
Introduction to Logic
Relational Logic

Michael Genesereth
Computer Science Department

Stanford University



Premises:
    If Abby likes Bess, then Bess likes Abby.
    Abby likes Bess.

Conclusion:
    Bess likes Abby.

Propositional Logic



Propositional Logic:
    If Abby likes Bess, then Bess likes Abby.
    If Abby likes Cody, then Cody likes Abby.
    If Abby likes Dana, then Dana likes Abby.
    ...
    If Bess likes Abby, then Abby likes Bess.
    If Cody likes Abby, then Abby likes Cody.
    If Dana likes Abby, then Abby likes Dana.
   
Relational Logic:
    If X likes Y, then Y likes X.

Symmetry of Affection



Natural Language Sentence:
    If X likes Y, then Y likes X.
    For every X and for every Y, if X likes Y, then Y likes X.
 
New Linguistic Features:
   Variables
   Quantifiers

Relational Logic Sentence:
∀x.∀y.(likes(x,y) ⇒ likes(y,x))

Relational Logic



Syntax



Words
a   b   c   p   q   r  x  y  z

Sentences
∀x.(p(x,a) ∧ q(x,b) ⇒ r(a,b))

Components of Language



Words are strings of letters, digits, and occurrences of the 
underscore character.

Constants begin with digits or letters from the beginning of 
the alphabet (from a through t). 

a, b, c, 123, cs157, barack_obama 

Variables begin with characters from the end of the alphabet 
(from u through z).

u, v, w, x, y, z 

Note that, in the online tools, we use lower case and 
capital letters to distinguish constants and variables. 

Words



Object constants represent objects.

joe  stanford  canada  2345

Relation constants represent properties or relationships.

isaperson   isacountry   knows   likes   between

Constants



The arity of a relation constant is the number of arguments 
it takes.

Unary relation constant - 1 argument
e.g. isaperson, isacountry

Binary relation constant - 2 arguments
e.g. knows, likes

Ternary relation constant - 3 arguments
e.g. between

n-ary relation constant - n arguments

Arity



A vocabulary / signature consists of a finite, non-empty set 
of object constants and a finite, non-empty set of relation 
constants together with a specification of arity for the 
relation constants.

Object Constants: a, b
Unary Relation Constant: p
Binary Relation Constant: q

Vocabularies



A term is either (1) a variable or (2) an object constant.

Terms represent objects.

Terms are analogous to pronouns and nouns in English.

Terms



Three types of sentences in Relational Logic:

Relational sentences - analogous to the proposition 
constants in Propositional Logic

Logical sentences - analogous to logical sentences in 
Propositional Logic

Quantified sentences - sentences that express the 
significance of variables

Sentences



A relational sentence is an expression formed from an n-
ary relation constant and n terms enclosed in parentheses 
and separated by commas.

q(a,y)

Relational sentences are not terms and cannot be nested in 
relational sentences.

No!    q(a,q(a,y))    No!

Relational sentences are also called atoms or atomic 
sentences.

Relational Sentences



Logical sentences in Relational Logic are analogous to 
those in Propositional Logic (except with relational 
sentences in place of propositional constants)

(¬q(a,b))
(p(a) ∧ p(b))
(p(a) ∨ p(b))
(q(x,y) ⇒ q(y,x))
(q(x,y) ⇔ q(y,x))

Logical Sentences



Universal sentences assert facts about all objects.

(∀x.(p(x) ⇒ q(x,x)))

Existential sentences assert the existence of objects with 
given properties.

(∃x.(p(x) ∧ q(x,x)))

The sentence contained within a quantified sentence is 
called the scope of that sentence.

Quantified Sentences



Quantified sentences can be nested within other 
sentences.

(∀x.p(x)) ∨ (∃x.q(x,x))
(∀x.(∃y.(q(x,y) ∧ q(y,x))))

The sentence contained inside a quantified sentence is 
called the scope of that sentence.

Nesting



Parentheses can be removed when precedence allows us to 
reconstruct sentences correctly.

Precedence relations same as in Propositional Logic with 
quantifiers being of higher precedence than logical 
operators.

∀x.p(x) ⇒ q(x,x) → (∀x.p(x)) ⇒ q(x,x)
∃x.p(x) ∧ q(x,x) → (∃x.p(x)) ∧ q(x,x) 

Parentheses



An expression is ground if and only if it contains no 
variables.

Ground sentence:
p(a)

Non-Ground Sentences:
q(a,x)
∀x.p(x)

Ground and Non-Ground Expressions



An occurrence of a variable is bound if and only if it in 
in the scope of a quantifier of that variable.  Else, free.

∃y.q(x,y)

In this example, x is free and y is bound.

A sentence is open if and only if it has free variables.  
Otherwise, it is closed.

Open sentence:           ∃y.q(x,y)
Closed Sentence:  ∀x.∃y.q(x,y)

Bound and Free Variables



Object Constants: jim, molly
Unary Relation Constant: person
Binary Relation Constant: parent

parent(jim, molly)

parent(molly, molly)

¬person(jim)

person(jim, molly)
parent(molly, z)

∃x.parent(molly, x)

∀y.parent(molly, jim)
∃z.(z(jim, molly) ∨ z(molly, jim))

Exercise



Semantics



The Herbrand base for a Relational language is the set of 
all ground relational sentences that can be formed from the 
vocabulary of the language.

Herbrand Base



Object Constants: a, b
Unary Relation Constant: p
Binary Relation Constant: q

Herbrand Base:
{p(a), p(b), q(a,a), q(a,b), q(b,a), q(b,b)}

Questions:
  How large is the Herbrand base for a vocabulary with
  n object constants and 2 unary relation constants?

  How large is the Herbrand base for a vocabulary with
  n object constants and 1 binary relation constant?

Example



A truth assignment / interpretation is an association 
between ground atomic sentences and the truth values true 
or false.  As with Propositional Logic, we use 1 as a 
synonym for true and 0 as a synonym for false.

 p(a)i = 1
 p(b)i = 0
 q(a,a)i = 1
 q(a,b)i = 0
 q(b,a)i = 1
 q(b,b)i = 0

How many truth assignments are there for a language with 
n object constants and 1 binary relation constant?

Truth Assignment



A sentential truth assignment is an association between 
arbitrary sentences in a Relational language and the truth 
values 1 and 0.

Truth Assignment Sentential Truth Assignment
p(a)i = 1 (p(a) ∨ p(b))i = 1
p(b)i = 0 (p(a) ∧ ¬p(b))i = 1

Each truth assignment gives rise to a unique sentential truth 
assignment based on the type of sentence.

Sentential Truth Assignment



(¬ϕ)i = 1     if and only if  ϕi = 0

(ϕ ∧ ψ)i = 1  if and only if  ϕi = 1 and ψi = 1 

(ϕ ∨ ψ)i = 1  if and only if  ϕ i = 1 or ψi = 1 

(ϕ ⇒ ψ)i = 1 if and only if  ϕi = 0 or ψi = 1 

(ϕ ⇔ ψ)i = 1 if and only if  ϕi = ψi

Logical Sentences



An instance of an expression is an expression in which all 
free variables have been consistently replaced by ground 
terms.

Example:                            Example:
    p(x) ⇒ q(x,x)                      p(x) ⇒ ∃y.q(x,y)

    p(a) ⇒ q(a,a)                     p(a) ⇒ ∃y.q(a,y)
    p(b) ⇒ q(b,b)                         p(b) ⇒ ∃y.q(b,y)

Consistent replacement here means that, if one occurrence 
of a variable is replaced by a ground term, then all 
occurrences are replaced by the same ground term.

Instances



A universally quantified sentence is true for a truth 
assignment if and only if every instance of the scope of 
the quantified sentence is true for that assignment.

An existentially quantified sentence is true for a truth 
assignment if and only if some instance of the scope of 
the quantified sentence is true for that assignment.

Quantified Sentences



Truth Assignment:
p(a)i = 1  q(a,a)i = 1
p(b)i = 0  q(a,b)i = 0

 q(b,a)i = 1
 q(b,b)i = 0

Sentence:
∀x.(p(x) ⇒ q(x,x))

Instances:
p(a) ⇒ q(a,a)
p(b) ⇒ q(b,b)

Example



Truth Assignment:
p(a)i = 1  q(a,a)i = 1
p(b)i = 0  q(a,b)i = 0

 q(b,a)i = 1
 q(b,b)i = 0

Sentence:
∀x.(p(x) ⇒ q(x,x))

Instances:
p(a) ⇒ q(a,a) √
p(b) ⇒ q(b,b)

Example



Truth Assignment:
p(a)i = 1  q(a,a)i = 1
p(b)i = 0  q(a,b)i = 0

 q(b,a)i = 1
 q(b,b)i = 0

Sentence:
∀x.(p(x) ⇒ q(x,x))

Instances:
p(a) ⇒ q(a,a) √
p(b) ⇒ q(b,b) √

Example



Truth Assignment:
p(a)i = 1  q(a,a)i = 1
p(b)i = 0  q(a,b)i = 0

 q(b,a)i = 1
 q(b,b)i = 0

Sentence:
∀x.(p(x) ⇒ q(x,x)) √

Instances:
p(a) ⇒ q(a,a) √
p(b) ⇒ q(b,b) √

Example



Truth Assignment:
p(a)i = 1  q(a,a)i = 1
p(b)i = 0  q(a,b)i = 0

 q(b,a)i = 1
 q(b,b)i = 0

Sentence:
∀x.∃y.q(x,y) √

Instances:
    ∃y.q(a,y) √     ∃y.q(b,y) √
         q(a,a) √          q(b,a) √
         q(a,b) x          q(b,b) x

Example



A truth assignment satisfies a sentence with free variables 
if and only if it satisfies every instance of that sentence.  (In 
other words, we can think of all free variables as being 
universally quantified.)

(∃y.q(x,y))i   =   (∀x.∃y.q(x,y))i

A truth assignment satisfies a set of sentences if and only if 
it satisfies every sentence in the set.

Open Sentences



Example - Friends



Friends



One Possible State



Another Possible State



Possible States

2^16 (65,536) possible worlds.



Actual State



Object Constants: abby, bess, cody, dana

Binary Relation Constant: likes

Herbrand base has 16 ground relational sentences.

Signature



   likes(abby,abby)  likes(bess,abby)
   likes(abby,bess  likes(bess,bess)
   likes(abby,cody)  likes(bess,cody)
   likes(abby,dana)  likes(bess,dana)

   likes(cody,abby)  likes(dana,abby)
   likes(cody,bess)  likes(dana,bess)
   likes(cody,cody)  likes(dana,cody)
   likes(cody,dana)  likes(dana,dana)

Herbrand Base



State of Friends World



 ¬likes(abby,abby)      ¬likes(bess,abby)
 ¬likes(abby,bess)      ¬likes(bess,bess)
    likes(abby,cody)         likes(bess,cody)
 ¬likes(abby,dana)      ¬likes(bess,dana)

    likes(cody,abby)      ¬likes(dana,abby)
    likes(cody,bess)      ¬likes(dana,bess)
 ¬likes(cody,cody)         likes(dana,cody)
    likes(cody,dana)      ¬likes(dana,dana)

Ground Data



Abby likes everyone Bess likes.

Sentences



Abby likes everyone Bess likes.
If Bess likes a person, then Abby also likes her.

∀y.(likes(bess,y) ⇒ likes(abby,y))

Sentences



Abby likes everyone Bess likes.
If Bess likes someone, then Abby also likes her.

∀y.(likes(bess,y) ⇒ likes(abby,y))

Cody likes everyone who likes her.

Sentences



Abby likes everyone Bess likes.
If Bess likes someone, then Abby also likes her.

∀y.(likes(bess,y) ⇒ likes(abby,y))

Cody likes everyone who likes her.
If a person likes Cody, then Cody likes that person.

∀x.(likes(x,cody) ⇒ likes(cody,x))

Sentences



Cody likes somebody who likes her.

∃x.(likes(x,cody) ⇒ likes(cody,x))

likes(abby,cody) ⇒ likes(cody,abby)
likes(bess,cody) ⇒ likes(cody,bess)
likes(cody,cody) ⇒ likes(cody,cody)
likes(dana,cody) ⇒ likes(cody,dana)

Suppose no one likes Cody.  All of these sentences are true!

Sentences

Wrong!



Cody likes somebody who likes her.
There is someone who likes cody and is liked by Cody. 

∃y.(likes(cody,y) ∧ likes(y,cody))

Sentences



Cody likes somebody who likes her.
There is someone who likes cody and is liked by Cody. 

∃y.(likes(cody,y) ∧ likes(y,cody))

Nobody likes herself.

Sentences



Cody likes somebody who likes her.
There is someone who likes cody and is liked by Cody. 

∃y.(likes(cody,y) ∧ likes(y,cody))

Nobody likes herself.
It is not the case that there is someone who likes herself.

¬∃x.likes(x,x)
∀x.¬likes(x,x)

Sentences



Everybody likes somebody.

∀x.∃y.likes(x,y)

There is somebody whom everybody likes.

∃y.∀x.likes(x,y)

Sentences



∀x.∃y.likes(x,y)

                           Abby                                  Bess

                          Cody                                   Dana

Example



∀x.∃y.likes(x,y)

Everybody Likes Somebody

                           Abby                                  Bess

                          Cody                                   Dana



∀x.∃y.likes(x,y)

Everybody Likes Somebody

                           Abby                                  Bess

                          Cody                                   Dana



∀x.∃y.likes(x,y)

Everybody Likes Somebody

                           Abby                                  Bess

                          Cody                                   Dana



∀x.∃y.likes(x,y)

Everybody Likes Somebody

                           Abby                                  Bess

                          Cody                                   Dana



∀x.∃y.likes(x,y)

Everybody Likes Somebody

                           Abby                                  Bess

                          Cody                                   Dana



∃y.∀x.likes(x,y)

There is Somebody Whom Everyone Likes

                           Abby                                  Bess

                          Cody                                   Dana



Example - Blocks World



Blocks World



Object Constants: a, b, c, d, e

Unary Relation Constants:
    clear - blocks with no blocks on top.
    table - blocks on the table.

Binary Relation Constants:
    on - pairs of blocks in which first is on the second.
    above - pairs in which first block is above the second.

Ternary Relation Constant:
    stack - triples of blocks arranged in a stack.

Signature



Ground Data

   clear(a)        ¬table(a)    
¬clear(b)        ¬table(b)
¬clear(c)           table(c)
   clear(d)        ¬table(d)
¬clear(e)           table(e)



Ground Data

¬on(a,a)     ¬on(b,a)    ¬on(c,a)    ¬on(d,a)    ¬on(e,a)
   on(a,b)    ¬on(b,b)     ¬on(c,b)    ¬on(d,b)    ¬on(e,b)
¬on(a,c)       on(b,c)     ¬on(c,c)     ¬on(d,c)    ¬on(e,c)
¬on(a,d)    ¬on(b,d)     ¬on(c,d)     ¬on(d,d)    ¬on(e,d)
¬on(a,e)    ¬on(b,e)     ¬on(c,e)        on(d,e)    ¬on(e,e)



Ground Data

¬above(a,a)    ¬above(b,a)   ¬above(c,a)   ¬above(d,a)   ¬above(e,a)
   above(a,b)   ¬above(b,b)    ¬above(c,b)   ¬above(d,b)   ¬above(e,b)
   above(a,c)      above(b,c)    ¬above(c,c)    ¬above(d,c)   ¬above(e,c)
¬above(a,d)   ¬above(b,d)    ¬above(c,d)    ¬above(d,d)  ¬above(e,d)
¬above(a,e)   ¬above(b,e)     ¬above(c,e)      above(d,e)   ¬above(e,e)



    Constraints on the on relation:

¬∃x. on(x,x)
∀x.∀y.(on(x,y) ⇒ ¬on(y,x))

Constraints



Definition of clear:

∀y.(clear(y) ⇔ ¬∃x.on(x,y))

Definitions



Definition of table:

Definitions

∀x.(table(x) ⇔ ¬∃y.on(x,y))



Definition of stack:

Definitions

∀x.∀y.∀z.(stack(x,y,z) ⇔ on(x,y) ∧ on(y,z))



    Definition of above:

Definitions

∀x.∀z.(above(x,z) ⇔ on(x,z) ∨ ∃y.(on(x,y) ∧ above(y,z)))



Exercise 8.3



Example - Minefinder



Course Website








