Introduction to Logic Functional Logic

Michael Genesereth
Computer Science Department
Stanford University

Motivation

Finite Worlds
n rows $\mathbf{X} n$ columns in Friends, Goldrush, Minefinder Finite Graphs
University Students
Population of a state or country
Countable Worlds
Integers - 1, 2, 3, 4, \ldots
Strings - "adbyug78377bh", ...
Sequences - [], [a], [b], [a,a], [a,b], [b,a], [b,b], [a,a,a], ... Sets - $\},\{a\},\{b\},\{a, b\},\{\{a\},\{b\}\},\{\{a\},\{a, b\}\}, \ldots$

Possibilities

Infinite Relational Logic - Infinite Vocabulary
$a 1, a 2, a 3, \ldots$

Functional Logic - Structured Terms
$0, s(0), s(s(0)), s(s(s(0))), \ldots$
a, b, pair(a,a), pair(b,a), pair(b,b), pair(a, pair(a,b)), ...
$a, b, \operatorname{set}(), \operatorname{set}(a), \operatorname{set}(b), \operatorname{set}(a, b), \operatorname{set}(\operatorname{set}(a), \operatorname{set}(a, b)), \ldots$

Programme

Today

Syntax
Semantics
Properties and Relationships
Examples
Next Time
Fitch Proofs with Induction

After Thanksgiving
Equality
Review

Syntax

Words

Words are strings of letters, digits, and occurrences of the underscore character.

Variables begin with characters from the end of the alphabet (from u through z).

$$
u, v, w, x, y, z
$$

Constants begin with digits or letters from the beginning of the alphabet (from a through t).
a,b, c, 123, father, mother, comp225, barack_obama

Constants

Object constants (symbols) represent objects.

$$
\text { joe, stanford, france, } 2345
$$

Function constants (constructors) represent functions.
successor, pair, set

Relation constants (predicates) represent relations.

knows, loves

Arity

The arity of a function constant or a relation constant is the number of arguments it takes.

Unary function or relation constant - 1 argument
Binary function or relation constant - 2 arguments
Ternary function or relation constant - 3 arguments
n-ary function or relation constant - n arguments

Signatures

A signature consist of a set of object constants, a set of function constants, and a set of relation constants together with a specification of arity for the function constants and relation constants.

Object Constants: a, b
Unary Function Constant: f
Binary Function Constant: g
Unary Relation Constant: p
Binary Relation Constant: q

Terms

A term is either a variable, an object constant, or a functional term (defined shortly).

Terms represent objects.
Terms are analogous to noun phrases in natural language (e.g. France, the set of 2 and 3)

Functional Terms

A functional term is an expression consisting of an n-ary function constant and n terms enclosed in parentheses and separated by commas.

$$
\begin{gathered}
f(a) \\
f(x) \\
g(a, y)
\end{gathered}
$$

Functional terms are terms and so can be nested*.

$$
g(f(a), g(y, a))
$$

* unlike relational sentences

Sentences

Three types of sentences in Functional Logic:
Relational sentences - analogous to the simple sentences in natural language

Logical sentences - analogous to the logical sentences in natural language

Quantified sentences - sentences that express the significance of variables

Relational Sentences

A relational sentence is an expression formed from an n-ary relation constant and n terms enclosed in parentheses and separated by commas.

$$
q(a, f(a))
$$

Reminder: Relational sentences are not terms and cannot be nested inside terms or relational sentences.

$$
\text { No! } q(a, q(a, y)) \quad \text { No! }
$$

Logical Sentences

Logical sentences in Functional Logic are analogous to those in Propositional Logic (except with functional terms).

$$
\begin{aligned}
& (\neg q(a, f(a))) \\
& (p(a) \wedge p(f(a))) \\
& (p(a) \vee p(f(a))) \\
& (q(x, f(a)) \Rightarrow q(f(a), x)) \\
& (q(x, f(a)) \Leftrightarrow q(f(a), x))
\end{aligned}
$$

Quantified Sentences

Universal sentences assert facts about all objects.

$$
(\forall x \cdot(p(x) \Longrightarrow q(x, f(x))))
$$

Existential sentence assert the existence of objects with given properties.

$$
(\exists x \cdot(p(x) \wedge q(x, f(x))))
$$

Quantified sentences can be nested within other sentences.

$$
\begin{gathered}
(\forall x . p(x)) \vee(\exists x . q(x, f(x))) \\
\quad(\forall x .(\exists y \cdot q(f(x), y)))
\end{gathered}
$$

Parentheses

Parentheses can be removed when precedence allows us to reconstruct sentences correctly.

Precedence relations same as in Propositional Logic with quantifiers being of higher precedence than logical operators.

$$
\begin{aligned}
\forall x . p(x) \Rightarrow q(x, x) & \rightarrow(\forall x \cdot p(x)) \Rightarrow q(x, x) \\
\exists x . p(x) \wedge q(x, x) & \rightarrow(\exists x \cdot p(x)) \wedge q(x, x)
\end{aligned}
$$

Semantics

Herbrand Universe and Herbrand Base

The Herbrand universe for a Functional language is the set of all ground terms that can be formed from the vocabulary of the language.

The Herbrand base for a Functional language is the set of all ground relational sentences that can be formed from the vocabulary of the language.

Example Without Functions

Object Constants: a, b
Unary Relation Constant: p
Binary Relation Constant: q
Herbrand Universe:

$$
\{a, b\}
$$

Herbrand Base:

$$
\{p(a), p(b), q(a, a), q(a, b), q(b, a), q(b, b)\}
$$

Example With Functions

Object Constants: a
Unary Function Constant: f
Unary Relation Constant: p
Herbrand Universe:

$$
\{a, f(a), f(f(a)), \ldots\} \quad \text { Infinite! !! }
$$

Herbrand Base:

$$
\{p(a), p(f(a)), p(f(f(a))), \ldots\} \quad \text { Infinite!!! }
$$

Truth Assignments

A truth assignment is an association between ground atomic sentences and the truth values true or false. As with Propositional Logic, we use 1 as a synonym for true and 0 as a synonym for false.

$$
\begin{array}{ll}
p(a)^{i}=1 & q(a, a)^{i}=1 \\
p(b))^{i}=0 & q(a, b)^{i}=0 \\
p(f(a))^{i}=1 & q(a, f(a))^{i}=0 \\
p(f(b))^{i}=0 & q(a, f(b))^{i}=1 \\
p(f(f(a)))^{i}=0 & q(b, f(a))^{i}=0 \\
p(f(f(b)))^{i}=0 & q(b, f(b))^{i}=1
\end{array}
$$

Everything Else

All other notions are defined the same as in Relational Logic.

The main difference is that now we have truth assignments that are infinitely large and there are infinitely many of them.

Bad News: It is no longer possible in general to determine logical entailment and other properties with truth tables.

Good News: In many cases, logical entailment can be established with finite proofs.

Example - Whole Numbers

Whole Numbers

Entities (natural numbers together with 0):

$$
0,1,2,3,4, \ldots
$$

Successor:

$$
0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow \ldots
$$

Less Than (transitive closure of successor):

$$
\begin{array}{lll}
0<1 & 1<2 & \ldots \\
0<2 & 1<3 & \ldots \\
0<3 & 1<4 & \ldots
\end{array}
$$

Possible Representations

Object Constants: $0,1,2,3,4,5,6,7,8,9,10, \ldots$
Ground Terms: $0,1,2,3,4,5,6,7,8,9,10, \ldots$

Possible Representations

Object Constants: $0,1,2,3,4,5,6,7,8,9,10, \ldots$
Ground Terms: $0,1,2,3,4,5,6,7,8,9,10, \ldots$

Object Constant: 0
Unary Function Constant: s
Ground Terms: $0, s(0), s(s(0)), \ldots$

NB: spelling matters in our standard notation for numbers
We do not write as a, b, c, d, \ldots
We write as $0,1,2, \ldots, 9,[1,0],[1,1],[1,2], \ldots,[1,0,0], \ldots$ Arithmetic operations take advantage of this

Signature

Object Constant: 0

Unary Function Constant: s

Binary Relation Constants:

same - the first and second arguments are identical succ - the first argument immediately precedes second less - the first argument less than or equal to second

Axiomatization

Enumerating ground relational data impossible

$$
\begin{array}{ccl}
\quad \operatorname{same}(0,0) & \neg \operatorname{succ}(0,0) & \neg \operatorname{less}(0,0) \\
\neg \operatorname{same}(0, s(0)) & \operatorname{succ}(0, s(0)) & \operatorname{less}(0, s(0)) \\
\neg \operatorname{same}(0, s(s(0))) & \neg \operatorname{succ}(0, s(s(0))) & \operatorname{less}(0, s(s(0)))
\end{array}
$$

Solution - write logical and quantified sentences

Same

Definition:

$$
\begin{gathered}
\forall x . \operatorname{same}(x, x) \\
\forall x .(\neg \operatorname{same}(0, s(x)) \wedge \neg \operatorname{same}(s(x), 0)) \\
\forall x . \forall y .(\neg \operatorname{same}(x, y) \Rightarrow \neg \operatorname{same}(s(x), s(y)))
\end{gathered}
$$

Same

Definition:

$$
\begin{gathered}
\forall x . \operatorname{same}(x, x) \\
\forall x .(\neg \operatorname{same}(0, s(x)) \wedge \neg \operatorname{same}(s(x), 0)) \\
\forall x . \forall y .(\neg \operatorname{same}(x, y) \Rightarrow \neg \operatorname{same}(s(x), s(y)))
\end{gathered}
$$

Examples:

```
    same(0,0)
    same(s(0),s(0))
    same(s(s(0)),s(s(0)))
```


Same

Definition:

$$
\begin{gathered}
\forall x . \operatorname{same}(x, x) \\
\forall x .(\neg \operatorname{same}(0, s(x)) \wedge \neg \operatorname{same}(s(x), 0)) \\
\forall x . \forall y .(\neg \operatorname{same}(x, y) \Rightarrow \neg \operatorname{same}(s(x), s(y)))
\end{gathered}
$$

Examples:

```
same(0,0)
same(s(0),s(0))
\[
\begin{array}{ll}
\neg \operatorname{same}(0, s(0)) & \neg \operatorname{same}(s(0), 0) \\
\neg \operatorname{same}(0, s(s(0))) & \neg \operatorname{same}(s(s(0)), 0)
\end{array}
\]
\[
\text { same }(s(s(0)), s(s(0)))
\]
same(s(s(0)),s(s(0)))
```


Same

Definition:

$$
\begin{gathered}
\forall x . \operatorname{same}(x, x) \\
\forall x .(\neg \operatorname{same}(0, s(x)) \wedge \neg \operatorname{same}(s(x), 0)) \\
\forall x . \forall y .(\neg \operatorname{same}(x, y) \Rightarrow \neg \operatorname{same}(s(x), s(y)))
\end{gathered}
$$

Examples:

$$
\begin{array}{lll}
\operatorname{same}(0,0) & \neg \operatorname{same}(0, s(0)) & \neg \operatorname{same}(s(0), 0) \\
\operatorname{same}(s(0), s(0)) & \neg \operatorname{same}(0, s(s(0))) & \neg \operatorname{same}(s(s(0)), 0) \\
\operatorname{same}(s(s(0)), s(s(0))) & \ldots & \ldots \\
\ldots & \neg \operatorname{same}(s(0), s(s(0))) & \neg \operatorname{same}(s(s(0)), s(0)) \\
& \neg \operatorname{same}(s(0), s(s(s(0)))) & \neg \operatorname{same}(s(s(s(0))), s(0))
\end{array}
$$

Successor

Positives:

$$
\forall y \cdot \operatorname{succ}(x, s(x))
$$

Functionality:

$$
\begin{gathered}
\forall x . \forall y . \forall z \cdot(\operatorname{succ}(x, y) \wedge \operatorname{succ}(x, z) \Rightarrow \operatorname{same}(y, z)) \\
\forall r \\
\forall x . \forall y . \forall z \cdot(\operatorname{succ}(x, y) \wedge \neg \operatorname{same}(y, z) \Rightarrow \neg \operatorname{succ}(x, z))
\end{gathered}
$$

Less Than

Successor:

$$
\forall x . \forall y .(\operatorname{succ}(x, y) \Rightarrow \operatorname{less}(x, y))
$$

Transitivity:

$$
\forall x . \forall y . \forall z .(\operatorname{less}(x, y) \wedge \operatorname{less}(y, z) \Rightarrow \operatorname{less}(x, z))
$$

Irreflexivity:

$$
\forall x . \neg \operatorname{less}(x, x)
$$

Example - Trees

Trees

Tree Vocabulary

Object constants: a, b
Binary function constants: cons

cons(a,cons(b,a))

Tree Vocabulary

Object constants: a, b
Unary function constants: cons

$\operatorname{cons}(a, \operatorname{cons}(b, a))$

Unary relation constants: symmetric, uniform, ...
Binary relation constant: subtree, congruent, mirror, ...

Congruence

Two trees are congruent if and only if they have the same shape. (Labels on leaf nodes irrelevant.)

Examples:

Non-Examples:

Definition

Congruence of atomic trees

$$
\begin{aligned}
& \text { congruent }(a, a) \\
& \text { congruent }(a, b) \\
& \text { congruent }(b, a) \\
& \text { congruent }(b, b)
\end{aligned}
$$

Congruence of compound trees:

$$
\begin{array}{r}
\forall u . \forall v . \forall x . \forall y .(\text { congruent }(\operatorname{cons}(u, v), \operatorname{cons}(x, y)) \Leftrightarrow \\
\text { congruent }(u, x) \wedge \operatorname{congruent}(v, y))
\end{array}
$$

Non-Congruence of mixed trees:
$\forall x . \forall y .(\neg \operatorname{congruent}(a, \operatorname{cons}(x, y)) \wedge \neg \operatorname{congruent}(\operatorname{cons}(x, y), a))$
$\forall x . \forall y .(\neg \operatorname{congruent}(b, \operatorname{cons}(x, y)) \wedge \neg \operatorname{congruent}(\operatorname{cons}(x, y), b))$

Example - Linked Lists

Linked Lists

Flat Lists:

$$
[a, b, c, d]
$$

Nested Lists:

$$
[a,[a, b], b,[c, d], d]
$$

Linked List:

Representation

Example:

Representation as a functional term:

$$
\operatorname{cons}(a, \operatorname{cons}(b, \operatorname{cons}(c, \operatorname{cons}(d, n i l))))
$$

Signature

Object Constants: a, b, c, d, nil
Binary Function Constant: cons
Binary Relation Constant: member Ternary Relation Constant: append

$$
\begin{gathered}
\text { member }(b,[a, b, c]) \\
\operatorname{append}([a, b],[c, d],[a, b, c, d])
\end{gathered}
$$

Membership

Example: member $(b,[a, b, c])$

member(b, cons(a,cons(b,cons(c,nil))))

Definition:
$\forall x . \forall y . \operatorname{member}(x, \operatorname{cons}(x, y)))$
$\forall x . \forall y . \forall z .(\operatorname{member}(x, z) \Rightarrow \operatorname{member}(x, \operatorname{cons}(y, z)))$

What else do we need?

Concatenation

Example: append $([a, b],[c, d],[a, b, c, d])$

```
append(cons(a,cons(b,nil)),
    cons(c,cons(d,nil)),
    cons(a,cons(b,cons(c,cons(d,nil)))))
```

Definition :

```
\forally.append(nil,y,y)
\forallx.\forally.\forallz.\forallw.(append (y,z,w)
    append(cons(x,y),z,\operatorname{cons}(x,w)))
```

What else do we need?

Example - Metalevel Logic

Metalevel Logic


```
proposition(p)
proposition(q)
proposition(r)
negation(not(x))\Leftrightarrow sentence(x)
conjunction(and(x,y))\Leftrightarrow\operatorname{sentence(x) ^ sentence(y)}
disjunction(or (x,y))}\Leftrightarrow\mathrm{ sentence (x) ^ sentence(y)
implication(if(x,y))\Leftrightarrow sentence(x) ^ sentence(y)
biconditional(iff( }x,y))\Leftrightarrow\mathrm{ sentence(x) ^ sentence(y)
sentence(x)}
proposition(x) \vee negation(x) \vee conjunction(x) \vee
disjunction(x) v implication(x) \vee biconditional( }x\mathrm{ ( 
```


Propositional Logic in Functional Logic


```
proposition(p)
proposition(q)
proposition(r)
negation(not}(x))\Leftrightarrow\mathrm{ sentence(x)
conjunction (and (x,y))\Leftrightarrow\operatorname{sentence}(x)\wedge sentence(y)
disjunction(or (x,y)) \Leftrightarrow\operatorname{sentence(x) ^ sentence(y)}
implication(if(x,y)) \Leftrightarrow sentence(x) ^ sentence(y)
biconditional(iff(x,y))\Leftrightarrow\operatorname{sentence(x) ^ sentence(y)}
sentence(x) \Leftrightarrow
proposition(x) \vee negation(x) \vee conjunction(x) \vee
disjunction (x) \vee implication(x) \vee biconditional( }x\mathrm{ )
```


Basic Idea

(1) Represent Propositional Logic sentences as terms in Functional Logic.

$$
p \wedge \neg q \text { represented as } \operatorname{and}(p, \operatorname{not}(q))
$$

(2) Write Functional Logic sentences to define the syntax and semantics of Propositional Logic.

$$
\operatorname{conjunction}(\operatorname{and}(p, n o t(q)))
$$

(3) Create Functional Logic proofs of Propositional Logic metatheorems (e.g. soundness, completeness, deduction theorem, and so forth).

$$
\forall x . \forall y .(\operatorname{entails}(x, y) \Rightarrow \operatorname{proves}(x, y))
$$

Syntactic Metavocabulary

Object Constants (representing propositions): p, q, r

Syntactic Metavocabulary

Object Constants (representing propositions):

$$
p, q, r
$$

Function constants (representing logical operators):

$$
\begin{aligned}
& \operatorname{not}(x) \\
& \operatorname{and}(x, y)
\end{aligned}
$$

$$
i f(x, y)
$$

$$
i f f(x, y)
$$

These are terms!!

Syntactic Metavocabulary

Object Constants (representing propositions):

$$
p, q, r
$$

Function constants (representing logical operators):

```
not(x)
and(x,y)
or(x,y)
```

Unary Relation Constants (properties of sentences):
proposition(x)
negation (x)
conjunction(x)
disjunction(x)
$i f(x, y)$
iff(x, y) These are terms!!
implication(x)
biconditional(x)
sentence(x)

Syntactic Metadefinitions

proposition(p)
proposition (q)
proposition(r)
negation $(\operatorname{not}(x)) \Leftrightarrow \operatorname{sentence}(x)$
conjunction $(\operatorname{and}(x, y)) \Leftrightarrow \operatorname{sentence}(x) \wedge \operatorname{sentence}(y)$
$\operatorname{disjunction}(\operatorname{or}(x, y)) \Leftrightarrow \operatorname{sentence}(x) \wedge \operatorname{sentence}(y)$
implication $(i f(x, y)) \Leftrightarrow \operatorname{sentence}(x) \wedge \operatorname{sentence}(y)$
biconditional $(\operatorname{iff}(x, y)) \Leftrightarrow \operatorname{sentence}(x) \wedge \operatorname{sentence}(y)$
sentence $(x) \Leftrightarrow$
proposition $(x) \vee$ negation $(x) \vee$ conjunction $(x) \vee$ disjunction $(x) \vee \operatorname{implication}(x) \vee \operatorname{biconditional}(x)$

Semantic Metavocabulary

Unary Relation Constants (properties of sentences): $\operatorname{valid}(x)$ - validity
contingent (x) - contingency
unsatisfiable (x) - unsatisfiability
Binary Relation Constants (relations among sentences): equivalent (x, y) - logical equivalence entails (x, y) - logical entailment consistent(x, y) - consistency

We also need to talk about truth assignments in order to define these notions. Doable but messy; skipping here.

Semantic Metatheorems

Validity of Axiom Schemata:

$$
\operatorname{valid}(\operatorname{or}(x, \operatorname{not}(x)) \Leftrightarrow \operatorname{sentence}(x)
$$

Equivalence and Entailment:

$$
\text { equivalent }(x, y) \Leftrightarrow \operatorname{entails}(x, y) \wedge \text { entails }(y, x)
$$

Deduction Theorem:

$$
\operatorname{entails}(\operatorname{and}(x, y), z) \Leftrightarrow \operatorname{entails}(x, i f(y, z))
$$

Rules of Inference

And Introduction:

$$
\forall x . \forall y .(\operatorname{sentence}(x) \wedge \operatorname{sentence}(y) \Leftrightarrow a i(x, y, \text { and }(x, y)))
$$

And Elimination:

$$
\begin{aligned}
& \forall x . \forall y .(\operatorname{sentence}(x) \wedge \operatorname{sentence}(y) \Leftrightarrow \operatorname{ae}(\operatorname{and}(x, y), x)) \\
& \forall x . \forall y .(\operatorname{sentence}(x) \wedge \operatorname{sentence}(y) \Leftrightarrow \operatorname{ae}(\operatorname{and}(x, y), y))
\end{aligned}
$$

More Metatheorems

Soundness:

$$
\forall x . \forall y .(\operatorname{proves}(x, y) \Rightarrow \operatorname{entails}(x, y))
$$

Completeness:

$$
\forall x . \forall y .(\operatorname{entails}(x, y) \Rightarrow \operatorname{proves}(x, y))
$$

Functional Logic in Functional Logic

Can we define Functional Logic in Functional Logic?
Basic idea: represent Functional Logic expressions as terms in Functional Logic, write sentences to define syntax and semantics, prove metatheorems.

Syntactic Metavocabulary

NB: We need terms to represent functional terms and relational sentences.

$$
p(a, f(a)) \quad \operatorname{relsent}(p, a, f u n t e r m(f, a)))
$$

NB: We need constants in our language to refer to variables in the language we are describing.

$$
\forall y . p(y . f(y)) \quad \text { forall }(n y, \text {,relsent }(p, n y, f u n t e r m(f, n y)))
$$

Syntactic Metadefinitions

obconst (a)
funconst(f)
relconst(r)
variable($n x$)
functionalterm $($ funterm $(w, x)) \Leftrightarrow$ funconst $(w) \wedge \operatorname{term}(x)$ relationalsentence $(\operatorname{relsent}(w, x)) \Leftrightarrow \operatorname{relconst}(w) \wedge \operatorname{term}(x)$
negation $(\operatorname{not}(x)) \Leftrightarrow \operatorname{sentence}(x)$
$\operatorname{conjunction}(\operatorname{and}(x, y)) \Leftrightarrow \operatorname{sentence}(x) \wedge \operatorname{sentence}(y)$
$\operatorname{disjunction}(\operatorname{or}(x, y)) \Leftrightarrow \operatorname{sentence}(x) \wedge \operatorname{sentence}(y)$
implication $(i f(x, y)) \Leftrightarrow \operatorname{sentence}(x) \wedge \operatorname{sentence}(y)$
biconditional (iff(x, y)) $\Leftrightarrow \operatorname{sentence}(x) \wedge \operatorname{sentence}(y)$
universal(forall $(v, x) \Leftrightarrow \operatorname{variable}(v) \wedge \operatorname{sentence}(x)$
universal $(\operatorname{exists}(v, x) \Leftrightarrow \operatorname{variable}(v) \wedge \operatorname{sentence}(x)$

Cardinality Problem

In formalizing Propositional Logic, we can talk about truth assignments. The Herbrand base is always finite, and so there are only finitely many truth assignments.

In formalizing Functional Logic, things are more difficult. The Herbrand base can be infinite (though it is always countable). However, the number of truth assignments can be uncountable. Unfortunately, we have only countably many terms!

Functional Logic in Another Logic

Can we define the semantics of Functional Logic in some other logic?

Good News / Bad News: First-Order Logic (FOL) allows for uncountable universes and so in principle can be used. Unfortunately, FOL theories with infinite universes have nonstandard models (unintended models that cannot be excluded).

NB: FOL is weaker than Functional Logic. Some notions that can be defined exactly in Functional Logic cannot be defined in FOL without allowing nonstandard models, e.g. Peano Arithmetic, transitive closure.

Functional Logic in Another Logic

Can we define the semantics of Functional Logic in some other logic?

Good News / Bad News: First-Order Logic (FOL) allows for uncountable universes and so in principle can be used. Unfortunately, FOL theories with infinite universes have nonstandard models (unintended models that cannot be excluded).

Good News / Bad News: Second-Order Logic (SOL) allows us to eliminate these nonstandard models, but it is more complicated and there is no complete proof procedure.

Self-Referential Logic

Can we use this "metalevel" approach to relate the truth of sentences described in a metalanguage to sentences describing those sentences?

Truth Predicate

Can we use this "metalevel" approach to relate the truth of sentences described in a metalanguage to sentences describing those sentences?

Example: If so, can we define a truth predicate that allows us to say whether or not a sentence is true?

$$
\forall x . \forall y .(\operatorname{true}(\operatorname{relsent}(p, x, y)) \Leftrightarrow p(x, y))
$$

Beliefs

Can we use this "metalevel" approach to relate the truth of sentences described in a metalanguage to sentences describing those sentences?

Example: Can we use our truth predicate to formalize the truth of people's beliefs, beliefs about those beliefs, etc.?

$$
\forall x .(\text { believes }(j o h n, x) \Leftrightarrow \operatorname{true}(x))
$$

Disinformation

Can we use this "metalevel" approach to relate the truth of sentences described in a metalanguage to sentences describing those sentences?

Example: Can we use our truth predicate to formalize the truth or falsehood of people's statements?

$$
\forall x .(\operatorname{says}(j o h n, x) \Rightarrow \operatorname{true}(x))
$$

Puzzle

You are taken prisoner by a drug cartel and told: If you tell a lie, we will hang you. If you tell the truth, we will shoot you. What do you say?

You say: You will hang me.
Result: They hang you and shoot you!
Suggestion: You should have asked if they meant if and only if.

Paradoxes

Unfortunately, trying to use a logic to define a truth predicate is problematic.

We run the risk of paradoxes (sentences that are both true and false / neither true nor false).
This sentence is false.

Also nonsense terms (terms that do not refer to anything).
The set of all sets that do not contain themselves

Results

We can completely formalize Propositional Logic in Functional Logic.
(1) We can formalize some details of Functional Logic in Functional Logic but not everything. (2) We can formalize more of Functional Logic in FOL, but we end up with nonstandard models. (3) We can eliminate nonstandard models using SOL, but it is complicated and there is no complete proof procedure.

We can axiomatize a metalevel truth predicate; but, unless we are very, very careful, this can lead to unpleasant complications, e.g. paradoxes.

