
Introduction to Logic
Refutation Proofs

Michael Genesereth
Computer Science Department

Stanford University



Popular Types of Proof Systems:
    Direct Proofs (Hilbert)
    Natural Deduction (Fitch)
    Refutation proofs (Resolution / Robinson)

Others:
    Gentzen Systems
    Sequent Calculi
    and so forth

Proof Systems



A direct proof is a sequence of sentences terminating in a 
conclusion in which each item is either a premise, an 
instance of a valid schema, or the result of applying a rule of 
inference to earlier items in sequence.

    1.  premise             Premise
    2.  premise             Premise
         ...                       ...
    n.  conclusion        Some rule of inference

The conclusion is proved directly.

Direct Proof



A refutation proof is a sequence of sentences in which each 
sentence is a premise, the negation of a desired conclusion, 
or the result of applying a rule of inference to earlier items in 
sequence that terminates in some form of contradiction.

    1.  premise             Premise
    2.  premise             Premise
    3.  ¬conclusion     Negated conclusion
         ...                       ...
    n.  contradiction    Some rule of inference

A refutation proof is a proof by contradiction.

Refutation Proof



Propositional Resolution is a refutation proof system.

Just one rule of inference - the Resolution Principle.

Propositional Resolution is sound and complete.

The search space in propositional resolution is smaller than 
that of direct proof systems or natural deduction systems.

Hitch: To order to use resolution, we need to transform 
sentences into a representation called clausal form.

Propositional Resolution



Clausal Form

Resolution Rule of Inference
Resolution Reasoning

Soundness and Completeness
Practical Matters

Box Logic

Programme



Clausal Form



Propositional resolution works only on expressions in 
clausal form.

Before we can apply resolution, we must first transform 
our sentences into clausal form.

(p ⇒ q)  {¬p, q}

Fortunately, there is a simple algorithm for converting any 
set of Propositional Logic sentences into a logically 
equivalent set of sentences in clausal form.

Clausal Form



A literal is either an atomic sentence or a negation of an 
atomic sentence.

p, ¬p 

A clausal sentence is either a literal or a disjunction of 
literals.

p,  ¬p,    p ∨ ¬q 

A clause is a set of literals.

{p}, {¬p}, {p,¬q}

Clausal Form



p ∨ ¬q          {p,¬q}

What about the empty clause?

The empty clause {} is unsatisfiable.

Why? It is equivalent to an empty disjunction.

Clauses are Disjunctions



Inseado

€ 

ϕ1⇒ϕ2 → ¬ϕ1∨ϕ2
ϕ1⇔ϕ2 → (¬ϕ1∨ϕ2 )∧ (ϕ1∨¬ϕ2 )

Implications Out:

Conversion to Clausal Form



€ 

ϕ1⇒ϕ2 → ¬ϕ1∨ϕ2
ϕ1⇔ϕ2 → (¬ϕ1∨ϕ2 )∧ (ϕ1∨¬ϕ2 )

¬¬ϕ → ϕ

¬(ϕ1 ∧ϕ2 ) → ¬ϕ1 ∨¬ϕ2
¬(ϕ1 ∨ϕ2 ) → ¬ϕ1 ∧¬ϕ2
¬∀ν.ϕ → ∃ν.¬ϕ
¬∃ν.ϕ → ∀ν.¬ϕ

Implications Out:

Negations In:

Conversion to Clausal Form



Distribution

  a*(b + c)   (a*b + a*c)
  (a + b)*c   (a*c + b*c)
a + (b + c)   a + b + c
a * (b * c)   a * b * c

€ 

ϕ1∨ (ϕ2 ∧ϕ3 ) → (ϕ1∨ϕ2 )∧ (ϕ1∨ϕn )
(ϕ1∧ϕ2 )∨ϕ3 → (ϕ1∨ϕ3 )∧ (ϕ2 ∨ϕ3 )
ϕ ∨ (ϕ1∨ ...∨ϕn ) → (ϕ ∨ϕ1∨ ...∨ϕn )
(ϕ1∨ ...∨ϕn )∨ϕ → (ϕ1∨ ...∨ϕn ∨ϕ )
ϕ ∧ (ϕ1∧ ...∧ϕn ) → (ϕ ∧ϕ1∧ ...∧ϕn )
(ϕ1∧ ...∧ϕn )∧ϕ → (ϕ1∧ ...∧ϕn ∧ϕ )

InseadoConversion to Clausal Form

3



Operators Out

Example
                                               p ∨ q                  {p, q}
(p ∨ q) ∧ (r ∨ r) ∧ ¬s       r ∨ r             {r}
                                                 ¬s                    {¬s}

ϕ1 ∧ ... ∧ϕn → ϕ1
...
ϕn

ϕ1 ∨ ... ∨ϕn → {ϕ1,..., ϕn}

InseadoConversion to Clausal Form



     g ∧ (r ⇒ f)
I    g ∧ (¬r ∨ f)

ExampleExample

O  {g}
     {¬r, f}

D  g ∧ (¬r ∨ f)
N  g ∧ (¬r ∨ f)



ExampleExample

     ¬(g ∧ (r ⇒ f))

O  {¬g, r}
     {¬g, ¬f}

D  (¬g ∨ r) ∧ (¬g ∨ ¬f)
N  ¬g ∨ (r ∧ ¬f)

N  ¬g ∨ ¬(¬r ∨ f)
N  ¬g ∨ (¬¬r ∧ ¬f)

I    ¬(g ∧ (¬r ∨ f))



Good News: The result of converting a set of sentences is 
logically equivalent to that set of sentences.

Upshot: Whatever we prove from clausal form is logically 
entailed by the original sentences.

Equivalence



Good News: The result of converting a set of sentences is 
logically equivalent to that set of sentences.

Upshot: Whatever we prove from clausal form is logically 
entailed by the original sentences.

Equivalence



Resolution Principle



Propositional ResolutionIntuition

Premises:  {p, q} and {¬q, r}

If q is false, then the first clause tells us p must be true.
If q is true, then the second clause tells us r must be true.

Conclusion: {p, r}



Propositional ResolutionResolution Principle

{φ1, … ,   χ, … ,φm} 
{ψ1, … ,¬χ, … , ψn}

{φ1, … , φm, ψ1, … , ψn}



Propositional ResolutionExample

{p, q} 
{¬q, r}

{p, r}



Propositional ResolutionExample

{p, q, r} 
{¬p}

{q, r}



Propositional ResolutionExample

{p} 
{¬p}

{}



Propositional ResolutionExample

{p, q} 
{¬p, ¬q}

{q, ¬q}
{p, ¬p}



Propositional ResolutionExample

{p, q} 
{¬p, ¬q}

{}                Wrong!!!



Propositional ResolutionImplication Elimination

{¬p, q} 
{p}

{q}

p ⇒ q 
p

q



Propositional ResolutionNegation Introduction

{¬p, q} 
{¬p, ¬q}

{¬p}

p ⇒ q 
p ⇒ ¬q

¬p



Transitivity

1. p ⇒ q Premise

2. q ⇒ r Premise

3.  |  p Assumption

4.  |  q Implication Elimination: 1, 3

5.  |  r Implication Elimination: 2, 4

6.  p ⇒ r Implication Introduction: 3, 5



Propositional ResolutionTransitivity

{¬p, q} 
{¬q, r}

{¬p, r}

p ⇒ q 
q ⇒ r

p ⇒ r



If Mary loves Pat, then Mary loves Quincy.  If it is 
Monday, then Mary loves Pat or Quincy.  If it is 
Monday, does Mary love Quincy?

Mary, Pat, and Quincy

1. p ⇒ q Premise
2. m ⇒ p ∨ q Premise
3.  |  m Assumption
4.  |  p ∨ q 

ppp¬p 
Implication Elimination: 2, 3

5.  |  | q Assumption
6.  | q ⇒ q Implication Introduction: 5, 5
7.  | q Or Elimination: 4, 1, 6
8. m ⇒ q Implication Introduction: 3, 7



Propositional ResolutionExample

{¬p, q} 
{¬m, p, q}

{¬m, q}

p ⇒ q 
m ⇒ p ∨ q

m ⇒ q



Resolution Reasoning



Resolution Derivation

A resolution derivation of a conclusion from a set of 
premises is a finite sequence of clauses terminating in the 
conclusion in which each clause is either a premise or the 
result of applying the resolution principle to earlier elements 
of the sequence.

Resolution Derivation



Example

1. {¬p, r} p ⇒ r

2. {¬q, r} q ⇒ r

3. {p, q} p ∨ q

4. {q, r} 1, 3

5. {r} 2, 4

Or Elimination



Resolution Not Generatively Complete

Seemingly Bad News: Using the Resolution Principle alone, 
it is not possible to generate every clause that is logically 
entailed by a set of premises.

Premises:     {p} and {q}
Conclusion: {p, q}

Premises:     none
Conclusion: {p, ¬p}

But resolution cannot generate these results!

Resolution Not Generatively Complete



Resolution Not Generatively Complete

Good News: If a set of clauses is unsatisfiable, it is possible 
to derive the empty clause using the Resolution Principle.

Resolution Determines Unsatisfiability

1. {p, q} Premise
2. {p, ¬q} Premise
3. {¬p, q} Premise
4. {¬p, ¬q} Premise
5. {p} 1, 2
6 {¬p} 3, 4
7 {} 5, 6



38

Unsatisfiability Determination: If a set of clauses is 
unsatisfiable, it is possible to derive the empty clause 
using the Resolution Principle.

Unsatisfiability Theorem: Δ ⊨ ϕ if and only if Δ ∪ {¬ϕ} is 
unsatisfiable.

Resolution Method: To prove that a set Δ of sentences 
logically entails a conclusion φ, write Δ ∪ {¬φ} in clausal 
form and derive the empty clause.

Resolution Method



39

Given p, (p ⇒ q), and (p ⇒ q) ⇒ (q ⇒ r), prove r.

Example

     (p ⇒ q) ⇒ (q ⇒ r)
I   ¬(¬p ∨ q) ∨ (¬q ∨ r)
N (¬¬p ∧ ¬q) ∨ (¬q ∨ r)
N (p ∧ ¬q) ∨ (¬q ∨ r)
D  (p ∨ (¬q ∨ r)) ∧ (¬q ∨ (¬q ∨ r))
D  (p ∨ ¬q ∨ r) ∧ (¬q ∨ ¬q ∨ r)
O  {p, ¬q, r}
     {¬q, r}
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Proof

1. {p} p
2. {¬p, q} p ⇒ q
3. {p, ¬q, r} (p ⇒ q) ⇒ (q ⇒ r)
4. {¬q, r} (p ⇒ q) ⇒ (q ⇒ r)
5. {¬r} Negated Goal
6. {q} 1, 2
7. {r} 6, 4
8. {} 7, 5
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Show (p ⇒ (q ⇒ p)) is valid, i.e. {} ⊨ (p ⇒ (q ⇒ p)).

Example

     ¬(p ⇒ (q ⇒ p))
I   ¬(¬p ∨ (¬q ∨ p))
N  ¬¬p ∧ ¬(¬q ∨ p)
N  p ∧ ¬(¬q ∨ p)
N  p ∧ (¬¬q ∧ ¬p)
N  p ∧ (q ∧ ¬p)
D  p ∧ q ∧ ¬p
O  {p}
     {q}
     {¬p}
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Proof

1. {p} (p ⇒ (q ⇒ p))
2. {q} (p ⇒ (q ⇒ p))
3. {¬p} (p ⇒ (q ⇒ p))
4. {} 1, 3



Soundness and Completeness



A set of premises Δ logically entails a conclusion ϕ 
(written Δ ⊨ ϕ) if and only if every interpretation that 
satisfies Δ also satisfies ϕ. 

If there exists a proof of a sentence φ from a set Δ of premises 
using the rules of inference in R, we say that φ is provable 
from Δ using R (written Δ ⊢R ϕ).

Logical Entailment and Provability 



A proof system is sound if and only if every provable 
conclusion is logically entailed.

If Δ ⊢ ϕ, then Δ ⊨ ϕ.

A proof system is complete if and only if every logical 
conclusion is provable.

If Δ ⊨ ϕ, then Δ ⊢ ϕ.

Soundness and Completeness



Theorem: Resolution is sound and complete for Propositional 
Logic.

Δ ⊨ ϕ if and only if Δ ⊢Resolution ϕ.

Upshot: The truth table method and the resolution method 
succeed in exactly the same cases!

Resolution



Practical Matters



 1.  {p, q}        Premise
 2.  {p, ¬q}     Premise
 3.  {¬p, q}     Premise
 4.  {¬p, ¬q}  Premise

Two Finger Method



 1.  {p, q}        Premise
 2.  {p, ¬q}     Premise
 3.  {¬p, q}     Premise
 4.  {¬p, ¬q}  Premise

Two Finger Method



 1.  {p, q}        Premise
 2.  {p, ¬q}     Premise
 3.  {¬p, q}     Premise
 4.  {¬p, ¬q}  Premise
 5.  {p}            1, 2

Two Finger Method



 1.  {p, q}        Premise
 2.  {p, ¬q}     Premise
 3.  {¬p, q}     Premise
 4.  {¬p, ¬q}  Premise
 5.  {p}            1, 2

Two Finger Method



 1.  {p, q}        Premise
 2.  {p, ¬q}     Premise
 3.  {¬p, q}     Premise
 4.  {¬p, ¬q}  Premise
 5.  {p}            1, 2
 6.  {q}            1, 3        

Two Finger Method



 1.  {p, q}        Premise
 2.  {p, ¬q}     Premise
 3.  {¬p, q}     Premise
 4.  {¬p, ¬q}  Premise
 5.  {p}            1, 2
 6.  {q}            1, 3
 7.  {¬q, q}     2, 3
        ...

Two Finger Method



 1.  {p, q}        Premise
 2.  {p, ¬q}     Premise
 3.  {¬p, q}     Premise
 4.  {¬p, ¬q}  Premise
 5.  {p}            1, 2
 6.  {q}            1, 3
 7.  {¬q, q}     2, 3
        ...

Two Finger Method



Proof as Produced by Two-Finger Method



Proof as Produced by Two-Finger Method



Proof with Identical Clause Elimination



Metatheorem: There is a resolution refutation of Δ if and 
only if there is a resolution refutation from Δ in which no 
clause occurs twice.   (Obviously.)

Upshot: If you generate a clause that is already in the proof, 
do not include it again.

Metatheorem: There are only finitely many clauses that can 
be formed from a finite set of proposition constants.

Upshot: You will eventually run out of things to do.  So 
possible to terminate search in finite time!!!

Identical Clause Elimination



A tautology is a clause with a complementary pair of 
literals.

{q,¬q}

{p, q, r,¬q}

Metatheorem: There is a resolution refutation of Δ if and 
only if there is a resolution refutation from Δ with 
tautology elimination.

Tautology Elimination



Proof with ICE and TE



Motivation for Subsumption



A clause Φ subsumes Ψ if and only if Φ is a subset of Ψ.

Example: {p, q} subsumes {p, q, r}

Metatheorem: There is a resolution refutation of Δ if and 
only if there is a resolution refutation from Δ with 
Propositional Subsumption.

Propositional Subsumption



The resolution of two clauses sometimes produces a 
clause that subsumes one of its parents.

Note



Example of Pure Literal Elimination



A literal in a database is pure if and only if there is no 
complementary occurrence of the literal in the database.

A clause is superfluous if and only if it contains a pure 
literal.

Metatheorem: There is a resolution refutation of Δ if and 
only if there is a resolution refutation from Δ in which 
all superfluous clauses are removed.

Pure Literal Elimination



Example



The removal of a superfluous clause may create new 
pure literals and new superfluous clauses.

Note



Elimination Strategies (Constraints on clauses):
Identical Clause Elimination
Pure Literal Elimination
Tautology Elimination
Subsumption Elimination

Restriction Strategies (Constraints on inferences):
Unit Restriction
Input Restriction
Linear Restriction
Set of Support Restriction

Strategies



Word of the Day

Robinson



Word of the Day

Robinson



Resolution Tools



http://logica.stanford.edu

Course Website






