Algebra Ontology


;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;; Functions ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (defrelation binop (?f ?s) := (and (binary-function ?f) (subset (universe ?f) ?s))) (defrelation associative (?f ?s) := (forall (?x ?y ?z) (=> (member ?x ?s) (member ?y ?s) (member ?z ?s) (= (value ?f ?x (value ?f ?y ?z)) (value ?f (value ?f ?x ?y) ?z))))) (defrelation commutative (?f ?s) := (forall (?x ?y) (=> (member ?x ?s) (member ?y ?s) (= (value ?f ?x ?y) (value ?f ?y ?x))))) (defrelation invertible (?f ?o ?s) := (forall (?x) (=> (memberp ?x ?s) (exists (?y) (and (member ?y ?s) (= (value ?x ?y) ?o) (= (value ?y ?x) ?o)))))) (defrelation distributes (?f ?g ?s) := (and (binop ?f ?s) (binop ?g ?s) (forall (?x ?y ?z) (=> (member ?x ?s) (member ?y ?s) (member ?z ?s) (= (value ?f (value ?g ?x ?y) ?z) (value ?g (value ?f ?x ?z) (value ?f ?y ?z))))))) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;; Relations ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (defrelation binrel (?r ?s) := (and (binary-relation ?r) (subset (universe ?r) ?s))) (defrelation reflexive (?r ?s) := (and (binrel ?r ?s) (forall (?x) (=> (member ?x ?s) (holds ?r ?x ?x))))) (defrelation irreflexive (?r ?s) := (and (binrel ?r ?s) (forall (?x) (=> (member ?x ?s) (not (holds ?r ?x ?x)))))) (defrelation symmetric (?r ?s) := (and (binrel ?r ?s) (forall (?x ?y) (=> (holds ?r ?x ?y) (holds ?r ?y ?x))))) (defrelation asymmetric (?r ?s) := (and (binrel ?r ?s) (forall (?x ?y) (=> (holds ?r ?x ?y) (not (holds ?r ?y ?x)))))) (defrelation antisymmetric (?r ?s) := (and (binrel ?r ?s) (forall (?x ?y) (=> (holds ?r ?x ?y) (holds ?r ?y ?x) (= ?x ?y))))) (defrelation trichotomizes (?r ?s) := (and (binrel ?r ?s) (forall (?x ?y) (=> (member ?x ?s) (member ?y ?s) (or (holds ?r ?x ?y) (= ?x ?y) (holds ?r ?y ?x)))))) (defrelation transitive (?r ?s) := (and (binrel ?r ?s) (forall (?x ?y ?z) (=> (holds ?r ?x ?y) (holds ?r ?y ?z) (holds ?r ?x ?z))))) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;; Algebraic Structures ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (defrelation semigroup (?s ?f ?o) := (and (binop ?f ?s) (associative ?f ?s) (identity ?o ?f ?s))) (defrelation abelian-semigroup (?s ?f ?o) := (and (semigroup ?s ?f ?o) (commutative ?f ?s))) (defrelation group (?s ?f ?o) := (and (binop ?f ?s) (associative ?f ?s) (identity ?o ?f ?s) (invertible ?f ?o ?s))) (defrelation abelian-group (?s ?f ?o) := (and (group ?s ?f ?o) (commutative ?f ?s))) (defrelation ring (?s ?f ?o ?g ?i) := (and (abelian-group ?s ?f ?o) (semigroup ?s ?g ?i) (distributes ?g ?f ?s))) (defrelation commutative-ring (?s ?f ?o ?g ?i) := (and (abelian-group ?s ?f ?o) (abelian-semigroup ?s ?g ?i) (distributes ?g ?f ?s))) (defrelation integral-domain (?s ?f ?o ?g ?i) := (and (commutative-ring ?s ?f ?o ?g ?i) (operation ?g (difference ?s (setof ?o))))) (defrelation division-ring (?s ?f ?o ?g ?i) := (and (ring ?s ?f ?o ?g ?i) (binop ?g (difference ?s (setof ?o))) (invertible ?g (difference ?s (setof ?o))))) (defrelation field (?s ?f ?o ?g ?i) := (and (division-ring ?s ?f ?o ?g ?i) (commutative ?f ?s))) ;;;;;;;;;;;;;;;; (defrelation partition (?s ?r) := (and (reflexive ?r ?s) (symmetric ?r ?s) (transitive ?r ?s))) (defrelation partial-order (?s ?r) := (and (irreflexive ?r ?s) (asymmetric ?r ?s) (transitive ?r ?s))) (defrelation linear-order (?s ?r) := (and (irreflexive ?r ?s) (asymmetric ?r ?s) (transitive ?r ?s) (trichotomizes ?r ?s)))
Michael R. Genesereth