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Finite Worlds
    n rows x n columns in Friends, Goldrush, Minefinder
    Finite Graphs
    University Students
    Population of a state or country

Countable Worlds
    Integers - 1, 2, 3, 4, ...
    Strings - "adbyug78377bh", ...
    Sequences - [], [a], [b], [a,a], [a,b], [b,a], [b,b], [a,a,a], ...
    Sets - {}, {a}, {b}, {a,b}, {{a},{b}}, {{a},{a,b}},  ...

Motivation



Infinite Relational Logic - Infinite Vocabulary
    a1, a2, a3, ...

Functional Logic - Structured Terms
    0, s(0), s(s(0)), s(s(s(0))), ...
    a, b, pair(a,a), pair(b,a), pair(b,b), pair(a, pair(a,b)), ...
    a, b, set(), set(a), set(b), set(a,b), set(set(a),set(a,b)), ...

Possibilities



Today
    Syntax
    Semantics
    Properties and Relationships
    Examples

Next Time
    Fitch Proofs with Induction

After Thanksgiving
    Equality
    Review

Programme



Syntax



Words are strings of letters, digits, and occurrences of the 
underscore character.

Variables begin with characters from the end of the alphabet 
(from u through z).

u, v, w, x, y, z 

Constants begin with digits or letters from the beginning of 
the alphabet (from a through t). 

a, b, c, 123, father, mother, comp225, barack_obama 

Words



Object constants (symbols) represent objects.

joe, stanford, france, 2345

Function constants (constructors) represent functions.

successor, pair, set

Relation constants (predicates) represent relations.

knows, loves

Constants



The arity of a function constant or a relation constant is the 
number of arguments it takes.

Unary function or relation constant - 1 argument

Binary function or relation constant - 2 arguments

Ternary function or relation constant - 3 arguments

n-ary function or relation constant - n arguments

Arity



A signature consist of a set of object constants, a set of 
function constants, and a set of relation constants together 
with a specification of arity for the function constants and 
relation constants.

Object Constants: a, b

Unary Function Constant: f
Binary Function Constant: g

Unary Relation Constant: p
Binary Relation Constant: q

Signatures



A term is either a variable, an object constant, or
a functional term (defined shortly).

Terms represent objects.

Terms are analogous to noun phrases in natural 
language (e.g. France, the set of 2 and 3)

Terms



     A functional term is an expression consisting of an 
n-ary function constant and n terms enclosed in 
parentheses and separated by commas.

f(a)
f(x)

g(a, y)

Functional terms are terms and so can be nested*.

g(f(a), g(y,a))

* unlike relational sentences

Functional Terms



Three types of sentences in Functional Logic:

Relational sentences - analogous to the simple 
sentences in natural language

Logical sentences - analogous to the logical sentences 
in natural language

Quantified sentences - sentences that express the 
significance of variables

Sentences



A relational sentence is an expression formed from an
n-ary relation constant and n terms enclosed in parentheses 
and separated by commas.

q(a, f(a))

Reminder: Relational sentences are not terms and cannot 
be nested inside terms or relational sentences.

No!    q(a,q(a,y))    No!

Relational Sentences



Logical sentences in Functional Logic are analogous to 
those in Propositional Logic (except with functional terms).

(¬q(a,f(a)))
(p(a) ∧ p(f(a)))
(p(a) ∨ p(f(a)))
(q(x,f(a)) ⇒ q(f(a),x))
(q(x,f(a)) ⇔ q(f(a),x))

Logical Sentences



Universal sentences assert facts about all objects.

(∀x.(p(x) ⇒ q(x, f(x))))

Existential sentence assert the existence of objects with 
given properties.

(∃x.(p(x) ∧ q(x,f(x))))

Quantified sentences can be nested within other 
sentences.

(∀x.p(x)) ∨ (∃x.q(x,f(x)))
(∀x.(∃y.q(f(x),y)))

Quantified Sentences



Parentheses can be removed when precedence allows us to 
reconstruct sentences correctly.

Precedence relations same as in Propositional Logic with 
quantifiers being of higher precedence than logical 
operators.

∀x.p(x) ⇒ q(x,x) → (∀x.p(x)) ⇒ q(x,x)
∃x.p(x) ∧ q(x,x) → (∃x.p(x)) ∧ q(x,x) 

Parentheses



Semantics



The Herbrand universe for a Functional language is the set 
of all ground terms that can be formed from the vocabulary 
of the language.

The Herbrand base for a Functional language is the set of 
all ground relational sentences that can be formed from the 
vocabulary of the language.

Herbrand Universe and Herbrand Base



Object Constants: a, b
Unary Relation Constant: p
Binary Relation Constant: q

Herbrand Universe:

{a, b}

Herbrand Base:

{p(a), p(b), q(a,a), q(a,b), q(b,a), q(b,b)}

Example Without Functions



Object Constants: a
Unary Function Constant: f
Unary Relation Constant: p

Herbrand Universe:

{a, f(a), f(f(a)), …}

Herbrand Base:

{p(a), p(f(a)), p(f(f(a))), …}

Example With Functions

Infinite!!!

Infinite!!!



A truth assignment is an association between ground atomic 
sentences and the truth values true or false.  As with 
Propositional Logic, we use 1 as a synonym for true and 0 
as a synonym for false.

p(a)i = 1 q(a,a)i = 1
p(b)i = 0 q(a,b)i = 0
p(f(a))i = 1 q(a,f(a))i = 0
p(f(b))i = 0 q(a,f(b))i = 1
p(f(f(a)))i = 0 q(b,f(a))i = 0
p(f(f(b)))i = 0 q(b,f(b))i = 1

                             ...                                   ...

Truth Assignments



All other notions are defined the same as in Relational 
Logic.

The main difference is that now we have truth assignments 
that are infinitely large and there are infinitely many of them.

Bad News: It is no longer possible in general to determine 
logical entailment and other properties with truth tables. 

Good News: In many cases, logical entailment can be 
established with finite proofs.

Everything Else



Example - Whole Numbers



 Entities (natural numbers together with 0):

0, 1, 2, 3, 4, …

Successor:

0 → 1 → 2 → 3 → 4 → …

Less Than (transitive closure of successor):

0 < 1     1 < 2    ...
0 < 2     1 < 3    ...
0 < 3     1 < 4    ...
  ...          ...       ...

Whole Numbers



Object Constants: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...
Ground Terms: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...

Possible Representations



Object Constants: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...
Ground Terms: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...

Object Constant: 0
Unary Function Constant: s
Ground Terms: 0, s(0), s(s(0)), …

NB: spelling matters in our standard notation for numbers
    We do not write as a, b, c, d, ...
    We write as 0, 1, 2,..., 9, [1,0], [1,1], [1,2], ..., [1,0,0], ...
    Arithmetic operations take advantage of this

Possible Representations



Object Constant: 0
 

Unary Function Constant: s

Binary Relation Constants:
    same - the first and second arguments are identical
    succ - the first argument immediately precedes second
    less - the first argument less than or equal to second

Signature



Enumerating ground relational data impossible

   same(0,0)              ¬succ(0,0)         ¬less(0,0)
¬same(0,s(0))             succ(0,s(0))         less(0,s(0))
¬same(0,s(s(0)))      ¬succ(0,s(s(0)))     less(0,s(s(0)))

… …            …

Solution  - write logical and quantified sentences

Axiomatization



Definition:
∀x.same(x,x)

∀x.(¬same(0,s(x)) ∧ ¬same(s(x),0))

∀x.∀y.(¬same(x,y) ⇒ ¬same(s(x), s(y)))

Same



Definition:
∀x.same(x,x)

∀x.(¬same(0,s(x)) ∧ ¬same(s(x),0))

∀x.∀y.(¬same(x,y) ⇒ ¬same(s(x), s(y)))

Examples:
    same(0,0)
    same(s(0),s(0))
    same(s(s(0)),s(s(0)))

    …

Same



Definition:
∀x.same(x,x)

∀x.(¬same(0,s(x)) ∧ ¬same(s(x),0))

∀x.∀y.(¬same(x,y) ⇒ ¬same(s(x), s(y)))

Examples:
 same(0,0)                  ¬same(0,s(0))              ¬same(s(0),0)
 same(s(0),s(0))          ¬same(0,s(s(0)))         ¬same(s(s(0)),0)
 same(s(s(0)),s(s(0)))             …                                 …

   …          
   

Same



Definition:
∀x.same(x,x)

∀x.(¬same(0,s(x)) ∧ ¬same(s(x),0))

∀x.∀y.(¬same(x,y) ⇒ ¬same(s(x), s(y)))

Examples:
 same(0,0)                  ¬same(0,s(0))              ¬same(s(0),0)
 same(s(0),s(0))          ¬same(0,s(s(0)))         ¬same(s(s(0)),0)
 same(s(s(0)),s(s(0)))             …                                 …

   …           ¬same(s(0),s(s(0)))     ¬same(s(s(0)),s(0))
                            ¬same(s(0),s(s(s(0)))) ¬same(s(s(s(0))),s(0))

                                               …                                 …

Same



Positives:
∀y.succ(x,s(x))

Functionality:

∀x.∀y.∀z.(succ(x,y) ∧ succ(x,z) ⇒ same(y,z))
or

∀x.∀y.∀z.(succ(x,y) ∧ ¬same(y,z) ⇒ ¬succ(x,z))

Successor



Successor:

∀x.∀y.(succ(x,y) ⇒ less(x,y))

Transitivity:

∀x.∀y.∀z.(less(x,y) ∧ less(y,z) ⇒ less(x,z))

Irreflexivity:

∀x.¬less(x,x)

Less Than



Example - Trees



Trees

ab
a

ba
a

a
a

ba ab
a



Object constants: a, b
Binary function constants: cons

        cons(cons(b,a),a)                 cons(a,cons(b,a))

Tree Vocabulary

ab
a

ab
a



Object constants: a, b
Unary function constants: cons

        cons(cons(b, a), a)                cons(a, cons(b, a))

Unary relation constants: symmetric, uniform, ...
Binary relation constant: subtree, congruent, mirror, ...

Tree Vocabulary

ab
a

ab
a



Two trees are congruent if and only if they have the same 
shape.  (Labels on leaf nodes irrelevant.)

Examples:

Non-Examples:

Congruence

ab
a

ab
a

ba
a

a
a

ba
ab

a



Congruence of atomic trees

congruent(a, a)
congruent(a, b)
congruent(b, a)
congruent(b, b)

Congruence of compound trees:

∀u.∀v.∀x.∀y.(congruent(cons(u, v), cons(x, y)) ⇔
                       congruent(u, x)  ∧ congruent(v, y))

Non-Congruence of mixed trees:

∀x.∀y.(¬congruent(a, cons(x, y)) ∧ ¬congruent(cons(x, y), a))
∀x.∀y.(¬congruent(b, cons(x, y)) ∧ ¬congruent(cons(x, y), b))

Definition



Example - Linked Lists



Flat Lists:
[a, b, c, d]

Nested Lists:
[a, [a, b], b, [c, d], d]

Linked List:

a        b        

a    b    c    d    

d    

Linked Lists



Example:

Representation as a functional term:

cons(a,cons(b,cons(c,cons(d,nil))))

a    b    c    d    

Representation



Object Constants: a, b, c, d, nil

Binary Function Constant: cons

Binary Relation Constant: member
Ternary Relation Constant: append

member(b, [a, b, c])
append([a, b], [c, d], [a, b, c, d])

Signature



 Example: member(b, [a, b, c])
 

member(b, cons(a,cons(b,cons(c,nil)))) 

Definition:

∀x.∀y.member(x,cons(x,y)))
∀x.∀y.∀z.(member(x,z) ⇒ member(x,cons(y,z)))

What else do we need?

Membership



 Example: append([a, b], [c, d], [a, b, c, d])

   append(cons(a,cons(b,nil)),
                 cons(c,cons(d,nil)),
                 cons(a,cons(b,cons(c,cons(d,nil))))) 

Definition :

∀y.append(nil,y,y)
∀x.∀y.∀z.∀w.(append(y,z,w)
                              ⇒ append(cons(x,y),z,cons(x,w)))

What else do we need?

Concatenation



Example - Metalevel Logic



Metalevel Logic

proposition(p)
proposition(q)
proposition(r)

negation(not(x)) ⇔ sentence(x)
conjunction(and(x,y)) ⇔ sentence(x) ∧ sentence(y)
disjunction(or(x,y)) ⇔ sentence(x) ∧ sentence(y)
implication(if(x,y)) ⇔ sentence(x) ∧ sentence(y)
biconditional(iff(x,y)) ⇔ sentence(x) ∧ sentence(y)

sentence(x) ⇔ 
  proposition(x) ∨ negation(x) ∨ conjunction(x) ∨
  disjunction(x) ∨ implication(x) ∨ biconditional(x)



Propositional Logic in Functional Logic

proposition(p)
proposition(q)
proposition(r)

negation(not(x)) ⇔ sentence(x)
conjunction(and(x,y)) ⇔ sentence(x) ∧ sentence(y)
disjunction(or(x,y)) ⇔ sentence(x) ∧ sentence(y)
implication(if(x,y)) ⇔ sentence(x) ∧ sentence(y)
biconditional(iff(x,y)) ⇔ sentence(x) ∧ sentence(y)

sentence(x) ⇔ 
  proposition(x) ∨ negation(x) ∨ conjunction(x) ∨
  disjunction(x) ∨ implication(x) ∨ biconditional(x)



(1) Represent Propositional Logic sentences as terms 
in Functional Logic.

p∧¬q represented as and(p,not(q))

(2) Write Functional Logic sentences to define the 
syntax and semantics of Propositional Logic.

conjunction(and(p,not(q)))

(3) Create Functional Logic proofs of Propositional 
Logic metatheorems (e.g. soundness, completeness, 
deduction theorem, and so forth).

∀x.∀y.(entails(x,y) ⇒ proves(x,y))

Basic Idea



Object Constants (representing propositions):
  p, q, r

Syntactic Metavocabulary



Object Constants (representing propositions):
  p, q, r

Function constants (representing logical operators):
  not(x) if(x,y)
  and(x,y) iff(x,y)
  or(x,y)

Syntactic Metavocabulary

These are terms!!



Object Constants (representing propositions):
  p, q, r

Function constants (representing logical operators):
  not(x) if(x,y)
  and(x,y) iff(x,y)
  or(x,y)

Unary Relation Constants (properties of sentences):
  proposition(x) implication(x)
  negation(x) biconditional(x)
  conjunction(x) sentence(x)
  disjunction(x)

Syntactic Metavocabulary

These are terms!!



proposition(p)
proposition(q)
proposition(r)

negation(not(x)) ⇔ sentence(x)
conjunction(and(x,y)) ⇔ sentence(x) ∧ sentence(y)
disjunction(or(x,y)) ⇔ sentence(x) ∧ sentence(y)
implication(if(x,y)) ⇔ sentence(x) ∧ sentence(y)
biconditional(iff(x,y)) ⇔ sentence(x) ∧ sentence(y)

sentence(x) ⇔ 
  proposition(x) ∨ negation(x) ∨ conjunction(x) ∨
  disjunction(x) ∨ implication(x) ∨ biconditional(x)

Syntactic Metadefinitions



Unary Relation Constants (properties of sentences):
  valid(x) - validity
  contingent(x) - contingency
  unsatisfiable(x) - unsatisfiability

Binary Relation Constants (relations among sentences):
  equivalent(x,y) - logical equivalence
  entails(x,y) - logical entailment
  consistent(x,y) - consistency

We also need to talk about truth assignments in order to
define these notions.  Doable but messy; skipping here.

Semantic Metavocabulary



Validity of Axiom Schemata:

valid(or(x,not(x)) ⇔ sentence(x)

Equivalence and Entailment:

equivalent(x,y) ⇔ entails(x,y) ∧ entails(y,x)

Deduction Theorem:
 

entails(and(x,y),z) ⇔  entails(x,if(y,z))

Semantic Metatheorems



And Introduction:

∀x.∀y.(sentence(x) ∧ sentence(y) ⇔ ai(x,y,and(x,y)))

And Elimination:

∀x.∀y.(sentence(x) ∧ sentence(y) ⇔ ae(and(x,y),x))
∀x.∀y.(sentence(x) ∧ sentence(y) ⇔ ae(and(x,y),y))

Rules of Inference



Soundness:

∀x.∀y.(proves(x,y) ⇒ entails(x,y))

Completeness:

∀x.∀y.(entails(x,y) ⇒ proves(x,y))

More Metatheorems



Can we define Functional Logic in Functional Logic?

Basic idea: represent Functional Logic expressions as 
terms in Functional Logic, write sentences to define 
syntax and semantics, prove metatheorems.

Functional Logic in Functional Logic



NB: We need terms to represent functional terms and 
relational sentences.

p(a,f(a))       relsent(p,a,funterm(f,a)))

NB: We need constants in our language to refer to 
variables in the language we are describing.

∀y.p(y,f(y))       forall(ny,relsent(p,ny,funterm(f,ny)))

Syntactic Metavocabulary



obconst(a)
funconst(f)
relconst(r)
variable(nx)

functionalterm(funterm(w,x)) ⇔ funconst(w) ∧ term(x)
relationalsentence(relsent(w,x)) ⇔ relconst(w) ∧ term(x)

negation(not(x)) ⇔ sentence(x)
conjunction(and(x,y)) ⇔ sentence(x) ∧ sentence(y)
disjunction(or(x,y)) ⇔ sentence(x) ∧ sentence(y)
implication(if(x,y)) ⇔ sentence(x) ∧ sentence(y)
biconditional(iff(x,y)) ⇔ sentence(x) ∧ sentence(y)
universal(forall(v,x) ⇔ variable(v) ∧ sentence(x)
universal(exists(v,x) ⇔ variable(v) ∧ sentence(x)

Syntactic Metadefinitions



In formalizing Propositional Logic, we can talk about 
truth assignments.  The Herbrand base is always finite, 
and so there are only finitely many truth assignments.

In formalizing Functional Logic, things are more difficult.  
The Herbrand base can be infinite (though it is always 
countable).  However, the number of truth assignments 
can be uncountable.  Unfortunately, we have only 
countably many terms!

Cardinality Problem



Can we define the semantics of Functional Logic in some 
other logic?

Good News / Bad News: First-Order Logic (FOL) allows 
for uncountable universes and so in principle can be used.  
Unfortunately, FOL theories with infinite universes have 
nonstandard models (unintended models that cannot be 
excluded).

NB: FOL is weaker than Functional Logic.  Some notions 
that can be defined exactly in Functional Logic cannot be 
defined in FOL without allowing nonstandard models, 
e.g. Peano Arithmetic, transitive closure.

Functional Logic in Another Logic



Can we define the semantics of Functional Logic in some 
other logic?

Good News / Bad News: First-Order Logic (FOL) allows 
for uncountable universes and so in principle can be used.  
Unfortunately, FOL theories with infinite universes have 
nonstandard models (unintended models that cannot be 
excluded).

Good News / Bad News: Second-Order Logic (SOL) 
allows us to eliminate these nonstandard models, but it is 
more complicated and there is no complete proof 
procedure.

Functional Logic in Another Logic



Can we use this "metalevel" approach to relate the truth 
of sentences described in a metalanguage to sentences 
describing those sentences?

Self-Referential Logic



Can we use this "metalevel" approach to relate the truth 
of sentences described in a metalanguage to sentences 
describing those sentences?

Example: If so, can we define a truth predicate that 
allows us to say whether or not a sentence is true?

∀x.∀y.(true(relsent(p,x,y)) ⇔ p(x,y))

Truth Predicate



Can we use this "metalevel" approach to relate the truth 
of sentences described in a metalanguage to sentences 
describing those sentences?

Example: Can we use our truth predicate to formalize the 
truth of people's beliefs, beliefs about those beliefs, etc.?

∀x.(believes(john,x) ⇔ true(x))

Beliefs



Can we use this "metalevel" approach to relate the truth 
of sentences described in a metalanguage to sentences 
describing those sentences?

Example: Can we use our truth predicate to formalize the 
truth or falsehood of people's statements?

∀x.(says(john,x) ⇒ true(x))

Disinformation



Puzzle

You are taken prisoner by a drug cartel and told:  If you 
tell a lie, we will hang you.  If you tell the truth, we will 
shoot you.  What do you say?

You say: You will hang me.
Result: They hang you and shoot you!
Suggestion: You should have asked if they meant if and only if.



Unfortunately, trying to use a logic to define a truth 
predicate is problematic.

We run the risk of paradoxes (sentences that are both true 
and false / neither true nor false).

This sentence is false.

Also nonsense terms (terms that do not refer to anything).

The set of all sets that do not contain themselves

Paradoxes



We can completely formalize Propositional Logic in 
Functional Logic.

(1) We can formalize some details of Functional Logic 
in Functional Logic but not everything.  (2) We can 
formalize more of Functional Logic in FOL, but we 
end up with nonstandard models.  (3) We can 
eliminate nonstandard models using SOL, but it is 
complicated and there is no complete proof procedure.

We can axiomatize a metalevel truth predicate; but, 
unless we are very, very careful, this can lead to 
unpleasant complications, e.g. paradoxes.

Results




