
Logic Programming
Introduction

Michael Genesereth
Computer Science Department

Stanford University

Lecture will begin at ~1:35 PDT.

Programmed Computer System

OutputsInterpreter / CompilerInputs

Data Structures

Specifications versus Programs

Definitions
Assumptions

Goals

Definitions
Assumptions

Goals

Traditional Program

Data Structures

OutputsInterpreter / CompilerInputs

Database

Logic Program

OutputsInterpreter / CompilerInputs

Definitions
Assumptions

Goals

Database

Specification = Program

A logic program
is effectively a

runnable specification.

Logic as a Specification Language

Language of Logic

Domain Independent
+

Highly expressive

Logic Interpreters / Compilers
 Automated Reasoners capable of drawing conclusions
 Can take advantage of domain-dependent reasoners
 but are also capable domain-independent reasoning

 Database Programming (Datalog, SQL)
 Classical Logic Programming (Prolog)
 Dynamic Logic Programming (Epilog, LPS)

 Constraint Satisfaction
 Program Synthesis

 Answer Set Programming (ASP)
 Probabilistic Logic
 Inductive Logic Programming (Progol)

Types of Logic Programming

Why Logic Programming

Benefits
 Efficiency
 Lots of traditional programmers
 Well established software engineering practices

Disadvantages
 Creation, maintenance expensive and time-consuming
 Different programs for different tasks
 Difficult to explain results
 Programs not comprehensible to ordinary users

Traditional Programming

Logic Programs are relatively easy to create.

Requires little work. The specification is the program; no
need to make choices about data structures and algorithms.

Specification authors can get by with few assumptions
about the capabilities of systems executing those programs.

Easier to learn logic programming than traditional
programming. Think spreadsheets.

Oddly, expert computer programmers often have more
trouble with logic programming than novices.

Ease of Creation

Adaptability

Easy to deal with changing circumstances

Easy to use for multiple tasks

Sample Program
A person X is the grandparent of a person Z if and only if
there is a person Y such that X is the parent of Y and Y is the
parent of Z.

Uses
 Determine whether Art is the grandparent of Cal.
 Determine all of the grandchildren of Art.
 Compute the grandparents of Cal.
 Compute all grandparent-grandchildren pairs.

Versatility

McCarthy’s Example

McCarthy’s Example

McCarthy’s Example

Explanation

The building is illegal

The shadow line is 262 cm The allowable shadow is 240 cm

262 > 240

The parcel is in zone R-1

The allowable shadow in R-1 is 240 cm

The building is 462 cm high

The building is 200 cm from the boundary

462-200 = 262

Why was my building plan rejected?
 Your plan is illegal because your shadow line (262 cm)
 exceeds the allowable shadow (240 cm).

What is my shadow line?
 Your shadow line (262 cm) is the maximum
 intrusion into the yard of a side neighbor
 determined by a 45 degree line
 from the highest point of the building.

What is the allowable shadow line?
 Your parcel is in zone R-1 and in zone R-1, the maximum shadow
 that can be cast on a side neighbor is 240 cm.

Explanations of Results

Successes

Circuit: Description:

Applications:
Simulation
Configuration
Diagnosis
Test Generation

o⇔ (x ∧ ¬y)∨ (¬x∧ y)
a⇔ z ∧ o
b⇔ x ∧ y
s⇔ (o∧ ¬z)∨ (¬o∧ z)
c⇔ a ∨b

x
y

z

s

c

o

a

b

Engineering

Deductive Databases

Database
Manager

g(X,Z) :- p(X,Y) ∧ p(Y,Z)

q(X) :- p(X,Y) ∧ p(X,Z) ∧ Y!=Z

illegal :- p(X,Y) ∧ p(Y,X)

p(a,b)
p(b,c)
p(a,b)

Ques.ons
Updates

Answers
No.fica.ons

Interactive Web Pages (Worksheets)

Program Sheet

Business Rules and Workflow

Computational Law

Computational Law is that branch of legal informatics
concerned with the mechanization of legal reasoning.

Automated Compliance Management
 Legal analysis of specific cases
 Planning for compliance in specific cases
 Analysis of regulations for overlap, consistency, etc.

Portico

General Game Playing

General Game Playing

Pelican Hunters

Non-Successes

Natural Language Processing

Theorem Proving

Japan’s Fifth Generation Project

History

LGP-30 (1GL)

IBM 360

Assembly Language (2GL)

Higher Level Languages (3GL)

Symbolic Processing Languages (3GL)

Imperative Programming Languages

Declarative Programming Languages

The main advantage we expect
the advice taker to have is that
its behavior will be improvable
merely by making statements to
it, telling it about its …
environment and what is
wanted from it.
 - John McCarthy1958

John McCarthy

The potential use of computers by people
to accomplish tasks can be “one-
dimensionalized” into a spectrum
representing the nature of the instruction
that must be given the computer to do its
job. Call it the what-to-how spectrum.
At one extreme of the spectrum, the user
supplies his intelligence to instruct the
machine with precision exactly how to
do his job step-by-step. ... At the other
end of the spectrum is the user with his
real problem. ... He aspires to
communicate what he wants done ...
without having to lay out in detail all
necessary subgoals for adequate
performance.
 - Ed Feigenbaum 1974

Ed Feigenbaum

Chris Date (Mr. SQL)

If code is the problem, the only possible answer is to
eliminate the coding by building systems directly from
their specifications.
 - Val Huber, 1997

Val Huber

Years of experience have
taught us ... it takes far too
long to turn a relatively
simple set of requirements
into a system that meets the
user needs.

This course

Apr 2 Introduction May 7 Operation Definitions
 4 Datasets 9 Model Management
 14 Reactive Worksheets
 9 Queries 16 Semantic Worksheets
 11 Query Examples
 16 Query Evaluation 21 Constraint Satisfcation
 18 Query Optimization 23 Program Synthesis
 28 Extensions and Advances
 23 View Definitions 30 Past Projects
 25 View Evaluation
 30 Simple Examples Jun 4 Project Reports
May 2 Lists, Sets, Trees 6 Project Reports

Schedule

Sets
{a, b, c} ∪ {b, c, d} = {a, b, c, d}

 a ∈ {a, b, c}

{a, b, c} ⊆{a, b, c, d}

Functions and Relations
f(a, b) = c

r(a, b, c)

Background

Numerical Score
 15% for each of Assignments 1, 2, 3, 4
 40% for the Term Project

Reported Grade
 Based on numerical score (see above)
 No curve - independent of number of students
 Satisfactory = 70% and above

Extra Credit
 Added to score before determining Reported Grade
 Discretionary

Grades

Series Editors: Ronald J. Brachman, Jacobs Technion-Cornell Institute at Cornell Tech
 Francesca Rossi, AI Ethics Global Leader, IBM Research AI
 Peter Stone, University of Texas at Austin

Introduction to Logic Programming
Michael Genesereth, Stanford University
Vinay K. Chaudhri, Stanford University

“!is is a book for the 21st century: presenting an elegant and innovative perspective on logic
programming. Unlike other texts, it takes datasets as a fundamental notion, thereby bridging
the gap between programming languages and knowledge representation languages; and it
treats updates on an equal footing with datasets, leading to a sound and practical treatment of
action and change.” – Bob Kowalski, Professor Emeritus, Imperial College London

“In a world where Deep Learning and Python are the talk of the day, this book is a
remarkable development. It introduces the reader to the fundamentals of traditional Logic
Programming and makes clear the bene"ts of using the technology to create runnable
speci"cations for complex systems.” – Son Cao Tran, Professor in Computer Science, New Mexico
State University

“Excellent introduction to the fundamentals of Logic Programming. !e book is well-written
and well-structured. Concepts are explained clearly and the gradually increasing complexity of
exercises makes it so that one can understand easy notions quickly before moving on to more
di#cult ideas.” – George Younger, student, Stanford University

store.morganclaypool.com

About SYNTHESIS
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis
books provide concise, original presentations of important research and
development topics, published quickly, in digital and print formats.

GENESERETH • CHAUDHRI

INTRODUCTION TO LOGIC PROGRAM

M
ING

 M

O
R

G
A

N
 &

 C
LAY

PO
O

L

Series ISSN: 1939-4608

Ronald J. Brachman, Francesca Rossi, and Peter Stone, Series Editors

Textbook

http://cs151.stanford.edu

