Introduction to Logic
Relational Proofs

Michael Genesereth
Computer Science Department
Stanford University

Logical Entailment

A set of premises A logically entails a conclusion ¢ (A |= @)
if and only if every interpretation that satisfies A also
satisfies .

Determining Logical Entailment

{m=pvqgp=q} E m=q’

m P q |m=pvq p=q | m=4q
1 1 1 1 1 1
1 1 0 1 0 0
1 0 1 1 1 1
1 0 0 0 1 0
0 1 1 1 1 1
0 1 0 1 0 1
0 0 1 1 1 1
0 0 0 1 1 1

Determining Logical Entailment

{p(a) v p(b), Vx.(p(x) = gq(x))} = Ix.q(x)?

p@) pb) q@ qb) |p@vpbd) Vx.(p(x)= qx)) | Ix.q(x)
1 1 1 1 1 1 1

O O O O O© O O O o = =k = ke
O O O O M === OO O O =
O O = = OO == OO == O O -
O = O = O = O = O = O =IO =0
O O O O =t i ek pd ek ek pd e e ek e
ek ek ek ek D e O = OO = = OO O
O ekt kO bk ek ek O bk ek ek O ek

Object constants: n

Binary relation constants: k
Factoids in Herbrand Base: k*n?
Interpretations: 2k*n2

Object constants: 4

Binary relation constants: 4

Factoids in Herbrand Base: 64

Interpretations: 264 =18,446,744,073,709,551,616

Good News: If A logically entails ¢, then there 1s a finite
proof of @ from A. And vice versa.

Good News: If A logically entails @, it 1s possible to find
such a proof 1n finite time.

More Good News: Such proofs are often much smaller
than the corresponding truth tables.

Fitch System tor Relational Logic

Logical Rules of Inference

Negation Introduction
Negation Elimination

And Introduction
And Elimination

Or Introduction
Or Elimination

Assumption
Implication Elimination
Implication Introduction

Biconditional Introduction
Biconditional Elimination

New Rules of Inference

Universal Elimination

Domain Closure Universal Reasoning
Universal Introduction

Existential Introduction

Existential Elimination Existential Reasoning

Logical Entailment and Provability

A set of premises A logically entails a conclusion ¢ (A |=
¢) if and only 1f every interpretation that satisfies A also
satisfies .

If there exists a proof of a sentence ¢ from a set A of premises
using the rules of inference in R, we say that ¢ 1s provable
from A using R (written A +r ¢).

Soundness and Completeness

A proof system 1s sound if and only if every provable
conclusion 1s logically entailed.

If A - ¢, then A E .

A proof system 1s complete if and only 1f every logical
conclusion 1s provable.

If A=, then A - &.

Theorem: Fitch is sound and complete for Relational Logic.
A |I= @ 1f and only 1f A Fricnh .

Upshot: The truth table method and the proof method succeed
in exactly the same cases!

Universal Elimination

Universal Elimination (UE)

Vv.p
P

where T 1s ground

NB: ¢v—1s an instance of ¢ with all occurrences of v replaced by t.

UE Examples

Premuise:
Vx.hates(jane x)

Conclusions:
hates(jane jill) x < jill
hates(jane jane) X < jane

Non-Conclusions:
hates(jane.y) x<=y Wrong!
Must be ground.

UE Examples

Premise:
Vx.hates(x x)

Conclusions:
hates(jane jane) X < jane
hates(jill jill) x < jill

Non-Conclusions:

hates(jane x) X < jane Wrong!
hates(x jane) X < jane Wrong!
hates(x,x) X < jane Wrong!

Must be ground.

UE Examples

Premise:
Vx.dy.hates(x,y)

Conclusions:
dy.hates(jane,y) X < jane

UE Examples

Premise:
Vx.Vy.hates(x,y)

Conclusion:
Vy.hates(jane,y) X < jane

Subsequent Conclusion:
hates(jane,jill) y < jill
hates(jane,jane) y < jane

Domain Closure

Domain Closure

¢lo] every
} object
¢lo,] constant

Vvu.¢[v]

DC Example

likes(abby,cody)
likes(bess,cody)
likes(cody,cody)
likes(dana,cody)

Vx.likes(x,cody)

DC Example

likes(abby,abby)
likes(bess,bess)

likes(cody,cody)
likes(dana,dana)

Vx.likes(x,x)

DC Example

likes(abby,cody) = likes(cody,abby)
likes(bess,cody) = likes(cody,bess)

likes(cody,cody) = likes(cody,cody)
likes(dana,cody) = likes(cody,dana)

Vx.(likes(x,cody) = likes(cody,x))

DC Example

dy.likes(abby,y)
dy.likes(bess,y)
dy.likes(cody,y)
dy.likes(dana,y)

Vx.3y.likes(x,y)

Universal Introduction

1. Vy.(likes(cody,y) = happy(y)) Premise
2. ¥v.likes(cody.y) Premise
3. likes(cody,abby) = happy(abby) UE: 1

4. likes(codyabby) UE: 2

5. happy(abby) IE: 4.3
6. likes(cody.bess) = happy(bess) UE: 1

7. likes(cody bess) UE: 2

8. happy(bess) IE: 6,7
9. likes(cody.,cody) = happy(cody) UE: 1

10. likes(cody cody) UE: 2

11. happy(cody) IE: 9, 10
12. likes(codydana) = happy(dana) UE: 1

13. likes(cody,dana) UE: 2

14. happy(dana) IE: 12,13
15. Vy.happy(y) DC:5,8,11, 14

1. Vy.(likes(cody.y) = happy(y)) Premise
2. Vy.likes(cody.y) Premise
3. likes(cody,c) = happy(c) UE: 1
4. likes(cody) UE: 2
5. happy(c) IE: 4,3
6. Vy.happy(y) UlL: 5

Reasoning About Arbitrary Objects

If we can prove a property about an arbitrary object,
then 1t must be true of all objects.

Common type of mathematical reasoning:

Let ¢ be an arbitrary object.
We can prove that a particular property is true of c.
Therefore, the property is true of everything.

Placeholders

A placeholder 1s a new type of symbol that stands for
an arbitrary object constant but is not itself an object
constant. Spelled the same as object constants.

Placeholders must be disjoint from object constants.
Object Constants: abby, bess, cody, dana
Placeholder: ¢
Sometimes written in brackets: [c]

Placeholders are used only within the Fitch procedure,
never used outside of the procedure.

Universal Introduction (Ul)

¢
VVU.Prey

where T 1s a placeholder
not used in any active assumption

NB: (r<vis an instance of ¢ with all occurrences of T replaced by v.

Ul Example

Object Constants: jane, ...
Placehoders: ¢, ...

Premise:
hates(c jane)

Conclusion:
Vx.hates(x jane)

Ul Example

Object Constants: jane, ...
Placehoders: ¢, ...

Premise:
hates(c jane) = hates(jane)

Conclusion:
Vx.(hates(x jane) = hates(jane x)) C<=X

Premises:

Vx.(p(x) = q(x))
Vx.p(x)

Goal:
Vx.q(x)

1. Vx.(p(x) = g(x)) Premise
2. VYxpx) Premise
3. p(c) = q(c) UE: 1
4. p(c) UE: 2
5. ¢g(c) IE: 4,3
6. Vx.gx) UI: 5

Premises:

Vx.(p(x) = g(x))
Vx.(g(x) = r(x))

Goal:
Vx.(p(x) = r(x))

1. Vx.(p(x) = g(x)) Premise

2. Vx.(q(x) = r(x)) Premise

3. p(c) = q(c) UE: 1

4. g(c)=r(c) UE: 2

5. | p(c) Assumption
6. | g(c) =05, 3

7. | r(c) . 6,4

8. p(c)=r(c) II: 5,7

9. Vx.(p(x) = r(x)) UI: 8

Lovers

Everybody loves somebody. Everybody loves a lover.
Show that everybody loves everybody.

Premises:
Vy.dz.loves(y.7)
Vx.Vy.(Jz.loves(y,z) = loves(x,y))

Conclusion:;
Vx.Vy.loves(x.y)

Everybody loves somebody. Everybody loves a lover.
Show that everybody loves everybody.

1. Vydz.loves(y,z) Premise
2. Vx.Vy.(dz.loves(y,z) = loves(x,y)) Premise
3. dz.loves(d7) UE: 1
4. Vy.(Jz.loves(y,z) = loves(c.y)) UE: 2
5. dz.loves(d,z) = loves(c,d) UE: 4
6. loves(c,d) H: 5,3
7. Yy.loves(c.y) Ul: 6
8. Vx.Vy.loves(x,y) UI: 7

Universal Introduction (Ul)

¢
VVU.Prey

where T 1s a placeholder
not used in any active assumption

NB: (r<vis an instance of ¢ with all occurrences of T replaced by v.

Bad, Bad, Bad "Proof"

1. Vx.(p(x) = g(x)) Premise

2. p(a) Premise

3. p(c)=>q(c) UE: 1

4. | p(c) Assumption

5. |qg(c) H: 5,3

6. |Vy.q®) UL: 5 NO!!!
7. p(c) = Yy.q0©) II: 4,6

8. Vx.(p(x) = Vy.q(y)) UI: 7

9. p(a) = VyqQy) UE: 8

10 Vy.q(y) E: 9,2 Wrong.

Universal Introduction (Ul)

¢
VVU.Prey

where T 1s a placeholder
not used in any active assumption

NB: (r<vis an instance of ¢ with all occurrences of T replaced by v.

Name Conflict Not Cool

1. Vy.(likes(cody,y) = happy(y)) Premise

likes(cody abby) Premise
likes(codyabby) = happy(abby) UE: 1
happy(abby) IE: 3,2

. Vy.happy(y) Ul: 4 Wrong.

ST

Reasoning Tip for Universal Reasoning

If you have some universal sentences and you want to prove
a universal sentence, use placeholders to eliminate the
universals, prove a specific conclusion, then generalize.

Vx.(p(x) = q(x)), Vx.(g(x) = r(x)) = Vx.(p(x) = r(x))

1. Vx.(p(x) = g(x)) Premise

2. Vx.(q(x) = r(x)) Premise

3. p(c) = q(c) UE: 1

4. g(c)=r(c) UE: 2

5. | p(c) Assumption
6. |q(c) 50 5,3

7. | r(c) . 6,4

8. p(c)=r(c) II: 5,7

9. Vx.(p(x) = r(x)) UI: 8

Existential Introduction

Existential Introduction (EI)

¢

AV.Prv

where T 1S a constant

NB: ¢:<vis an instance of ¢ with 0 or more occurrences of T replaced by v.

El Examples

Premise:
hates(jill jill)

Conclusions:
dx.hates(x x)
dx.hates(jill x)
dx.hates(x jill)

Two Applications:
dx.dy.hates(x,y)

El Examples

Premise:
Vx.hates(x x)

Non-Conclusion:
dy.Vx.hates(x.y) Wrong. Constants only!

Existential Elimination

EE Example

Premises:
dx.hates(jane x)
Vx.(hates(jane,x) = mean(jane))

Conclusion:
mean(jane)

EE Example

Metatheorem: Vv.(¢p = 1) is equivalent to (Iv.¢p =) so
long as 1 1s free of v.

Example:
Vx.(hates(jane,x) = mean(jane))
1s equivalent to
(dx.hates(jane,x) = mean(jane))

EE Example

Premises:
dx.hates(jane x)
Vx.(hates(jane,x) = mean(jane))

Equivalent Premises:
dx.hates(jane x)
dx.hates(jane . x) = mean(jane)

Conclusion (by Implication Elimination):
mean(jane)

Existential Elimination (EE)

dv.¢
Vv =)

Y

where v does not occur free in |

EE Example

Premises:
dx.hates(jane x)
Vx.(hates(jane,x) = mean(jane))

Conclusion:
mean(jane)

Existential Elimination (EE)

dv.¢
Vv =)

Y

where v does not occur free in

EE Example

Premises:
dx.hates(jane x)
Vx.(hates(jane,x) = Vx.hates(x,jane))

Conclusion:
Vx.hates(x,jane)

Or Elimination

¢ v
¢ =¥
P =Y

EE = OE on Steroids

dv.¢ G1 V...V On
Vv.(p =) (01 =Y)Ao A (D=)
W L) I
(i)l V..V (l)
b1 =1

vy

X P

Intuition Analogous to Universal Reasoning

Suppose we know Av.p(v).

We hypothesize an object ¢ and assume ¢(c).
We try to prove .

If does not contain c, then it 1s true for any such c.
We know that there is some v from 3v.Pp(v).
So we can conclude .

But we are still in the subproof.

Intuition Analogous to Universal Reasoning

Suppose we know Jv.p(v).

We hypothesize an object ¢ and assume ¢(c).

We try to prove .

If does not contain c, then 1t is true for any such c.
We know that there is some v from Av.Qp(V).

So we can conclude .

But we are still in the subproof.

So, we exit the subproof with (p(c) =).
We apply Universal Introduction to get Vv.(¢p(v) =)
Then we apply EE to get 1 outside the subproof.

Reasoning Tip for Existential Reasoning

If you have an existential sentence,

(1) assume the scope with a placeholder instead of variable,

(2) prove some conclusion,
(3) exit the assumption with an implication,

(4) generalize wit!

n Universal Introduction, and

(5) use Existentia

| Elimination to derive the conclusion.

dy.Vx.likes(x,y) &= Vx.dy.likes(x,y)

1. dy.Vx.likes(x,y) Premise

(1) 2. | Vx.likes(x,d) Assumption
3. | likes(c,d) UE: 2

(2) 4. |3dy.likes(c.y) El: 3

(3) 5. Vx.likes(x,d) = Ay.likes(c.y) I1: 2,4

4) 6. Vy.(Vx.likes(x,y) = Ay.likes(c.y)) UI: 5

(5) 7. y.likes(c.y) EE: 1,6
8. Vx.dy.likes(x,y) UL 7

Useful Result

1. Vx.(p(x) = g(a)) Premise
2. | dx.p(x) Assumption
3. 1q(a) EE: 2, 1
4. dx.p(x) = g(a) 1: 2.3

1
2
3.
4.
5
6

Another Useful Result

p(c)

dx.p(x)

q(a)

. p(c) = q(a)

. Vx.(p(x) = q(a))

Premise
Assumption
El: 2

H: 1,3

II: 2,4

UI: 5

Fitch Online System

Course Website

http://logica.stantord.edu

1. Vx.(p(x) = g(x)) Premise
2. VYxpx) Premise
3. p(c) = q(c) UE: 1
4. p(c) UE: 2
5. ¢g(c) IE: 4,3
6. Vx.gx) UI: 5

Vx.(p(x) = q(x)), Vx.(g(x) = r(x)) = Vx.(p(x) = r(x))

1. Vx.(p(x) = g(x)) Premise

2. Vx.(q(x) = r(x)) Premise

3. p(c) = q(c) UE: 1

4. g(c)=r(c) UE: 2

5. | p(c) Assumption
6. |q(c) 50 5,3

7. | r(c) . 6,4

8. p(c)=r(c) II: 5,7

9. Vx.(p(x) = r(x)) UI: 8

