Name |
Description |
Depth |
Negation Introduction |
{p} ⊢ ~~p |
0 |
Negation Elimination |
{~~p} ⊢ p |
0 |
And Introduction |
{p, q} ⊢ p&q |
0 |
And Elimination |
{p&q} ⊢ {p, q} |
0 |
Or Introduction |
{p} ⊢ {p|q, q|p} |
0 |
Or Elimination |
{p|q, p=>r, q=>r} ⊢ r |
0 |
Implication Elimination |
{p=>q, p} ⊢ q |
0 |
Biconditional Introduction |
{p=>q, q=>p} ⊢ p<=>q |
0 |
Biconditional Elimination |
{p<=>q} ⊢ {p=>q, q=>p} |
0 |
Implication Creation |
{p} ⊢ q=>p |
1 |
Implication Distribution |
{p=>(q=>r)} ⊢ (p=>q)=>(p=>r) |
1 |
Implication Reversal |
{~q=>~p} ⊢ p=>q |
1 |
Inconsistency |
{p, ~p} ⊢ q |
1 |
Conditional Deduction |
{p=>(q=>r), p=>q} ⊢ p=>r |
1 |
Transitivity |
{p=>q, q=>r} ⊢ p=>r |
1 |
Condition Introduction |
{q=>r} ⊢ (p=>q)=>(p=>r) |
1 |
Conclusion Introduction |
{p=>q} ⊢ (q=>r)=>(p=>r) |
1 |
Condition Reversal |
{p=>(q=>r)} ⊢ q=>(p=>r) |
1 |
Modus Tollens |
{p=>q, ~q} ⊢ ~p |
1 |
Implication Reduction |
{p=>~p} ⊢ ~p |
1 |
Contradiction Realization |
{p=>q, p=>~q} ⊢ ~p |
1 |
|
Universal Conjunction |
{AX:(p(X)&q(X))} ⊢ AX:p(X)&AX:q(X) |
1 |
Universal Implication |
{AX:(p(X)=>q(X))} ⊢ AX:p(X)=>AX:q(X) |
1 |
Universal Reversal |
{AX:AY:p(X,Y)} ⊢ AY:AX:p(X,Y) |
1 |
Existential Universal |
{EY:AX:p(X,Y)} ⊢ AX:EY:p(X,Y) |
1 |