
Introduction to Logic
Relational Analysis

Michael Genesereth
Computer Science Department

Stanford University

A truth assignment / interpretation is an association
between ground atomic sentences and the truth values true
and false or, equivalently 1and 0.

 p(a)i = 1
 p(b)i = 0
 q(a,a)i = 1
 q(a,b)i = 0
 q(b,a)i = 1
 q(b,b)i = 0

Truth Assignment

(¬ϕ)i = 1 if and only if ϕi = 0

(ϕ ∧ ψ)i = 1 if and only if ϕi = 1 and ψi = 1

(ϕ ∨ ψ)i = 1 if and only if ϕ i = 1 or ψi = 1

(ϕ ⇒ ψ)i = 1 if and only if ϕi = 0 or ψi = 1

(ϕ ⇔ ψ)i = 1 if and only if ϕi = ψi

Logical Sentences

A universally quantified sentence is true for a truth
assignment if and only if every instance of the scope of
the quantified sentence is true for that assignment.

An existentially quantified sentence is true for a truth
assignment if and only if some instance of the scope of
the quantified sentence is true for that assignment.

Quantified Sentences

A sentence is valid if and only if
every interpretation satisfies it.

A sentence is contingent if and only if
some interpretation satisfies it and
some interpretation falsifies it.

A sentence is unsatisfiable if and
only if no interpretation satisfies it.

Valid

Contingent

Unsatisfiable

Properties of Sentences

A sentences is satisfiable if and only
if it is either valid or contingent.

A sentences is falsifiable if and only
if it is contingent or unsatisfiable.

Valid

Contingent

Unsatisfiable

}

}

Properties of Sentences

A sentence φ is logically equivalent to a sentence ψ if
and only if φ and ψ have the same value for every truth
assignment.

A sentence φ is consistent with a sentence ψ if and only
if there is a truth assignment that satisfies both φ and ψ.

A sentence φ logically entails a sentence ψ (written φ ⊨ ψ)
if and only if every truth assignment that satisfies φ also
satisfies ψ.

Relationships

A set of sentences Γ logically entails a set of sentences Δ
(written as Γ ⊨ Δ) if and only if every truth assignment
that satisfies all of the sentences in Γ satisfies all of the
sentences in Δ.

Ditto for equivalence and consistency.

Sets of Sentences

Metatheorems

Propositional Metatheorems:
 Monotonicity Theorem (More premises mean more conclusions.)
 Ramification Theorem (If many conclusions, then few conclusions.)

 Equivalence Theorem (ϕ equivalent to ψ iff (ϕ ⇔ ψ) is valid.)
 Substitution Theorem (If (ϕ ⇔ ψ) is valid, χϕ←ψ equivalent to χ.)
 Deduction Theorem (ϕ ⊨ ψ iff (ϕ ⇒ ψ) is valid.)

 Unsatisfiability Theorem (Δ ⊨ ϕ iff Δ ∪ {¬ϕ} is unsatisfiable.)
 Consistency Theorem (ϕ is consistent ψ iff (ϕ ∧ ψ) is satisfiable.)

These theorems also hold in Relational Logic provided that
all sentences are closed (i.e. they have no free variables).

Relational Metatheorems

Common Quantifier Reversal:
∀x.∀y.q(x,y) ⊨ ∀y.∀x.q(x,y)
∃x.∃y.q(x,y) ⊨ ∃y.∃x.q(x,y)

Distributing Existentials over Universals:
∃y.∀x.q(x,y) ⊨ ∀x.∃y.q(x,y)

Distributing Universals over Existentials not cool:
No! No!! No!!! ∀x.∃y.q(x,y) ⊨ ∃y.∀x.q(x,y) No! No!! No!!!

Distributing Quantifiers over Quantifiers

Distributing Quantifiers over Negations:
∃x.¬p(x) ⊨ ¬∀x.p(x)
∀x.¬p(x) ⊨ ¬∃x.p(x)

Distributing Quantifiers over Conjunctions:
∀x.(p(x) ∧ q(x)) ⊨ ∀x.p(x) ∧ ∀x.q(x))
∃x.(p(x) ∧ q(x)) ⊨ ∃x.p(x) ∧ ∃x.q(x))

Distributing Quantifiers over Disjunctions:
∃x.(p(x) ∨ q(x)) ⊨ ∃x.p(x) ∨ ∃x.q(x))

No! No!! No!!! ∀x.(p(x) ∨ q(x)) ⊨ ∀x.p(x) ∨ ∀x.q(x)) No! No!! No!!!
∀x.(p(x) ∨ q(b)) ⊨ ∀x.p(x) ∨ q(b)

Distributing Quantifiers over Operators

Implication Distribution:
∀y.(p(a) ⇒ q(y)) ⊨ (p(a) ⇒ ∀y.q(y))
∀x.(p(x) ⇒ q(b)) ⊨ (∃x.p(x) ⇒ q(b))

∀x.∀y.(p(x) ⇒ q(y)) ⊨ (∃x.p(x) ⇒ ∀y.q(y))

Derivation:
∀x.(p(x) ⇒ q(b)) ⊨ ∀x.(¬p(x) ∨ q(b))
 ⊨ (∀x.¬p(x) ∨ q(b))
 ⊨ (¬∃x.p(x) ∨ q(b))
 ⊨ (∃x.p(x) ⇒ q(b))

Distributing Quantifiers over Implications

Common, very useful distribution.

Distributing Negations over Quantifiers:
¬∀x.p(x) ⊨ ∃x.¬p(x)
¬∃x.p(x) ⊨ ∀x.¬p(x)

Distributing Conjunctions over Quantifiers:
∀x.p(x) ∧ ∀x.q(x)) ⊨ ∀x.(p(x) ∧ q(x))

No! No!! No!!! ∃x.p(x) ∧ ∃x.q(x) ⊨ ∃x.(p(x) ∧ q(x)) No! No!! No!!!
∃x.p(x) ∧ q(b) ⊨ ∃x.(p(x) ∧ q(b))

Distributing Disjunctions over Quantifiers:
∃x.p(x) ∨ ∃x.q(x)) ⊨ ∃x.(p(x) ∨ q(x))
∀x.p(x) ∨ ∀x.q(x)) ⊨ ∀x.(p(x) ∨ q(x))

Distributing Operators over Quantifiers

Truth Table Method

Determining Logical Entailment

{m ⇒ p ∨ q, p ⇒ q} ⊨ m ⇒ q?

Question:

{p(a) ∨ p(b), ∀x.(p(x) ⇒ q(x))} ⊨ ∃x.q(x)?

Determining Logical Entailment

Question:

{p(a) ∨ p(b), ∀x.(p(x) ⇒ q(x))} ⊨ ∃x.q(x)?

Object Constants: a, b
Unary Relation Constants: p, q
Herbrand Base: {p(a), p(b), q(a), q(b)}

Determining Logical Entailment

Determining Logical Entailment

{p(a) ∨ p(b), ∀x.(p(x) ⇒ q(x))} ⊨ ∃x.q(x)?

Determining Logical Entailment

{p(a) ∨ p(b), ∀x.(p(x) ⇒ q(x))} ⊨ ∃x.q(x)?

Object constants: n
Binary relation constants: k
Factoids in Herbrand Base: k*n2

Interpretations: 2k*n2

Object constants: 4
Binary relation constants: 4
Factoids in Herbrand Base: 64
Interpretations: 264 = 18,446,744,073,709,551,616

Analysis

Truth Tables / Models
 Guaranteed
 Often Impractical

Proofs
 Guaranteed
 Often non-intuitive

Hybrid Methods (intermixing Model Creation + Proofs)
 Boolean Grids (aka Logic Grids)
 Non-Boolean Grids

Methods

Boolean Grids / Logic Grids

Friends

Logical Sentences

Dana likes Cody.
Abby does not like Dana.
Dana does not like Abby.
Abby likes everyone that Bess likes.
Bess likes Cody or Dana.
Abby and Dana both dislike Bess.
Cody likes everyone who likes her.
Nobody likes herself.

Logical Sentences

likes(dana,cody)
¬likes(abby,dana)
¬likes(dana,abby)
∀y.(likes(bess,y) ⇒ likes(abby,y))
likes(bess,cody) ∨ likes(bess,dana)
¬likes(abby,bess) ∧ ¬likes(dana,bess)
∀x.(likes(x,cody) ⇒ likes(cody,x))
¬∃x.likes(x,x)

One Truth Assignment

All Possible Truth Assignments

2^16 (65,536) truth assignments.

Logic Grid

Logic Grid

likes(dana,cody)
¬likes(abby,dana)
¬likes(dana,abby)

Logic Grid

likes(dana,cody)
¬likes(abby,dana)
¬likes(dana,abby)
∀y.(likes(bess,y) ⇒ likes(abby,y))

Logic Grid

likes(dana,cody)
¬likes(abby,dana)
¬likes(dana,abby)
∀y.(likes(bess,y) ⇒ likes(abby,y))
likes(bess,cody) ∨ likes(bess,dana)

Logic Grid

likes(dana,cody)
¬likes(abby,dana)
¬likes(dana,abby)
∀y.(likes(bess,y) ⇒ likes(abby,y))
likes(bess,cody) ∨ likes(bess,dana)
¬likes(abby,bess) ∧ ¬likes(dana,bess)

Logic Grid

likes(dana,cody)
¬likes(abby,dana)
¬likes(dana,abby)
∀y.(likes(bess,y) ⇒ likes(abby,y))
likes(bess,cody) ∨ likes(bess,dana)
¬likes(abby,bess) ∧ ¬likes(dana,bess)
∀x.(likes(x,cody) ⇒ likes(cody,x))

Logic Grid

likes(dana,cody)
¬likes(abby,dana)
¬likes(dana,abby)
∀y.(likes(bess,y) ⇒ likes(abby,y))
likes(bess,cody) ∨ likes(bess,dana)
¬likes(abby,bess) ∧ ¬likes(dana,bess)
∀x.(likes(x,cody) ⇒ likes(cody,x))
¬∃x.likes(x,x)

Logic Grid

likes(dana,cody)
¬likes(abby,dana)
¬likes(dana,abby)
∀y.(likes(bess,y) ⇒ likes(abby,y))
likes(bess,cody) ∨ likes(bess,dana)
¬likes(abby,bess) ∧ ¬likes(dana,bess)
∀x.(likes(x,cody) ⇒ likes(cody,x))
¬∃x.likes(x,x)

http:/logica.stanford.edu

Course Website

http://intrologic.stanford.edu

Course Website

Non-Boolean Grids

Sudoku

43

Sukoshi

Axiomatization

cell(1,2,4)
cell(1,4,1)
cell(2,1,2)
cell(3,4,3)
cell(4,3,4)

 same(1,1) ¬same(2,1) ¬same(3,1) ¬same(4,1)
¬same(1,2) same(2,2) ¬same(3,2) ¬same(4,2)
¬same(1,3) ¬same(2,3) same(3,3) ¬same(4,3)
¬same(1,4) ¬same(2,4) ¬same(3,4) same(4,4)

∀x.∀y.∃w.cell(x,y,w)
∀x.∀y.∀z.∀w.(cell(x,y,w) ∧ cell(x,y,z) ⇒ same(w,z))
∀x.∀y.∀z.∀w.(cell(x,y,w) ∧ cell(x,z,w) ⇒ same(y,z))
∀x.∀y.∀z.∀w.(cell(x,z,w) ∧ cell(y,z,w) ⇒ same(x,y))

Object constants: 4
Ternary relation constants: 1
Factoids in Herbrand Base: 64
Truth Assignments: 264 = 18,446,744,073,709,551,616

Analysis

Object constants: 4
Ternary relation constants: 1
Factoids in Herbrand Base: 64
Truth Assignments: 264 = 18,446,744,073,709,551,616

Non-Boolean Grids: 416 = 4,294,967,296

Analysis

47

Sukoshi

48

Sukoshi

Sukoshi

50

Sukoshi

51

Sukoshi

52

Sukoshi

53

Sukoshi

54

Sukoshi

55

Sukoshi

Sukoshi

57

Sukoshi

58

Sukoshi

http://intrologic.stanford.edu

Course Website

Zebra Puzzle

There is a row of five houses.
The Englishman lives in the red house.
The Spaniard owns the dog.
Coffee is drunk in the green house.
The Ukrainian drinks tea.
The green house is immediately to the right of the ivory house.
The Old Gold smoker owns snails.
Kools are smoked in the yellow house.
Milk is drunk in the middle house.
The Norwegian lives in the first house.
The man who smokes Chesterfields lives in the house next to the man with the fox.
Kools are smoked in the house next to the house where the horse is kept.
The Lucky Strike smoker drinks orange juice.
The Japanese smokes Parliaments.
The Norwegian lives next to the blue house.

Zebra Puzzle

There is a row of five houses.
The Englishman lives in the red house.
The Spaniard owns the dog.
Coffee is drunk in the green house.
The Ukrainian drinks tea.
The green house is immediately to the right of the ivory house.
The Old Gold smoker owns snails.
Kools are smoked in the yellow house.
Milk is drunk in the middle house.
The Norwegian lives in the first house.
The man who smokes Chesterfields lives in the house next to the man with the fox.
Kools are smoked in the house next to the house where the horse is kept.
The Lucky Strike smoker drinks orange juice.
The Japanese smokes Parliaments.
The Norwegian lives next to the blue house.

Who owns the Zebra?

Relational Logic and Propositional Logic

There is a simple procedure for mapping RL sentences to
equivalent PL sentences.

(1) Convert to Prenex form.

(2) Compute the grounding.

(3) Rewrite from RL in PL.

Mapping

A sentence is in prenex form if and only if (1) it is closed
and (2) all of the quantifiers are outside of all logical
operators.

Sentence in Prenex Form:
∀x.∃y.∀z.(p(x,y) ∨ q(z))

Sentences not in Prenex Form:
∀x.∃y.p(x,y) ∨ ∃y.q(y)
∀x.(p(x,y) ∨ q(x))

Prenex Form

Rename duplicate variables.
 ∀y.p(x,y) ∨ ∃y.q(y) → ∀y.p(x,y) ∨ ∃z.q(z)

Distribute logical operators over quantifiers.
 ∀y.p(x,y) ∨ ∃z.q(z) → ∀y.∃z.(p(x,y) ∨ q(z))

Quantify any free variables.
 ∀y.∃z.(p(x,y) ∨ q(z)) → ∀x.∀y.∃z.(p(x,y) ∨ q(z))

Conversion to Prenex Form

Instantiate all quantified sentences.

(1) Leave all ground sentences as is.

(2) Replace every universally quantified sentence by all
instances of its scope.

(3) Replace every existentially quantified sentence by a
disjunction of instances of its scope.

Grounding

Object constants: a, b
Unary Relations constants: p, q

{p(a), ∀x.(p(x) ⇒ q(x)) , ∃x.q(x)}

p(a) p(a)

∀x.(p(x) ⇒ q(x)) p(a) ⇒ q(a)
 p(b) ⇒ q(b)

∃x.q(x) q(a) ∨ q(b)

Grounding

Select a proposition for each ground relational sentence and
rewrite the grounding from RL to PL.

RL Grounding:
{p(a), p(a) ⇒ q(a), p(b) ⇒ q(b), q(a) ∨ q(b)}

Corresponding PL:
p(a) ↔ pa q(a) ↔ qa
p(b) ↔ pb q(b) ↔ qb

Corresponding PL:
{pa, pa ⇒ qa, pb ⇒ qb, qa ∨ qb}

Renaming RL to PL

Unsatisfiability and logical entailment for Propositional
Logic (PL) is decidable.

Given our mapping, we also know that unsatisfiability and
logical entailment for Relational Logic (RL) is also
decidable.

Decidability

