
Introduction to Logic
Refutation Proofs

Michael Genesereth
Computer Science Department

Stanford University

Popular Types of Proof Systems:
 Direct Proofs (Hilbert)
 Natural Deduction (Fitch)
 Refutation proofs (Resolution / Robinson)

Others:
 Gentzen Systems
 Sequent Calculi
 and so forth

Proof Systems

A direct proof is a sequence of sentences terminating in a
conclusion in which each item is either a premise, an
instance of a valid schema, or the result of applying a rule of
inference to earlier items in sequence.

 1. premise Premise
 2. premise Premise

 n. conclusion Some rule of inference

The conclusion is proved directly.

Direct Proof

A refutation proof is a sequence of sentences in which each
sentence is a premise, the negation of a desired conclusion,
or the result of applying a rule of inference to earlier items in
sequence that terminates in some form of contradiction.

 1. premise Premise
 2. premise Premise
 3. ¬conclusion Negated conclusion

 n. contradiction Some rule of inference

A refutation proof is a proof by contradiction.

Refutation Proof

Propositional Resolution is a refutation proof system.

Just one rule of inference - the Resolution Principle.

Propositional Resolution is sound and complete.

The search space in propositional resolution is smaller than
that of direct proof systems or natural deduction systems.

Hitch: To order to use resolution, we need to transform
sentences into a representation called clausal form.

Propositional Resolution

Clausal Form

Resolution Rule of Inference
Resolution Reasoning

Soundness and Completeness
Practical Matters

Box Logic

Programme

Clausal Form

Propositional resolution works only on expressions in
clausal form.

Before we can apply resolution, we must first transform
our sentences into clausal form.

(p ⇒ q) {¬p, q}

Fortunately, there is a simple algorithm for converting any
set of Propositional Logic sentences into a logically
equivalent set of sentences in clausal form.

Clausal Form

A literal is either an atomic sentence or a negation of an
atomic sentence.

p, ¬p

A clausal sentence is either a literal or a disjunction of
literals.

p, ¬p, p ∨ ¬q

A clause is a set of literals.

{p}, {¬p}, {p,¬q}

Clausal Form

p ∨ ¬q {p,¬q}

What about the empty clause?

The empty clause {} is unsatisfiable.

Why? It is equivalent to an empty disjunction.

Clauses are Disjunctions

Inseado

€

ϕ1⇒ϕ2 → ¬ϕ1∨ϕ2
ϕ1⇔ϕ2 → (¬ϕ1∨ϕ2)∧ (ϕ1∨¬ϕ2)

Implications Out:

Conversion to Clausal Form

€

ϕ1⇒ϕ2 → ¬ϕ1∨ϕ2
ϕ1⇔ϕ2 → (¬ϕ1∨ϕ2)∧ (ϕ1∨¬ϕ2)

¬¬ϕ → ϕ

¬(ϕ1 ∧ϕ2) → ¬ϕ1 ∨¬ϕ2
¬(ϕ1 ∨ϕ2) → ¬ϕ1 ∧¬ϕ2
¬∀ν.ϕ → ∃ν.¬ϕ
¬∃ν.ϕ → ∀ν.¬ϕ

Implications Out:

Negations In:

Conversion to Clausal Form

Distribution

 a*(b + c) (a*b + a*c)
 (a + b)*c (a*c + b*c)
a + (b + c) a + b + c
a * (b * c) a * b * c

€

ϕ1∨ (ϕ2 ∧ϕ3) → (ϕ1∨ϕ2)∧ (ϕ1∨ϕn)
(ϕ1∧ϕ2)∨ϕ3 → (ϕ1∨ϕ3)∧ (ϕ2 ∨ϕ3)
ϕ ∨ (ϕ1∨ ...∨ϕn) → (ϕ ∨ϕ1∨ ...∨ϕn)
(ϕ1∨ ...∨ϕn)∨ϕ → (ϕ1∨ ...∨ϕn ∨ϕ)
ϕ ∧ (ϕ1∧ ...∧ϕn) → (ϕ ∧ϕ1∧ ...∧ϕn)
(ϕ1∧ ...∧ϕn)∧ϕ → (ϕ1∧ ...∧ϕn ∧ϕ)

InseadoConversion to Clausal Form

3

Operators Out

Example
 p ∨ q {p, q}
(p ∨ q) ∧ (r ∨ r) ∧ ¬s r ∨ r {r}
 ¬s {¬s}

ϕ1 ∧ ... ∧ϕn → ϕ1
...
ϕn

ϕ1 ∨ ... ∨ϕn → {ϕ1,..., ϕn}

InseadoConversion to Clausal Form

 g ∧ (r ⇒ f)
I g ∧ (¬r ∨ f)

ExampleExample

O {g}
 {¬r, f}

D g ∧ (¬r ∨ f)
N g ∧ (¬r ∨ f)

ExampleExample

 ¬(g ∧ (r ⇒ f))

O {¬g, r}
 {¬g, ¬f}

D (¬g ∨ r) ∧ (¬g ∨ ¬f)
N ¬g ∨ (r ∧ ¬f)

N ¬g ∨ ¬(¬r ∨ f)
N ¬g ∨ (¬¬r ∧ ¬f)

I ¬(g ∧ (¬r ∨ f))

Good News: The result of converting a set of sentences is
logically equivalent to that set of sentences.

Upshot: Whatever we prove from clausal form is logically
entailed by the original sentences.

Equivalence

Good News: The result of converting a set of sentences is
logically equivalent to that set of sentences.

Upshot: Whatever we prove from clausal form is logically
entailed by the original sentences.

Equivalence

Resolution Principle

Propositional ResolutionIntuition

Premises: {p, q} and {¬q, r}

If q is false, then the first clause tells us p must be true.
If q is true, then the second clause tells us r must be true.

Conclusion: {p, r}

Propositional ResolutionResolution Principle

{φ1, … , χ, … ,φm}
{ψ1, … ,¬χ, … , ψn}

{φ1, … , φm, ψ1, … , ψn}

Propositional ResolutionExample

{p, q}
{¬q, r}

{p, r}

Propositional ResolutionExample

{p, q, r}
{¬p}

{q, r}

Propositional ResolutionExample

{p}
{¬p}

{}

Propositional ResolutionExample

{p, q}
{¬p, ¬q}

{q, ¬q}
{p, ¬p}

Propositional ResolutionExample

{p, q}
{¬p, ¬q}

{} Wrong!!!

Propositional ResolutionImplication Elimination

{¬p, q}
{p}

{q}

p ⇒ q
p

q

Propositional ResolutionNegation Introduction

{¬p, q}
{¬p, ¬q}

{¬p}

p ⇒ q
p ⇒ ¬q

¬p

Transitivity

1. p ⇒ q Premise

2. q ⇒ r Premise

3. | p Assumption

4. | q Implication Elimination: 1, 3

5. | r Implication Elimination: 2, 4

6. p ⇒ r Implication Introduction: 3, 5

Propositional ResolutionTransitivity

{¬p, q}
{¬q, r}

{¬p, r}

p ⇒ q
q ⇒ r

p ⇒ r

If Mary loves Pat, then Mary loves Quincy. If it is
Monday, then Mary loves Pat or Quincy. If it is
Monday, does Mary love Quincy?

Mary, Pat, and Quincy

1. p ⇒ q Premise
2. m ⇒ p ∨ q Premise
3. | m Assumption
4. | p ∨ q

ppp¬p
Implication Elimination: 2, 3

5. | | q Assumption
6. | q ⇒ q Implication Introduction: 5, 5
7. | q Or Elimination: 4, 1, 6
8. m ⇒ q Implication Introduction: 3, 7

Propositional ResolutionExample

{¬p, q}
{¬m, p, q}

{¬m, q}

p ⇒ q
m ⇒ p ∨ q

m ⇒ q

Resolution Reasoning

Resolution Derivation

A resolution derivation of a conclusion from a set of
premises is a finite sequence of clauses terminating in the
conclusion in which each clause is either a premise or the
result of applying the resolution principle to earlier elements
of the sequence.

Resolution Derivation

Example

1. {¬p, r} p ⇒ r

2. {¬q, r} q ⇒ r

3. {p, q} p ∨ q

4. {q, r} 1, 3

5. {r} 2, 4

Or Elimination

Resolution Not Generatively Complete

Seemingly Bad News: Using the Resolution Principle alone,
it is not possible to generate every clause that is logically
entailed by a set of premises.

Premises: {p} and {q}
Conclusion: {p, q}

Premises: none
Conclusion: {p, ¬p}

But resolution cannot generate these results!

Resolution Not Generatively Complete

Resolution Not Generatively Complete

Good News: If a set of clauses is unsatisfiable, it is possible
to derive the empty clause using the Resolution Principle.

Resolution Determines Unsatisfiability

1. {p, q} Premise
2. {p, ¬q} Premise
3. {¬p, q} Premise
4. {¬p, ¬q} Premise
5. {p} 1, 2
6 {¬p} 3, 4
7 {} 5, 6

38

Unsatisfiability Determination: If a set of clauses is
unsatisfiable, it is possible to derive the empty clause
using the Resolution Principle.

Unsatisfiability Theorem: Δ ⊨ ϕ if and only if Δ ∪ {¬ϕ} is
unsatisfiable.

Resolution Method: To prove that a set Δ of sentences
logically entails a conclusion φ, write Δ ∪ {¬φ} in clausal
form and derive the empty clause.

Resolution Method

39

Given p, (p ⇒ q), and (p ⇒ q) ⇒ (q ⇒ r), prove r.

Example

 (p ⇒ q) ⇒ (q ⇒ r)
I ¬(¬p ∨ q) ∨ (¬q ∨ r)
N (¬¬p ∧ ¬q) ∨ (¬q ∨ r)
N (p ∧ ¬q) ∨ (¬q ∨ r)
D (p ∨ (¬q ∨ r)) ∧ (¬q ∨ (¬q ∨ r))
D (p ∨ ¬q ∨ r) ∧ (¬q ∨ ¬q ∨ r)
O {p, ¬q, r}
 {¬q, r}

40

Proof

1. {p} p
2. {¬p, q} p ⇒ q
3. {p, ¬q, r} (p ⇒ q) ⇒ (q ⇒ r)
4. {¬q, r} (p ⇒ q) ⇒ (q ⇒ r)
5. {¬r} Negated Goal
6. {q} 1, 2
7. {r} 6, 4
8. {} 7, 5

41

Show (p ⇒ (q ⇒ p)) is valid, i.e. {} ⊨ (p ⇒ (q ⇒ p)).

Example

 ¬(p ⇒ (q ⇒ p))
I ¬(¬p ∨ (¬q ∨ p))
N ¬¬p ∧ ¬(¬q ∨ p)
N p ∧ ¬(¬q ∨ p)
N p ∧ (¬¬q ∧ ¬p)
N p ∧ (q ∧ ¬p)
D p ∧ q ∧ ¬p
O {p}
 {q}
 {¬p}

42

Proof

1. {p} (p ⇒ (q ⇒ p))
2. {q} (p ⇒ (q ⇒ p))
3. {¬p} (p ⇒ (q ⇒ p))
4. {} 1, 3

Soundness and Completeness

A set of premises Δ logically entails a conclusion ϕ
(written Δ ⊨ ϕ) if and only if every interpretation that
satisfies Δ also satisfies ϕ.

If there exists a proof of a sentence φ from a set Δ of premises
using the rules of inference in R, we say that φ is provable
from Δ using R (written Δ ⊢R ϕ).

Logical Entailment and Provability

A proof system is sound if and only if every provable
conclusion is logically entailed.

If Δ ⊢ ϕ, then Δ ⊨ ϕ.

A proof system is complete if and only if every logical
conclusion is provable.

If Δ ⊨ ϕ, then Δ ⊢ ϕ.

Soundness and Completeness

Theorem: Resolution is sound and complete for Propositional
Logic.

Δ ⊨ ϕ if and only if Δ ⊢Resolution ϕ.

Upshot: The truth table method and the resolution method
succeed in exactly the same cases!

Resolution

Practical Matters

 1. {p, q} Premise
 2. {p, ¬q} Premise
 3. {¬p, q} Premise
 4. {¬p, ¬q} Premise

Two Finger Method

 1. {p, q} Premise
 2. {p, ¬q} Premise
 3. {¬p, q} Premise
 4. {¬p, ¬q} Premise

Two Finger Method

 1. {p, q} Premise
 2. {p, ¬q} Premise
 3. {¬p, q} Premise
 4. {¬p, ¬q} Premise
 5. {p} 1, 2

Two Finger Method

 1. {p, q} Premise
 2. {p, ¬q} Premise
 3. {¬p, q} Premise
 4. {¬p, ¬q} Premise
 5. {p} 1, 2

Two Finger Method

 1. {p, q} Premise
 2. {p, ¬q} Premise
 3. {¬p, q} Premise
 4. {¬p, ¬q} Premise
 5. {p} 1, 2
 6. {q} 1, 3

Two Finger Method

 1. {p, q} Premise
 2. {p, ¬q} Premise
 3. {¬p, q} Premise
 4. {¬p, ¬q} Premise
 5. {p} 1, 2
 6. {q} 1, 3
 7. {¬q, q} 2, 3
 ...

Two Finger Method

 1. {p, q} Premise
 2. {p, ¬q} Premise
 3. {¬p, q} Premise
 4. {¬p, ¬q} Premise
 5. {p} 1, 2
 6. {q} 1, 3
 7. {¬q, q} 2, 3
 ...

Two Finger Method

Proof as Produced by Two-Finger Method

Proof as Produced by Two-Finger Method

Proof with Identical Clause Elimination

Metatheorem: There is a resolution refutation of Δ if and
only if there is a resolution refutation from Δ in which no
clause occurs twice. (Obviously.)

Upshot: If you generate a clause that is already in the proof,
do not include it again.

Metatheorem: There are only finitely many clauses that can
be formed from a finite set of proposition constants.

Upshot: You will eventually run out of things to do. So
possible to terminate search in finite time!!!

Identical Clause Elimination

A tautology is a clause with a complementary pair of
literals.

{q,¬q}

{p, q, r,¬q}

Metatheorem: There is a resolution refutation of Δ if and
only if there is a resolution refutation from Δ with
tautology elimination.

Tautology Elimination

Proof with ICE and TE

Motivation for Subsumption

A clause Φ subsumes Ψ if and only if Φ is a subset of Ψ.

Example: {p, q} subsumes {p, q, r}

Metatheorem: There is a resolution refutation of Δ if and
only if there is a resolution refutation from Δ with
Propositional Subsumption.

Propositional Subsumption

The resolution of two clauses sometimes produces a
clause that subsumes one of its parents.

Note

Example of Pure Literal Elimination

A literal in a database is pure if and only if there is no
complementary occurrence of the literal in the database.

A clause is superfluous if and only if it contains a pure
literal.

Metatheorem: There is a resolution refutation of Δ if and
only if there is a resolution refutation from Δ in which
all superfluous clauses are removed.

Pure Literal Elimination

Example

The removal of a superfluous clause may create new
pure literals and new superfluous clauses.

Note

Elimination Strategies (Constraints on clauses):
Identical Clause Elimination
Pure Literal Elimination
Tautology Elimination
Subsumption Elimination

Restriction Strategies (Constraints on inferences):
Unit Restriction
Input Restriction
Linear Restriction
Set of Support Restriction

Strategies

Word of the Day

Robinson

Word of the Day

Robinson

Resolution Tools

http://logica.stanford.edu

Course Website

