Logic Programming Datasets

Michael Genesereth
 Computer Science Department
 Stanford University

Datasets

Dataset - collection of simple facts about state of "world"
Facts in dataset are assumed to be true Facts not in dataset are assumed to be false i.e. datasets are complete; there are no unknowns

Role \#1 - Datasets as (trivial) logic programs used by themselves as standalone databases used in combination with rules to define "virtual" relations

Role \#2 - Datasets as basis for semantics of logic programs

Basics

Conceptualization

Objects - e.g. people, companies, cities
concrete (person) or abstract (number, set, justice) primitive (auto wheel) or composite (car) real (earth) or fictitious (Sherlock Holmes)

Relationships

properties of objects or relationships among objects
e.g. Joe is a person
e.g. Joe is the parent of Bill
e.g. Joe likes Bill more than Harry

Graphical Representation

Tabular Representation

parent	
art	bob
art	bea
bob	cal
bob	cam
bea	cat
bea	coe

Natural Language Representation

Art is the parent of Bob.
Art is the parent of Bea. Bob is the parent of Cal. Bob is the parent of Cam.
Bea is the parent of Cat. Bea is the parent of Coe.

Mathematical Notation

parent(art,bob)
parent(art,bea)
parent(bob,cal)
parent(bob, cam)
parent(bea,cat)
parent(bea,coe)

Constants

Constants are strings of lower case letters, digits, underscores, and periods or strings of arbitrary ascii characters within double quotes.

Examples:
joe, bill, cs151, 3.14159
person, worksfor, office.occupant
the_house_that_jack_built,
"Mind your p's \& q's!"

Non-examples:
Art, p\&q, the-house-that-jack-built
A set of constants is called a vocabulary.

Types of Constants

Symbols / object constants represent objects.
joe, bill, harry, a23, 3.14159
the_house_that_jack_built
"Mind your p's \& q's!"

Constructors / function constants represent functions. cell, pair, triple,set

Predicates / relation constants represent relations. person, parent, prefers

Arity

The arity of a predicate is the number of arguments that can be associated with the predicate in writing sentences.

Unary predicate (1 argument): person(joe) Binary predicate (2 arguments): parent (art, bob) Ternary predicate (3 arguments): prefers (art, bob, bea)

In talking about vocabulary, we sometimes notate the arity of a predicate by annotating with a slash and the arity, e.g. male/1, parent/2, and prefers/3.

Formality and Informality

In some logic programming languages (e.g. Prolog), types and arities determine syntactic legality; and they are enforced by interpreters and compilers.

In other languages (e.g. Epilog), types and arities suggest their intended use. However, they do not determine syntactic legality, and they are not enforced by interpreters and compilers.

In our examples, we use Epilog; but, in this course, we specify types and arities where appropriate and we try to adhere to them.

Data / Factoids

A datum / factoid is an expression formed from an n-ary predicate and n symbols enclosed in parentheses and separated by commas.

Symbols: a, b
Predicate: $\mathrm{p} / 2, \mathrm{q} / 1$
Sample Datum: p(a,a)
Sample Datum: $\quad p(a, b)$
Sample Datum: q(a)
Sample Datum: q(b)

Herbrand Base

The Herbrand base for a vocabulary is the set of all factoids that can be formed from the vocabulary.

Symbols: a, b
Predicate: $\mathrm{p} / 2, \mathrm{q} / 1$
Herbrand Base:

$$
\{p(a, a), p(a, b), p(b, a), p(b, b), q(a), q(b)\}
$$

Datasets

A dataset is any set of factoids that can be formed from a vocabulary, i.e. a subset of the Herbrand base.

Symbols: a, b
Predicates: $\mathrm{p} / 2, \mathrm{q} / 1$
Herbrand Base:

$$
\{p(a, a), p(a, b), p(b, a), p(b, b), q(a), q(b)\}
$$

Dataset: $\{p(a, b), p(b, a), q(a)\}$
Dataset: \{\}
Dataset: $\{p(a, a), p(a, b), p(b, a), p(b, b), q(a), q(b)\}$
We use datasets to characterize states of the world. The facts in a dataset are assumed to be true and those that are not in the dataset are assumed to be false.

Exercise

Vocabulary

Symbols: a, b
Predicates: $\mathrm{p} / 2, \mathrm{q} / 1$

Questions

How many symbols in our vocabulary? How many elements in the Herbrand base?
How many possible datasets?

Note on Spelling

Spelling carries no meaning in logic programming (except as informal documentation for programmers).

```
parent(art,bob)
parent(bob,cal)
p(a,b)
p(b,c)
coulish(widget,gadget)
coulish(gadget,framis)
```

The meaning of a constant in logic programming is determined solely by the sentences that mention it. Exception: numbers (23) and strings ("Like this!").

Note on Order of Arguments

The order of arguments in an instance of a relation is determined by one's understanding of the relation.

Example:
prefers(art,bea,bob)

For me, this sentence means that Art prefers Bea to Bob. Other interpretations are possible; the important thing is to be consistent - once you choose, stick with it.

Kinship

Parentage

Kinship Relations

art

$$
\begin{gathered}
b o b \longleftrightarrow b e a \\
\text { cal } \leftrightarrow c a m \quad \text { cat } \leftrightarrow c o e
\end{gathered}
$$

Degenerate Relations

Parent

$$
\begin{aligned}
& \text { parent(art, bob) } \\
& \text { parent(art, bud) } \\
& \text { parent(bob, cal) } \\
& \text { parent(bob, cam) } \\
& \text { parent(bea, cat) } \\
& \text { parent(bea, coe) }
\end{aligned}
$$

Grandparent

$$
\begin{aligned}
& \text { grandparent(art,cal) } \\
& \text { grandparent(art, cam) } \\
& \text { grandparent(art, cat) } \\
& \text { grandparent(art,coe) }
\end{aligned}
$$

Sibling

sibling(bob,bea) sibling(bea,bob) sibling(cal,cam) sibling(cam,cal) sibling(cat,coe) sibling(coe,cat)

art

$$
\text { cal } \leftrightarrow c a m \quad \text { cat } \leftrightarrow c o e
$$

Ancestor

ancestor (art, bob) ancestor (art,bea) ancestor (art,cal) ancestor (art, cam) ancestor (art, cat) ancestor (art, coe) ancestor (bob, cal) ancestor (bob, cam) ancestor (bea, cat) ancestor (bea, coe)

Other Relations

Unary Relations:

$$
\begin{aligned}
& \text { male(art) } \\
& \text { male(bob) } \\
& \text { male(cal) } \\
& \text { male(cam) }
\end{aligned}
$$

female(bea)
female(cat)

Ternary Relations:
prefers (art,bob,bea)
prefers(bob,cam,cal)

Comments

Some relations definable in terms of others e.g. we can define grandparent in terms of parent e.g. we can define sibling in terms of parent e.g. we can define ancestor in terms of parent e.g. we can define parent in terms of ancestor See upcoming material on view definitions

Some combinations of arguments do not make sense

```
e.g. parent(art,art)
e.g. parent(art,bob) and parent(bob,art)
e.g. old(art) and young(art)
``` See upcoming material on constraints

Blocks World

\section*{Blocks World}

\section*{Vocabulary}

Symbols: a, b, c, d, e
Unary Predicates:
clear - blocks with no blocks on top. table - blocks on the table.

Binary Predicates:
on - pairs of blocks in which first is on the second. above - pairs in which first block is above the second.

Ternary Predicates:
stack - triples of blocks arranged in a stack.

\section*{Dataset}
```

clear(a)
clear(d)
table(c)
table(e)
on(a,b)
on(b,c)
on(d,e)
above(a,b)
above(b,c)
above(a,c)
above(d,e)
stack(a,b,c)

```

\section*{University}

\section*{University}

\section*{Students:}
aaron belinda calvin george

\section*{Departments:}
architecture computers english physics

Faculty: Years:
alan
cathy
donna
frank
freshman sophomore junior
senior

\section*{Predicate:}
student(Student, Department,Advisor, Year)

\section*{Dataset:}
student(aaron,architecture,alan,freshman)
student(belinda, computers,cathy, sophomore)
student(calvin,english,donna, junior)
student(george, physics,frank,senior)

\section*{Missing Values}

Suppose a student has not declared a major. What if a student does not have an advisor?

Leave out fields (syntactically illegal): student(aaron,, ,freshman)

Add suitable values to vocabulary (new symbol):
student(aaron, undeclared,orphan,freshman)
Database nulls (new linguistic feature):
student(aaron, null, null,freshman)

\section*{Multiple Values}

Suppose a student has two majors.
Multiple Rows (storage, update inconsistencies):
student(calvin, english, donna, junior)
student(calvin,physics,donna, junior)
Multiple fields (storage, extensibility?):
student(calvin, english, physics, donna, junior)
student(george, physics, physics,frank, senior)
Use compound symbols:
student(calvin, english_physics, donna, junior)

\section*{Triples}

Represent wide relations as collections of binary relations.
Wide Relation:
```

    student(Student,Department,Advisor,Year)
    ```

Binary Relations:
 student.major(Student, Department)
 student.advisor (Student,Faculty)
 student.year(Student,Year)

Always works when there is a field of the wide relation (called the key) that uniquely specifies the values of the other elements. If none exists, possible to create one.

\section*{Triples}
student.major(aaron,architecture)
student.advisor(aaron,alan)
student.year(aaron,freshman)
student.year(belinda,sophomore)
student.major(calvin,english)
student.major(calvin, physics)
student.advisor(calvin,donna)
student.year(calvin,senior)
student.major(george,physics)
student.advisor (george,frank)
student.year(george,senior)

\section*{Terminology}

\section*{Classes}
student, department, faculty, year

Attributes (binary relations associated with a class):
student.major(Student, Department) student.advisor (Student,Faculty)
student.year(Student,Year)

Properties of Attributes:
domain is class of objects in first position (arguments) codomain is class of objects in second position (values)
unique if at most one value for each argument total if at least one value for each argument

\section*{Subtlety}

\section*{Missing information}
there is a value but we do not know it.
e.g. Aaron has an advisor but we do not know who it is.

\section*{Non-existent value}
there is no value
e.g. Aaron does not have an advisor.

For now, in talking about datasets, we assume full info. If a value is missing, it means that there is no value.

\section*{Sales}

\section*{Sales Ledgers}

In 2015, Art sold Arborhouse to Bob for \(\$ 1000000\). In 2016, Bob sold Pelicanpoint to Carl for \(\$ 2000000\). In 2016, Carl sold Ravenswood to Dan in \(\$ 2000000\). In 2017, Dan sold Ravenswood to Art for \(\$ 3000000\).

\section*{Real Estate Ledger}
\begin{tabular}{clrr}
People: & Properties: & Years: & Money: \\
art & arborhouse & 2015 & 1000000 \\
bob & pelicanpoint & 2016 & 2000000 \\
carl & ravenswood & 2017 & 3000000 \\
dan & arborhouse & &
\end{tabular}

Relation Constant:
sale(Year, Seller,Property, Buyer, Amount)

\section*{Dataset:}
sale(2015, art, arborhouse, bob, 1000000)
sale(2016,art,pelicanpoint, bob, 2000000)
sale(2016,carl,ravenswood,dan, 2000000)
sale(2017,dan, arborhouse, art, 3000000)

\section*{Sales Ledgers}

\author{
In 2015, Art sold Arborhouse to Bob for \(\$ 1000000\). In 2016, Bob sold Pelicanpoint to Carl for \(\$ 2000000\). In 2016, Carl sold Ravenswood to Dan in \(\$ 2000000\). In 2017, Dan sold Ravenswood to Art for \(\$ 3000000\).
}

In 2015, Art sold Bob a widget for \(\$ 10\).
In 2016, Art sold Bob a gadget for \(\$ 20\).
In 2016, Art sold Bob a gadget for \(\$ 20\).
Different sale!
In 2017, Art sold Bob a framis for \(\$ 30\).

\section*{Sales Ledger}
\begin{tabular}{cccc}
People: & Items: & Years: & Money: \\
art & widget & 2015 & 10 \\
bob & gadget & 2016 & 20 \\
carl & framis & 2017 & 30 \\
dan & & &
\end{tabular}

Relation Constant:
sale(Year,Seller,Item,Buyer, Amount)

\section*{Dataset:}
sale(2015,art,widget,bob, 10)
sale(2016,art,gadget,bob, 20)
sale(2016, art, gadget, bob, 20)
Duplicate factoid!?
sale(2017,art,framis,bob, 30)

\section*{Sales Ledger}

Sales:
七1
七2
t3
t4

People:
art
bob carl dan

Items: Years:
widget gadget framis

2015
2016
2017

Money:
10
20
30

Relation Constant:
sale(Sale,Year, Seller, Item, Buyer, Amount)

\section*{Dataset:}
\[
\begin{aligned}
& \text { sale(t1,2015,art,widget,bob,10) } \\
& \text { sale(t2,2016,art,gadget,bob,20) } \\
& \text { sale(t3,2016, art,gadget, bob, 20) } \\
& \text { sale(t4,2017,art,framis,bob, 30) }
\end{aligned}
\]

\section*{Compound Names}

\section*{Problem}

We sometimes want to talk about complex objects made up of simpler structures.

Examples:
the list of \(\mathrm{a}, \mathrm{b}\), and c
the cell in row 2 and column 3
Alternative 1: Symbols (structure implicit):
the_list_of_a_b_c
cell_2_3

Alternative 2: Compound names (structure explicit):
[a,b,c]
cell(2,3)

\section*{Types of Constants}

Symbols / object constants represent objects.
joe, bill, harry, a23, 3.14159
the_house_that_jack_built "Mind your p's \& q's!"

Constructors / function constants cell, pair, triple,set

Predicates / relation constants represent relations. person, parent, prefers

\section*{Types of Constants}

Symbols / object constants represent objects.
joe, bill, harry, a23, 3.14159
the_house_that_jack_built
"Mind your p's \& q's!"

Constructors / function constants
cell, pair, triple,set
Predicates / relation constants represent relations. person, parent, prefers

\section*{Arity}

The arity of a predicate is the number of arguments that can be associated with the predicate in writing sentences.

\section*{Unary predicate (1 argument): person(joe) Binary predicate (2 arguments): parent (art, bob) Ternary predicate (3 arguments): prefers (art, bob, bea)}

In talking about vocabulary, we sometimes notate the arity of a predicate by annotating with a slash and the arity, e.g. male/1, parent/2, and prefers/3.

\section*{Arity}

The arity of a constructor or a predicate is the number of arguments that can be associated with the constructor or predicate in writing complex expressions in the language.

Unary constructor (1 argument): successor (1) Binary constructor (2 arguments): pair (1,2) Ternary constructor (3 arguments): triple (\(1,2,3\)) Unary predicate (1 argument): person (joe) Binary predicate (2 arguments): parent (art, bob) Ternary predicate (3 arguments): prefers (art, bob, bea)

In talking about vocabulary, we sometimes notate the arity of a constructor or predicate by annotating with a slash and the arity, e.g. successor/1, pair/2, triple/3, male/1, parent/2, and prefers/3.

\section*{Compound Names (version 1)}

A compound name is an expression formed from an \(n\)-ary constructor and \(n\) symbols enclosed in parentheses and separated by commas.

Symbols: a, b
Constructor: \(f / 2\), g/1
Compound Names: \(f(a, b), f(b, a), g(a), g(b)\)

This allows us to refer to complex objects made up of simple objects. How do we refer to complex objects made up of other complex objects?

\section*{Compound Names (version 2)}

A compound name is an expression formed from an \(n\)-ary constructor and \(n\) symbols or compound names enclosed in parentheses and separated by commas.

Symbols: a, b
Constructor: \(£ / 2\), g/1
Compound Names: \(f(a, b), f(b, a), g(a), g(b)\)
Compound Names: \(f(g(a), b), g(f(a, b))\)
Compound Names: \(g(g(a)), g(f(g(a), g(b)))\)
Compound Names: \(g(g(g(a)))\)

\section*{Ground Terms}

A ground term is either a symbol or a compound name.

The adjective ground here means that the term does not contain any variables (which we discuss in later lessons).

\section*{Herbrand Universe}

The Herbrand universe for a vocabulary is the set of all ground terms that can be formed from the symbols and constructors in the vocabulary.

\section*{Data / Factoids}

A datum / factoid is an expression formed from an \(n\)-ary predicate and \(n\) ground terms enclosed in parentheses and separated by commas.

Symbols: a, b
Constructor: f/2,g/1
Predicate: \(\mathrm{p} / 2\)
Sample Datum: \(\quad p(a, g(a))\)
Sample Datum: \(\quad p(f(a, b), g(b))\)

\section*{Other Notions}

The Herbrand universe for a vocabulary is the set of all ground terms that can be formed from the symbols and constructors in the vocabulary.

The Herbrand base for a vocabulary is the set of all factoids that can be formed from the vocabulary.

A dataset is any set of factoids that can be formed from a vocabulary, i.e. a subset of the Herbrand base.

\section*{Exercise}

\section*{Vocabulary}

Symbols: a, b
Predicates: \(\mathrm{p} / 2, q / 1\)

\section*{Questions}

How many symbols in the Herbrand universe?
How many elements in the Herbrand base?
How many possible datasets?

\section*{Exercise}

\section*{Vocabulary}

Symbols: \(\mathrm{a}, \mathrm{b}\)
Constructor: f/1, g/1
Predicates: \(p / 2, q / 1\)

\section*{Questions}

How many elements in the Herbrand universe?
How many elements in the Herbrand base?
How many possible datasets?

\section*{Sierra}

\section*{Sierra}

Sierra is browser-based IDE (interactive development environment) for Epilog.

Saving and loading files
Visualization of datasets
Querying datasets
Transforming datasets
Interpreter (for view definitions, action definitions)
Trace capability (useful for debugging rules)
Analysis tools (error checking and optimizing rules)
http://epilog.stanford.edu/sierra/sierra.html

Assignments

\section*{Optional Readings}

Required:
Reading - Datasets
Background:
Reading - Programs with Common Sense
Reading - Logic Programming

\section*{Assignment 1.1-Sierra}

The goal of this exercise is for you to familiarize yourself with the updates mechanism of Sierra. As always, go to http://epilog.stanford.edu and click on the Sierra link.

In a separate window, open the documentation for Sierra. To access the documentation, go to http://epilog.stanford.edu, click on Documentation, and then click on the Sierra item on the resulting drop-down menu.

Read Sections 1-3 of the documentation and reproduce the examples in the Sierra window you opened earlier. Read section 9 and play around with saving and loading data and configurations.

\section*{Assignment 1.2 - Movies}

Consider a vocabulary that includes the following relations.
movie. instance \((x)\) means that \(x\) is a movie. actor.instance \((x)\) means that \(x\) is an actor. director.instance \((x)\) means that \(x\) is a director. year.instance \((x)\) means that \(x\) is a year. title.instance \((x)\) means that \(x\) is a title.
movie.star \((x, y)\) means that movie \(x\) stars actor \(y\). movie. director \((x, y)\) means that movie \(x\) was directed by \(y\). movie. year \((x, y)\) means that movie \(x\) was released in year \(y\). movie.title \((x, y)\) means that movie \(x\) has the title \(y\).

Choose symbols for a few movies, actors, directors, years, and titles, and encode the relevant data about these entities using this vocabulary.

\section*{Assignment 1.3 - Metadata}

Consider a vocabulary that includes the following relations.
type.instance \((x)\) means that \(x\) is a type. type. predicate \((x, y)\) means that type \(x\) has predicate \(y\). type.attribute \((x, y)\) means that type \(x\) was attribute \(y\).
predicate.instance \((x)\) means that \(x\) is a predicate. predicate. domain \((x, y)\) means that predicate \(x\) has domain \(y\).
attribute.instance \((x)\) means that \(x\) is an attribute. attribute.domain \((x, y)\) means that attribute \(x\) has domain \(y\). attribute. codomain \((x, y)\) means that \(x\) has codomain \(y\). attribute.total (\(x\), yes) whether x has at least one value. attribute. unique (\(x\), yes) whether x has at most one value.

Use this vocabulary to encode types and relations in movie vocabulary.

\section*{Assignment 1.4 - Escher}

Use the vocabulary in Assignment 1.4 to describe itself.
Factoids describing type are shown below. Your job is to do other types, predicates, attributes, and booleans.
type.instance(type)
type.predicate(type,type.instance)
type.attribute(type,type.predicate) type.attribute(type,type.attribute)

Yes, the predicates in our vocabulary are symbols in this vocabulary as well as predicates!

```

