
Introduction to Logic
Functional Logic

Michael Genesereth
Computer Science Department

Stanford University

Finite Worlds
 n rows x n columns in Friends, Goldrush, Minefinder
 Finite Graphs
 University Students
 Population of a state or country

Countable Worlds
 Integers - 1, 2, 3, 4, ...
 Strings - "adbyug78377bh", ...
 Sequences - [], [a], [b], [a,a], [a,b], [b,a], [b,b], [a,a,a], ...
 Sets - {}, {a}, {b}, {a,b}, {{a},{b}}, {{a},{a,b}}, ...

Motivation

Infinite Relational Logic - Infinite Vocabulary
 a1, a2, a3, ...

Functional Logic - Structured Terms
 0, s(0), s(s(0)), s(s(s(0))), ...
 a, b, pair(a,a), pair(b,a), pair(b,b), pair(a, pair(a,b)), ...
 a, b, set(), set(a), set(b), set(a,b), set(set(a),set(a,b)), ...

Possibilities

Today
 Syntax
 Semantics
 Properties and Relationships
 Examples

Next Time
 Fitch Proofs with Induction

After Thanksgiving
 Equality
 Review

Programme

Syntax

Words are strings of letters, digits, and occurrences of the
underscore character.

Variables begin with characters from the end of the alphabet
(from u through z).

u, v, w, x, y, z

Constants begin with digits or letters from the beginning of
the alphabet (from a through t).

a, b, c, 123, father, mother, comp225, barack_obama

Words

Object constants (symbols) represent objects.

joe, stanford, france, 2345

Function constants (constructors) represent functions.

successor, pair, set

Relation constants (predicates) represent relations.

knows, loves

Constants

The arity of a function constant or a relation constant is the
number of arguments it takes.

Unary function or relation constant - 1 argument

Binary function or relation constant - 2 arguments

Ternary function or relation constant - 3 arguments

n-ary function or relation constant - n arguments

Arity

A signature consist of a set of object constants, a set of
function constants, and a set of relation constants together
with a specification of arity for the function constants and
relation constants.

Object Constants: a, b

Unary Function Constant: f
Binary Function Constant: g

Unary Relation Constant: p
Binary Relation Constant: q

Signatures

A term is either a variable, an object constant, or
a functional term (defined shortly).

Terms represent objects.

Terms are analogous to noun phrases in natural
language (e.g. France, the set of 2 and 3)

Terms

 A functional term is an expression consisting of an
n-ary function constant and n terms enclosed in
parentheses and separated by commas.

f(a)
f(x)

g(a, y)

Functional terms are terms and so can be nested*.

g(f(a), g(y,a))

* unlike relational sentences

Functional Terms

Three types of sentences in Functional Logic:

Relational sentences - analogous to the simple
sentences in natural language

Logical sentences - analogous to the logical sentences
in natural language

Quantified sentences - sentences that express the
significance of variables

Sentences

A relational sentence is an expression formed from an
n-ary relation constant and n terms enclosed in parentheses
and separated by commas.

q(a, f(a))

Reminder: Relational sentences are not terms and cannot
be nested inside terms or relational sentences.

No! q(a,q(a,y)) No!

Relational Sentences

Logical sentences in Functional Logic are analogous to
those in Propositional Logic (except with functional terms).

(¬q(a,f(a)))
(p(a) ∧ p(f(a)))
(p(a) ∨ p(f(a)))
(q(x,f(a)) ⇒ q(f(a),x))
(q(x,f(a)) ⇔ q(f(a),x))

Logical Sentences

Universal sentences assert facts about all objects.

(∀x.(p(x) ⇒ q(x, f(x))))

Existential sentence assert the existence of objects with
given properties.

(∃x.(p(x) ∧ q(x,f(x))))

Quantified sentences can be nested within other
sentences.

(∀x.p(x)) ∨ (∃x.q(x,f(x)))
(∀x.(∃y.q(f(x),y)))

Quantified Sentences

Parentheses can be removed when precedence allows us to
reconstruct sentences correctly.

Precedence relations same as in Propositional Logic with
quantifiers being of higher precedence than logical
operators.

∀x.p(x) ⇒ q(x,x) → (∀x.p(x)) ⇒ q(x,x)
∃x.p(x) ∧ q(x,x) → (∃x.p(x)) ∧ q(x,x)

Parentheses

Semantics

The Herbrand universe for a Functional language is the set
of all ground terms that can be formed from the vocabulary
of the language.

The Herbrand base for a Functional language is the set of
all ground relational sentences that can be formed from the
vocabulary of the language.

Herbrand Universe and Herbrand Base

Object Constants: a, b
Unary Relation Constant: p
Binary Relation Constant: q

Herbrand Universe:

{a, b}

Herbrand Base:

{p(a), p(b), q(a,a), q(a,b), q(b,a), q(b,b)}

Example Without Functions

Object Constants: a
Unary Function Constant: f
Unary Relation Constant: p

Herbrand Universe:

{a, f(a), f(f(a)), …}

Herbrand Base:

{p(a), p(f(a)), p(f(f(a))), …}

Example With Functions

Infinite!!!

Infinite!!!

A truth assignment is an association between ground atomic
sentences and the truth values true or false. As with
Propositional Logic, we use 1 as a synonym for true and 0
as a synonym for false.

p(a)i = 1 q(a,a)i = 1
p(b)i = 0 q(a,b)i = 0
p(f(a))i = 1 q(a,f(a))i = 0
p(f(b))i = 0 q(a,f(b))i = 1
p(f(f(a)))i = 0 q(b,f(a))i = 0
p(f(f(b)))i = 0 q(b,f(b))i = 1

Truth Assignments

All other notions are defined the same as in Relational
Logic.

The main difference is that now we have truth assignments
that are infinitely large and there are infinitely many of them.

Bad News: It is no longer possible in general to determine
logical entailment and other properties with truth tables.

Good News: In many cases, logical entailment can be
established with finite proofs.

Everything Else

Example - Whole Numbers

 Entities (natural numbers together with 0):

0, 1, 2, 3, 4, …

Successor:

0 → 1 → 2 → 3 → 4 → …

Less Than (transitive closure of successor):

0 < 1 1 < 2 ...
0 < 2 1 < 3 ...
0 < 3 1 < 4 ...

Whole Numbers

Object Constants: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...
Ground Terms: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...

Possible Representations

Object Constants: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...
Ground Terms: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...

Object Constant: 0
Unary Function Constant: s
Ground Terms: 0, s(0), s(s(0)), …

NB: spelling matters in our standard notation for numbers
 We do not write as a, b, c, d, ...
 We write as 0, 1, 2,..., 9, [1,0], [1,1], [1,2], ..., [1,0,0], ...
 Arithmetic operations take advantage of this

Possible Representations

Object Constant: 0

Unary Function Constant: s

Binary Relation Constants:
 same - the first and second arguments are identical
 succ - the first argument immediately precedes second
 less - the first argument less than or equal to second

Signature

Enumerating ground relational data impossible

 same(0,0) ¬succ(0,0) ¬less(0,0)
¬same(0,s(0)) succ(0,s(0)) less(0,s(0))
¬same(0,s(s(0))) ¬succ(0,s(s(0))) less(0,s(s(0)))

… … …

Solution - write logical and quantified sentences

Axiomatization

Definition:
∀x.same(x,x)

∀x.(¬same(0,s(x)) ∧ ¬same(s(x),0))

∀x.∀y.(¬same(x,y) ⇒ ¬same(s(x), s(y)))

Same

Definition:
∀x.same(x,x)

∀x.(¬same(0,s(x)) ∧ ¬same(s(x),0))

∀x.∀y.(¬same(x,y) ⇒ ¬same(s(x), s(y)))

Examples:
 same(0,0)
 same(s(0),s(0))
 same(s(s(0)),s(s(0)))

 …

Same

Definition:
∀x.same(x,x)

∀x.(¬same(0,s(x)) ∧ ¬same(s(x),0))

∀x.∀y.(¬same(x,y) ⇒ ¬same(s(x), s(y)))

Examples:
 same(0,0) ¬same(0,s(0)) ¬same(s(0),0)
 same(s(0),s(0)) ¬same(0,s(s(0))) ¬same(s(s(0)),0)
 same(s(s(0)),s(s(0))) … …

 …

Same

Definition:
∀x.same(x,x)

∀x.(¬same(0,s(x)) ∧ ¬same(s(x),0))

∀x.∀y.(¬same(x,y) ⇒ ¬same(s(x), s(y)))

Examples:
 same(0,0) ¬same(0,s(0)) ¬same(s(0),0)
 same(s(0),s(0)) ¬same(0,s(s(0))) ¬same(s(s(0)),0)
 same(s(s(0)),s(s(0))) … …

 … ¬same(s(0),s(s(0))) ¬same(s(s(0)),s(0))
 ¬same(s(0),s(s(s(0)))) ¬same(s(s(s(0))),s(0))

 … …

Same

Positives:
∀y.succ(x,s(x))

Functionality:

∀x.∀y.∀z.(succ(x,y) ∧ succ(x,z) ⇒ same(y,z))
or

∀x.∀y.∀z.(succ(x,y) ∧ ¬same(y,z) ⇒ ¬succ(x,z))

Successor

Successor:

∀x.∀y.(succ(x,y) ⇒ less(x,y))

Transitivity:

∀x.∀y.∀z.(less(x,y) ∧ less(y,z) ⇒ less(x,z))

Irreflexivity:

∀x.¬less(x,x)

Less Than

Example - Trees

Trees

ab
a

ba
a

a
a

ba ab
a

Object constants: a, b
Binary function constants: cons

 cons(cons(b,a),a) cons(a,cons(b,a))

Tree Vocabulary

ab
a

ab
a

Object constants: a, b
Unary function constants: cons

 cons(cons(b, a), a) cons(a, cons(b, a))

Unary relation constants: symmetric, uniform, ...
Binary relation constant: subtree, congruent, mirror, ...

Tree Vocabulary

ab
a

ab
a

Two trees are congruent if and only if they have the same
shape. (Labels on leaf nodes irrelevant.)

Examples:

Non-Examples:

Congruence

ab
a

ab
a

ba
a

a
a

ba
ab

a

Congruence of atomic trees

congruent(a, a)
congruent(a, b)
congruent(b, a)
congruent(b, b)

Congruence of compound trees:

∀u.∀v.∀x.∀y.(congruent(cons(u, v), cons(x, y)) ⇔
 congruent(u, x) ∧ congruent(v, y))

Non-Congruence of mixed trees:

∀x.∀y.(¬congruent(a, cons(x, y)) ∧ ¬congruent(cons(x, y), a))
∀x.∀y.(¬congruent(b, cons(x, y)) ∧ ¬congruent(cons(x, y), b))

Definition

Example - Linked Lists

Flat Lists:
[a, b, c, d]

Nested Lists:
[a, [a, b], b, [c, d], d]

Linked List:

a b

a b c d

d

Linked Lists

Example:

Representation as a functional term:

cons(a,cons(b,cons(c,cons(d,nil))))

a b c d

Representation

Object Constants: a, b, c, d, nil

Binary Function Constant: cons

Binary Relation Constant: member
Ternary Relation Constant: append

member(b, [a, b, c])
append([a, b], [c, d], [a, b, c, d])

Signature

 Example: member(b, [a, b, c])

member(b, cons(a,cons(b,cons(c,nil))))

Definition:

∀x.∀y.member(x,cons(x,y)))
∀x.∀y.∀z.(member(x,z) ⇒ member(x,cons(y,z)))

What else do we need?

Membership

 Example: append([a, b], [c, d], [a, b, c, d])

 append(cons(a,cons(b,nil)),
 cons(c,cons(d,nil)),
 cons(a,cons(b,cons(c,cons(d,nil)))))

Definition :

∀y.append(nil,y,y)
∀x.∀y.∀z.∀w.(append(y,z,w)
 ⇒ append(cons(x,y),z,cons(x,w)))

What else do we need?

Concatenation

Example - Metalevel Logic

Metalevel Logic

proposition(p)
proposition(q)
proposition(r)

negation(not(x)) ⇔ sentence(x)
conjunction(and(x,y)) ⇔ sentence(x) ∧ sentence(y)
disjunction(or(x,y)) ⇔ sentence(x) ∧ sentence(y)
implication(if(x,y)) ⇔ sentence(x) ∧ sentence(y)
biconditional(iff(x,y)) ⇔ sentence(x) ∧ sentence(y)

sentence(x) ⇔
 proposition(x) ∨ negation(x) ∨ conjunction(x) ∨
 disjunction(x) ∨ implication(x) ∨ biconditional(x)

Propositional Logic in Functional Logic

proposition(p)
proposition(q)
proposition(r)

negation(not(x)) ⇔ sentence(x)
conjunction(and(x,y)) ⇔ sentence(x) ∧ sentence(y)
disjunction(or(x,y)) ⇔ sentence(x) ∧ sentence(y)
implication(if(x,y)) ⇔ sentence(x) ∧ sentence(y)
biconditional(iff(x,y)) ⇔ sentence(x) ∧ sentence(y)

sentence(x) ⇔
 proposition(x) ∨ negation(x) ∨ conjunction(x) ∨
 disjunction(x) ∨ implication(x) ∨ biconditional(x)

(1) Represent Propositional Logic sentences as terms
in Functional Logic.

p∧¬q represented as and(p,not(q))

(2) Write Functional Logic sentences to define the
syntax and semantics of Propositional Logic.

conjunction(and(p,not(q)))

(3) Create Functional Logic proofs of Propositional
Logic metatheorems (e.g. soundness, completeness,
deduction theorem, and so forth).

∀x.∀y.(entails(x,y) ⇒ proves(x,y))

Basic Idea

Object Constants (representing propositions):
 p, q, r

Syntactic Metavocabulary

Object Constants (representing propositions):
 p, q, r

Function constants (representing logical operators):
 not(x) if(x,y)
 and(x,y) iff(x,y)
 or(x,y)

Syntactic Metavocabulary

These are terms!!

Object Constants (representing propositions):
 p, q, r

Function constants (representing logical operators):
 not(x) if(x,y)
 and(x,y) iff(x,y)
 or(x,y)

Unary Relation Constants (properties of sentences):
 proposition(x) implication(x)
 negation(x) biconditional(x)
 conjunction(x) sentence(x)
 disjunction(x)

Syntactic Metavocabulary

These are terms!!

proposition(p)
proposition(q)
proposition(r)

negation(not(x)) ⇔ sentence(x)
conjunction(and(x,y)) ⇔ sentence(x) ∧ sentence(y)
disjunction(or(x,y)) ⇔ sentence(x) ∧ sentence(y)
implication(if(x,y)) ⇔ sentence(x) ∧ sentence(y)
biconditional(iff(x,y)) ⇔ sentence(x) ∧ sentence(y)

sentence(x) ⇔
 proposition(x) ∨ negation(x) ∨ conjunction(x) ∨
 disjunction(x) ∨ implication(x) ∨ biconditional(x)

Syntactic Metadefinitions

Unary Relation Constants (properties of sentences):
 valid(x) - validity
 contingent(x) - contingency
 unsatisfiable(x) - unsatisfiability

Binary Relation Constants (relations among sentences):
 equivalent(x,y) - logical equivalence
 entails(x,y) - logical entailment
 consistent(x,y) - consistency

We also need to talk about truth assignments in order to
define these notions. Doable but messy; skipping here.

Semantic Metavocabulary

Validity of Axiom Schemata:

valid(or(x,not(x)) ⇔ sentence(x)

Equivalence and Entailment:

equivalent(x,y) ⇔ entails(x,y) ∧ entails(y,x)

Deduction Theorem:

entails(and(x,y),z) ⇔ entails(x,if(y,z))

Semantic Metatheorems

And Introduction:

∀x.∀y.(sentence(x) ∧ sentence(y) ⇔ ai(x,y,and(x,y)))

And Elimination:

∀x.∀y.(sentence(x) ∧ sentence(y) ⇔ ae(and(x,y),x))
∀x.∀y.(sentence(x) ∧ sentence(y) ⇔ ae(and(x,y),y))

Rules of Inference

Soundness:

∀x.∀y.(proves(x,y) ⇒ entails(x,y))

Completeness:

∀x.∀y.(entails(x,y) ⇒ proves(x,y))

More Metatheorems

Can we define Functional Logic in Functional Logic?

Basic idea: represent Functional Logic expressions as
terms in Functional Logic, write sentences to define
syntax and semantics, prove metatheorems.

Functional Logic in Functional Logic

NB: We need terms to represent functional terms and
relational sentences.

p(a,f(a)) relsent(p,a,funterm(f,a)))

NB: We need constants in our language to refer to
variables in the language we are describing.

∀y.p(y,f(y)) forall(ny,relsent(p,ny,funterm(f,ny)))

Syntactic Metavocabulary

obconst(a)
funconst(f)
relconst(r)
variable(nx)

functionalterm(funterm(w,x)) ⇔ funconst(w) ∧ term(x)
relationalsentence(relsent(w,x)) ⇔ relconst(w) ∧ term(x)

negation(not(x)) ⇔ sentence(x)
conjunction(and(x,y)) ⇔ sentence(x) ∧ sentence(y)
disjunction(or(x,y)) ⇔ sentence(x) ∧ sentence(y)
implication(if(x,y)) ⇔ sentence(x) ∧ sentence(y)
biconditional(iff(x,y)) ⇔ sentence(x) ∧ sentence(y)
universal(forall(v,x) ⇔ variable(v) ∧ sentence(x)
universal(exists(v,x) ⇔ variable(v) ∧ sentence(x)

Syntactic Metadefinitions

In formalizing Propositional Logic, we can talk about
truth assignments. The Herbrand base is always finite,
and so there are only finitely many truth assignments.

In formalizing Functional Logic, things are more difficult.
The Herbrand base can be infinite (though it is always
countable). However, the number of truth assignments
can be uncountable. Unfortunately, we have only
countably many terms!

Cardinality Problem

Can we define the semantics of Functional Logic in some
other logic?

Good News / Bad News: First-Order Logic (FOL) allows
for uncountable universes and so in principle can be used.
Unfortunately, FOL theories with infinite universes have
nonstandard models (unintended models that cannot be
excluded).

NB: FOL is weaker than Functional Logic. Some notions
that can be defined exactly in Functional Logic cannot be
defined in FOL without allowing nonstandard models,
e.g. Peano Arithmetic, transitive closure.

Functional Logic in Another Logic

Can we define the semantics of Functional Logic in some
other logic?

Good News / Bad News: First-Order Logic (FOL) allows
for uncountable universes and so in principle can be used.
Unfortunately, FOL theories with infinite universes have
nonstandard models (unintended models that cannot be
excluded).

Good News / Bad News: Second-Order Logic (SOL)
allows us to eliminate these nonstandard models, but it is
more complicated and there is no complete proof
procedure.

Functional Logic in Another Logic

Can we use this "metalevel" approach to relate the truth
of sentences described in a metalanguage to sentences
describing those sentences?

Self-Referential Logic

Can we use this "metalevel" approach to relate the truth
of sentences described in a metalanguage to sentences
describing those sentences?

Example: If so, can we define a truth predicate that
allows us to say whether or not a sentence is true?

∀x.∀y.(true(relsent(p,x,y)) ⇔ p(x,y))

Truth Predicate

Can we use this "metalevel" approach to relate the truth
of sentences described in a metalanguage to sentences
describing those sentences?

Example: Can we use our truth predicate to formalize the
truth of people's beliefs, beliefs about those beliefs, etc.?

∀x.(believes(john,x) ⇔ true(x))

Beliefs

Can we use this "metalevel" approach to relate the truth
of sentences described in a metalanguage to sentences
describing those sentences?

Example: Can we use our truth predicate to formalize the
truth or falsehood of people's statements?

∀x.(says(john,x) ⇒ true(x))

Disinformation

Puzzle

You are taken prisoner by a drug cartel and told: If you
tell a lie, we will hang you. If you tell the truth, we will
shoot you. What do you say?

You say: You will hang me.
Result: They hang you and shoot you!
Suggestion: You should have asked if they meant if and only if.

Unfortunately, trying to use a logic to define a truth
predicate is problematic.

We run the risk of paradoxes (sentences that are both true
and false / neither true nor false).

This sentence is false.

Also nonsense terms (terms that do not refer to anything).

The set of all sets that do not contain themselves

Paradoxes

We can completely formalize Propositional Logic in
Functional Logic.

(1) We can formalize some details of Functional Logic
in Functional Logic but not everything. (2) We can
formalize more of Functional Logic in FOL, but we
end up with nonstandard models. (3) We can
eliminate nonstandard models using SOL, but it is
complicated and there is no complete proof procedure.

We can axiomatize a metalevel truth predicate; but,
unless we are very, very careful, this can lead to
unpleasant complications, e.g. paradoxes.

Results

