.total(x,yes) whether x has at least one value.
attribute.unique(x,yes) whether x has at most one value.

Use this vocabulary to encode types and relations in movie vocabulary.

Assignment 1.3 - Metadata

Use the vocabulary in Assignment 1.4 to describe itself.

Factoids describing type are shown below. Your job is to do other
types, predicates, attributes, and booleans.

type.instance(type)
type.predicate(type,type.instance)
type.attribute(type,type.predicate)
type.attribute(type,type.attribute)
 ...

Yes, the predicates in our vocabulary are symbols in this vocabulary
as well as predicates!

Assignment 1.4 - Escher

