
Introduction to Logic
Relational Logic

Michael Genesereth
Computer Science Department

Stanford University

Premises:
 If Abby likes Bess, then Bess likes Abby.
 Abby likes Bess.

Conclusion:
 Bess likes Abby.

Propositional Logic

Propositional Logic:
 If Abby likes Bess, then Bess likes Abby.
 If Abby likes Cody, then Cody likes Abby.
 If Abby likes Dana, then Dana likes Abby.
 ...
 If Bess likes Abby, then Abby likes Bess.
 If Cody likes Abby, then Abby likes Cody.
 If Dana likes Abby, then Abby likes Dana.

Relational Logic:
 If X likes Y, then Y likes X.

Symmetry of Affection

Natural Language Sentence:
 If X likes Y, then Y likes X.
 For every X and for every Y, if X likes Y, then Y likes X.

New Linguistic Features:
 Variables
 Quantifiers

Relational Logic Sentence:
∀x.∀y.(likes(x,y) ⇒ likes(y,x))

Relational Logic

Syntax

Words
a b c p q r x y z

Sentences
∀x.(p(x,a) ∧ q(x,b) ⇒ r(a,b))

Components of Language

Words are strings of letters, digits, and occurrences of the
underscore character.

Constants begin with digits or letters from the beginning of
the alphabet (from a through t).

a, b, c, 123, cs157, barack_obama

Variables begin with characters from the end of the alphabet
(from u through z).

u, v, w, x, y, z

Note that, in the online tools, we use lower case and
capital letters to distinguish constants and variables.

Words

Object constants represent objects.

joe stanford canada 2345

Relation constants represent properties or relationships.

isaperson isacountry knows likes between

Constants

The arity of a relation constant is the number of arguments
it takes.

Unary relation constant - 1 argument
e.g. isaperson, isacountry

Binary relation constant - 2 arguments
e.g. knows, likes

Ternary relation constant - 3 arguments
e.g. between

n-ary relation constant - n arguments

Arity

A vocabulary / signature consists of a finite, non-empty set
of object constants and a finite, non-empty set of relation
constants together with a specification of arity for the
relation constants.

Object Constants: a, b
Unary Relation Constant: p
Binary Relation Constant: q

Vocabularies

A term is either (1) a variable or (2) an object constant.

Terms represent objects.

Terms are analogous to pronouns and nouns in English.

Terms

Three types of sentences in Relational Logic:

Relational sentences - analogous to the proposition
constants in Propositional Logic

Logical sentences - analogous to logical sentences in
Propositional Logic

Quantified sentences - sentences that express the
significance of variables

Sentences

A relational sentence is an expression formed from an n-
ary relation constant and n terms enclosed in parentheses
and separated by commas.

q(a,y)

Relational sentences are not terms and cannot be nested in
relational sentences.

No! q(a,q(a,y)) No!

Relational sentences are also called atoms or atomic
sentences.

Relational Sentences

Logical sentences in Relational Logic are analogous to
those in Propositional Logic (except with relational
sentences in place of propositional constants)

(¬q(a,b))
(p(a) ∧ p(b))
(p(a) ∨ p(b))
(q(x,y) ⇒ q(y,x))
(q(x,y) ⇔ q(y,x))

Logical Sentences

Universal sentences assert facts about all objects.

(∀x.(p(x) ⇒ q(x,x)))

Existential sentences assert the existence of objects with
given properties.

(∃x.(p(x) ∧ q(x,x)))

The sentence contained within a quantified sentence is
called the scope of that sentence.

Quantified Sentences

Quantified sentences can be nested within other
sentences.

(∀x.p(x)) ∨ (∃x.q(x,x))
(∀x.(∃y.(q(x,y) ∧ q(y,x))))

The sentence contained inside a quantified sentence is
called the scope of that sentence.

Nesting

Parentheses can be removed when precedence allows us to
reconstruct sentences correctly.

Precedence relations same as in Propositional Logic with
quantifiers being of higher precedence than logical
operators.

∀x.p(x) ⇒ q(x,x) → (∀x.p(x)) ⇒ q(x,x)
∃x.p(x) ∧ q(x,x) → (∃x.p(x)) ∧ q(x,x)

Parentheses

An expression is ground if and only if it contains no
variables.

Ground sentence:
p(a)

Non-Ground Sentences:
q(a,x)
∀x.p(x)

Ground and Non-Ground Expressions

An occurrence of a variable is bound if and only if it in
in the scope of a quantifier of that variable. Else, free.

∃y.q(x,y)

In this example, x is free and y is bound.

A sentence is open if and only if it has free variables.
Otherwise, it is closed.

Open sentence: ∃y.q(x,y)
Closed Sentence: ∀x.∃y.q(x,y)

Bound and Free Variables

Object Constants: jim, molly
Unary Relation Constant: person
Binary Relation Constant: parent

parent(jim, molly)

parent(molly, molly)

¬person(jim)

person(jim, molly)
parent(molly, z)

∃x.parent(molly, x)

∀y.parent(molly, jim)
∃z.(z(jim, molly) ∨ z(molly, jim))

Exercise

Semantics

The Herbrand base for a Relational language is the set of
all ground relational sentences that can be formed from the
vocabulary of the language.

Herbrand Base

Object Constants: a, b
Unary Relation Constant: p
Binary Relation Constant: q

Herbrand Base:
{p(a), p(b), q(a,a), q(a,b), q(b,a), q(b,b)}

Questions:
 How large is the Herbrand base for a vocabulary with
 n object constants and 2 unary relation constants?

 How large is the Herbrand base for a vocabulary with
 n object constants and 1 binary relation constant?

Example

A truth assignment / interpretation is an association
between ground atomic sentences and the truth values true
or false. As with Propositional Logic, we use 1 as a
synonym for true and 0 as a synonym for false.

 p(a)i = 1
 p(b)i = 0
 q(a,a)i = 1
 q(a,b)i = 0
 q(b,a)i = 1
 q(b,b)i = 0

How many truth assignments are there for a language with
n object constants and 1 binary relation constant?

Truth Assignment

A sentential truth assignment is an association between
arbitrary sentences in a Relational language and the truth
values 1 and 0.

Truth Assignment Sentential Truth Assignment
p(a)i = 1 (p(a) ∨ p(b))i = 1
p(b)i = 0 (p(a) ∧ ¬p(b))i = 1

Each truth assignment gives rise to a unique sentential truth
assignment based on the type of sentence.

Sentential Truth Assignment

(¬ϕ)i = 1 if and only if ϕi = 0

(ϕ ∧ ψ)i = 1 if and only if ϕi = 1 and ψi = 1

(ϕ ∨ ψ)i = 1 if and only if ϕ i = 1 or ψi = 1

(ϕ ⇒ ψ)i = 1 if and only if ϕi = 0 or ψi = 1

(ϕ ⇔ ψ)i = 1 if and only if ϕi = ψi

Logical Sentences

An instance of an expression is an expression in which all
free variables have been consistently replaced by ground
terms.

Example: Example:
 p(x) ⇒ q(x,x) p(x) ⇒ ∃y.q(x,y)

 p(a) ⇒ q(a,a) p(a) ⇒ ∃y.q(a,y)
 p(b) ⇒ q(b,b) p(b) ⇒ ∃y.q(b,y)

Consistent replacement here means that, if one occurrence
of a variable is replaced by a ground term, then all
occurrences are replaced by the same ground term.

Instances

A universally quantified sentence is true for a truth
assignment if and only if every instance of the scope of
the quantified sentence is true for that assignment.

An existentially quantified sentence is true for a truth
assignment if and only if some instance of the scope of
the quantified sentence is true for that assignment.

Quantified Sentences

Truth Assignment:
p(a)i = 1 q(a,a)i = 1
p(b)i = 0 q(a,b)i = 0

 q(b,a)i = 1
 q(b,b)i = 0

Sentence:
∀x.(p(x) ⇒ q(x,x))

Instances:
p(a) ⇒ q(a,a)
p(b) ⇒ q(b,b)

Example

Truth Assignment:
p(a)i = 1 q(a,a)i = 1
p(b)i = 0 q(a,b)i = 0

 q(b,a)i = 1
 q(b,b)i = 0

Sentence:
∀x.(p(x) ⇒ q(x,x))

Instances:
p(a) ⇒ q(a,a) √
p(b) ⇒ q(b,b)

Example

Truth Assignment:
p(a)i = 1 q(a,a)i = 1
p(b)i = 0 q(a,b)i = 0

 q(b,a)i = 1
 q(b,b)i = 0

Sentence:
∀x.(p(x) ⇒ q(x,x))

Instances:
p(a) ⇒ q(a,a) √
p(b) ⇒ q(b,b) √

Example

Truth Assignment:
p(a)i = 1 q(a,a)i = 1
p(b)i = 0 q(a,b)i = 0

 q(b,a)i = 1
 q(b,b)i = 0

Sentence:
∀x.(p(x) ⇒ q(x,x)) √

Instances:
p(a) ⇒ q(a,a) √
p(b) ⇒ q(b,b) √

Example

Truth Assignment:
p(a)i = 1 q(a,a)i = 1
p(b)i = 0 q(a,b)i = 0

 q(b,a)i = 1
 q(b,b)i = 0

Sentence:
∀x.∃y.q(x,y) √

Instances:
 ∃y.q(a,y) √ ∃y.q(b,y) √
 q(a,a) √ q(b,a) √
 q(a,b) x q(b,b) x

Example

A truth assignment satisfies a sentence with free variables
if and only if it satisfies every instance of that sentence. (In
other words, we can think of all free variables as being
universally quantified.)

(∃y.q(x,y))i = (∀x.∃y.q(x,y))i

A truth assignment satisfies a set of sentences if and only if
it satisfies every sentence in the set.

Open Sentences

Example - Friends

Friends

One Possible State

Another Possible State

Possible States

2^16 (65,536) possible worlds.

Actual State

Object Constants: abby, bess, cody, dana

Binary Relation Constant: likes

Herbrand base has 16 ground relational sentences.

Signature

 likes(abby,abby) likes(bess,abby)
 likes(abby,bess likes(bess,bess)
 likes(abby,cody) likes(bess,cody)
 likes(abby,dana) likes(bess,dana)

 likes(cody,abby) likes(dana,abby)
 likes(cody,bess) likes(dana,bess)
 likes(cody,cody) likes(dana,cody)
 likes(cody,dana) likes(dana,dana)

Herbrand Base

State of Friends World

 ¬likes(abby,abby) ¬likes(bess,abby)
 ¬likes(abby,bess) ¬likes(bess,bess)
 likes(abby,cody) likes(bess,cody)
 ¬likes(abby,dana) ¬likes(bess,dana)

 likes(cody,abby) ¬likes(dana,abby)
 likes(cody,bess) ¬likes(dana,bess)
 ¬likes(cody,cody) likes(dana,cody)
 likes(cody,dana) ¬likes(dana,dana)

Ground Data

Abby likes everyone Bess likes.

Sentences

Abby likes everyone Bess likes.
If Bess likes a person, then Abby also likes her.

∀y.(likes(bess,y) ⇒ likes(abby,y))

Sentences

Abby likes everyone Bess likes.
If Bess likes someone, then Abby also likes her.

∀y.(likes(bess,y) ⇒ likes(abby,y))

Cody likes everyone who likes her.

Sentences

Abby likes everyone Bess likes.
If Bess likes someone, then Abby also likes her.

∀y.(likes(bess,y) ⇒ likes(abby,y))

Cody likes everyone who likes her.
If a person likes Cody, then Cody likes that person.

∀x.(likes(x,cody) ⇒ likes(cody,x))

Sentences

Cody likes somebody who likes her.

∃x.(likes(x,cody) ⇒ likes(cody,x))

likes(abby,cody) ⇒ likes(cody,abby)
likes(bess,cody) ⇒ likes(cody,bess)
likes(cody,cody) ⇒ likes(cody,cody)
likes(dana,cody) ⇒ likes(cody,dana)

Suppose no one likes Cody. All of these sentences are true!

Sentences

Wrong!

Cody likes somebody who likes her.
There is someone who likes cody and is liked by Cody.

∃y.(likes(cody,y) ∧ likes(y,cody))

Sentences

Cody likes somebody who likes her.
There is someone who likes cody and is liked by Cody.

∃y.(likes(cody,y) ∧ likes(y,cody))

Nobody likes herself.

Sentences

Cody likes somebody who likes her.
There is someone who likes cody and is liked by Cody.

∃y.(likes(cody,y) ∧ likes(y,cody))

Nobody likes herself.
It is not the case that there is someone who likes herself.

¬∃x.likes(x,x)
∀x.¬likes(x,x)

Sentences

Everybody likes somebody.

∀x.∃y.likes(x,y)

There is somebody whom everybody likes.

∃y.∀x.likes(x,y)

Sentences

∀x.∃y.likes(x,y)

 Abby Bess

 Cody Dana

Example

∀x.∃y.likes(x,y)

Everybody Likes Somebody

 Abby Bess

 Cody Dana

∀x.∃y.likes(x,y)

Everybody Likes Somebody

 Abby Bess

 Cody Dana

∀x.∃y.likes(x,y)

Everybody Likes Somebody

 Abby Bess

 Cody Dana

∀x.∃y.likes(x,y)

Everybody Likes Somebody

 Abby Bess

 Cody Dana

∀x.∃y.likes(x,y)

Everybody Likes Somebody

 Abby Bess

 Cody Dana

∃y.∀x.likes(x,y)

There is Somebody Whom Everyone Likes

 Abby Bess

 Cody Dana

Example - Blocks World

Blocks World

Object Constants: a, b, c, d, e

Unary Relation Constants:
 clear - blocks with no blocks on top.
 table - blocks on the table.

Binary Relation Constants:
 on - pairs of blocks in which first is on the second.
 above - pairs in which first block is above the second.

Ternary Relation Constant:
 stack - triples of blocks arranged in a stack.

Signature

Ground Data

 clear(a) ¬table(a)
¬clear(b) ¬table(b)
¬clear(c) table(c)
 clear(d) ¬table(d)
¬clear(e) table(e)

Ground Data

¬on(a,a) ¬on(b,a) ¬on(c,a) ¬on(d,a) ¬on(e,a)
 on(a,b) ¬on(b,b) ¬on(c,b) ¬on(d,b) ¬on(e,b)
¬on(a,c) on(b,c) ¬on(c,c) ¬on(d,c) ¬on(e,c)
¬on(a,d) ¬on(b,d) ¬on(c,d) ¬on(d,d) ¬on(e,d)
¬on(a,e) ¬on(b,e) ¬on(c,e) on(d,e) ¬on(e,e)

Ground Data

¬above(a,a) ¬above(b,a) ¬above(c,a) ¬above(d,a) ¬above(e,a)
 above(a,b) ¬above(b,b) ¬above(c,b) ¬above(d,b) ¬above(e,b)
 above(a,c) above(b,c) ¬above(c,c) ¬above(d,c) ¬above(e,c)
¬above(a,d) ¬above(b,d) ¬above(c,d) ¬above(d,d) ¬above(e,d)
¬above(a,e) ¬above(b,e) ¬above(c,e) above(d,e) ¬above(e,e)

 Constraints on the on relation:

¬∃x. on(x,x)
∀x.∀y.(on(x,y) ⇒ ¬on(y,x))

Constraints

Definition of clear:

∀y.(clear(y) ⇔ ¬∃x.on(x,y))

Definitions

Definition of table:

Definitions

∀x.(table(x) ⇔ ¬∃y.on(x,y))

Definition of stack:

Definitions

∀x.∀y.∀z.(stack(x,y,z) ⇔ on(x,y) ∧ on(y,z))

 Definition of above:

Definitions

∀x.∀z.(above(x,z) ⇔ on(x,z) ∨ ∃y.(on(x,y) ∧ above(y,z)))

Exercise 8.3

Example - Minefinder

Course Website

