Boring lecture

Introduction to Logic Direct Proofs

Michael Genesereth
Computer Science Department
Stanford University

Logical Entailment

A set of premises Δ logically entails a conclusion φ (written $\Delta \vDash \varphi$) if and only if every interpretation that satisfies Δ also satisfies φ .

Semantic Reasoning (Truth Tables)

Pı	remi	ses		Conclusion			
m	p	q		m	p	q	
T	T	T		T	Т	T	
T	T	F	→	T	T	F	
T	F	T		T	F	T	
T	F	F		T	F	F	
F	T	T		F	T	T	
F	T	F		F	Т	F	
F	F	T		F	F	T	
F	F	F		F	F	F	

With n constants, there are 2^n truth assignments.

Symbolic Manipulation (Metatheorems)

Is the sentence $((p \Leftrightarrow \neg q) \Rightarrow (\neg p \mid \neg q))$ valid, contingent, or unsatisfiable?

$$(p \Leftrightarrow \neg q) \Rightarrow (\neg p \mid \neg q)$$

$$(p \Leftrightarrow \neg q) \Rightarrow (p \Rightarrow \neg q)$$

$$(p \Rightarrow \neg q) \land (\neg q \Rightarrow p) \Rightarrow (p \Rightarrow \neg q)$$

$$(p \Rightarrow \neg q) \land (\neg q \Rightarrow p) \models (p \Rightarrow \neg q)$$

$$\{(p \Rightarrow \neg q), (\neg q \Rightarrow p)\} \vdash (p \Rightarrow \neg q)$$

$$\{(p \Rightarrow \neg q)\} \vdash (p \Rightarrow \neg q)$$
Monotonicity Theorem

Symbolic Manipulation (Proofs)

Truth Tables:

Guaranteed to succeed Often quite large

Problem Rewriting using metatheorems:

Less work than truth tables
More intuitive than truth tables
Sometimes works, sometimes don't

Theorem Proving:

Less work than truth tables
More intuitive than truth tables
Theorem proving always works. Systematic.

Proof Systems

Popular Types of Proof Systems:

→ Direct Proofs (Hilbert)

Natural Deduction (Fitch)

Refutation proofs (Resolution)

Others:

Gentzen Systems Sequent Calculi and so forth **Direct Proofs**

Schemas / Schemata

A *pattern | schema* is an expression satisfying the grammatical rules of our language except for the occurrence of *metavariables* (written here as Greek letters) in place of various subparts of the expression.

For example, the following expression is a schema with metavariables ϕ and ψ .

$$\phi \Rightarrow (\psi \Rightarrow \phi)$$

Instances

An *instance* of a schema is a sentence obtained by consistently substituting sentences for the metavariables in the rule.

Schema:

$$\phi \Rightarrow (\psi \Rightarrow \phi)$$

Instances:

$$p \Rightarrow (q \Rightarrow p)$$

$$\neg p \Rightarrow (q \Rightarrow \neg p)$$

$$(p \Rightarrow q) \Rightarrow ((q \Rightarrow r) \Rightarrow (p \Rightarrow q))$$

Non-Instance:

$$p \Rightarrow (q \Rightarrow r)$$

Valid Schemata

A *valid schema* is a sentence pattern denoting an infinite set of sentences, all of which are valid.

Examples:

Reflexivity: $(\phi \Rightarrow \phi)$

Negation Elimination: $(\neg \neg \phi \Rightarrow \phi)$

Negation Introduction: $(\phi \Rightarrow \neg \neg \phi)$

Disjunctive Tautology: $(\varphi \lor \neg \varphi)$

Non-Examples:

$$(\phi \land \neg \phi)$$

$$(\phi \Rightarrow \neg \phi)$$

Rules of Inference

A *rule of inference* is a pattern of reasoning consisting of zero or more schemas, called *premises*, and one or more additional schemas, called *conclusions*.

$$\frac{\phi \Rightarrow \psi}{\phi}$$

This rule is Implication Elimination or Modus Ponens.

Rules of Inference for ¬ and ⇒

Implication Elimination

$$\frac{\phi \Rightarrow \psi}{\phi}$$

Implication Creation

$$\frac{\psi}{\varphi \Rightarrow \psi}$$

Implication Distribution

$$\frac{(\phi \Rightarrow (\psi \Rightarrow \chi))}{(\phi \Rightarrow \psi) \Rightarrow (\phi \Rightarrow \chi)}$$

Implication Reversal

$$\frac{\neg \psi \Rightarrow \neg \phi}{\phi \Rightarrow \psi}$$

Rule Instances

An *instance* of a rule of inference is the rule obtained by consistently substituting sentences for the metavariables in the rule.

Rule of Inference:

$$\frac{\phi \Rightarrow \psi}{\psi}$$

Instances:

$$\begin{array}{ccc} p \Rightarrow q & & \neg p \Rightarrow q & & (p \Rightarrow q) \Rightarrow (q \Rightarrow r) \\ \hline \frac{p}{q} & & \frac{\neg p}{q} & & \frac{p \Rightarrow q}{q \Rightarrow r} \end{array}$$

Rule Application

Premises:

$$p$$

$$(p \Rightarrow q)$$

$$(p \Rightarrow q) \Rightarrow (q \Rightarrow r)$$

Rule Instance 1:

$$p \Rightarrow q$$

$$\frac{p}{a}$$

Conclusion 1:

9

Rule of Inference:

$$\frac{\varphi \Rightarrow \psi}{\varphi}$$

Rule Instance 2:

$$(p \Rightarrow q) \Rightarrow (q \Rightarrow r)$$

$$\frac{(p \Rightarrow q)}{(q \Rightarrow r)}$$

Conclusion 2:

$$(q \Rightarrow r)$$

Proof

A *direct proof* of a conclusion from a set of premises is a sequence of sentences terminating in the conclusion in which each item is either

- (1) a premise,
- (2) an instance of a valid schema, or
- (3) the result of applying a rule of inference to earlier items in sequence.

Top Level Sentences Only!!!

Premises:

$$(p \Rightarrow q)$$

$$(p \Rightarrow r)$$

Rule of Inference:

$$\phi \Rightarrow \psi$$

$$rac{arphi}{\psi}$$

Rule Instance:

$$(p \Rightarrow q)$$

$$\frac{p}{q}$$

Conclusion:

$$X (q \Rightarrow r) X No, no, no!$$

Rules cannot be applied to parts of sentences!!!

Given p and $(p \Rightarrow q)$ and $((p \Rightarrow q) \Rightarrow (q \Rightarrow r))$, prove r.

Given p and $(p \Rightarrow q)$ and $((p \Rightarrow q) \Rightarrow (q \Rightarrow r))$, prove r.

1.
$$p$$
 Premise
2. $p \Rightarrow q$ Premise
3. $(p \Rightarrow q) \Rightarrow (q \Rightarrow r)$ Premise
4. q IE: 2, 1

5.
$$q \Rightarrow r$$
 IE: 3, 2
6. r IE: 5, 4

$$\begin{array}{c|cccc} \varphi \Rightarrow \psi & & & & \\ \hline \varphi & & \psi & & & \\ \hline \psi & & \overline{\varphi} \Rightarrow \psi & & & \hline (\varphi \Rightarrow (\psi \Rightarrow \chi)) & & & \hline \neg \psi \Rightarrow \neg \varphi \\ IE & IC & ID & & & \\ \hline IR & & IR & & \\ \end{array}$$

Given $(p \Rightarrow q)$ and $(q \Rightarrow r)$, prove $(p \Rightarrow r)$.

1.
$$p \Rightarrow q$$

Premise

2.
$$q \Rightarrow r$$

Given $(p \Rightarrow q)$ and $(q \Rightarrow r)$, prove $(p \Rightarrow r)$.

1.
$$p \Rightarrow q$$

Premise

$$2. q \Rightarrow r$$

3.
$$p \Rightarrow (q \Rightarrow r)$$
 IC: 2

Given $(p \Rightarrow q)$ and $(q \Rightarrow r)$, prove $(p \Rightarrow r)$.

1.
$$p \Rightarrow q$$

Premise

$$2. q \Rightarrow r$$

3.
$$p \Rightarrow (q \Rightarrow r)$$
 IC: 2

4.
$$(p \Rightarrow q) \Rightarrow (p \Rightarrow r)$$
 ID: 3

$$\begin{array}{c|ccccc} \varphi \Rightarrow \psi & & & & & \\ \hline \varphi & & \psi & & & & \\ \hline \psi & & \overline{\varphi} \Rightarrow \psi & & & & \\ \hline \text{IE} & & \text{IC} & & & \\ \hline \end{array} \begin{array}{c} (\varphi \Rightarrow (\psi \Rightarrow \chi)) & & & \overline{\neg \psi} \Rightarrow \neg \varphi \\ \hline (\varphi \Rightarrow \psi) \Rightarrow (\varphi \Rightarrow \chi) & & \varphi \Rightarrow \psi \\ \hline \text{IR} & & & \\ \hline \end{array}$$

Given $(p \Rightarrow q)$ and $(q \Rightarrow r)$, prove $(p \Rightarrow r)$.

1.
$$p \Rightarrow q$$

Premise

$$2. q \Rightarrow r$$

Premise

3.
$$p \Rightarrow (q \Rightarrow r)$$
 IC: 2

4.
$$(p \Rightarrow q) \Rightarrow (p \Rightarrow r)$$
 ID: 3

5.
$$(p \Rightarrow r)$$

IE: 4, 1

$$\begin{array}{c|ccccc} \varphi \Rightarrow \psi & & & & & \\ \hline \varphi & & \psi & & & & \\ \hline \psi & & \overline{\varphi} \Rightarrow \psi & & & & \\ \hline \text{IE} & & \text{IC} & & & \\ \hline \end{array} \begin{array}{c} (\varphi \Rightarrow (\psi \Rightarrow \chi)) & & & \overline{\neg \psi} \Rightarrow \neg \varphi \\ \hline (\varphi \Rightarrow \psi) \Rightarrow (\varphi \Rightarrow \chi) & & \varphi \Rightarrow \psi \\ \hline \text{IR} & & & \\ \hline \end{array}$$

Given p and $\neg p$, prove q.

1. *p*

Premise

 $2. \neg p$

$$\begin{array}{c|cccc} \varphi \Rightarrow \psi & & & \\ \hline \varphi & & \psi & & \\ \hline \psi & & \overline{\varphi} \Rightarrow \psi & & \hline (\varphi \Rightarrow (\psi \Rightarrow \chi)) & & \hline -\psi \Rightarrow \neg \varphi \\ \hline \text{IE} & \text{IC} & \text{ID} & & \hline \text{IR} \\ \end{array}$$

Given p and $\neg p$, prove q.

1. *p*

Premise

2. ¬*p*

Premise

3. $\neg q \Rightarrow \neg p$

IC: 2

$$\begin{array}{c|cccc} \varphi \Rightarrow \psi & & & \\ \hline \varphi & & \psi & & \\ \hline \psi & & \overline{\varphi} \Rightarrow \psi & & \hline (\varphi \Rightarrow (\psi \Rightarrow \chi)) & & \hline -\psi \Rightarrow \neg \varphi \\ \hline \text{IE} & \text{IC} & \text{ID} & & \hline \text{IR} & & \\ \end{array}$$

Given p and $\neg p$, prove q.

1. *p*

Premise

2. ¬*p*

Premise

3. $\neg q \Rightarrow \neg p$

IC: 2

4. $p \Rightarrow q$

IR: 3

$$\begin{array}{c|cccc} \varphi \Rightarrow \psi & & & \\ \hline \varphi & & \psi & & \\ \hline \psi & & \overline{\varphi} \Rightarrow \psi & & \hline (\varphi \Rightarrow (\psi \Rightarrow \chi)) & & \overline{-\psi} \Rightarrow \neg \varphi \\ IE & IC & ID & IR & \\ \end{array}$$

Given p and $\neg p$, prove q.

1. *p*

Premise

 $2. \neg p$

Premise

3. $\neg q \Rightarrow \neg p$

IC: 2

4. $p \Rightarrow q$

IR: 3

5. *q*

IE: 4, 1

$$\begin{array}{c|cccc} \varphi \Rightarrow \psi & & & \\ \hline \varphi & & \psi & & \\ \hline \psi & & \overline{\varphi} \Rightarrow \psi & & \hline (\varphi \Rightarrow (\psi \Rightarrow \chi)) & & \overline{-\psi} \Rightarrow \neg \varphi \\ \hline \text{IE} & \text{IC} & \text{ID} & & \\ \hline \end{array}$$

Given $\neg \neg p$, prove p.

1.
$$\neg \neg p$$

$$\begin{array}{c|cccc} \varphi \Rightarrow \psi & & & \\ \hline \varphi & & \psi & & \\ \hline \psi & & \overline{\varphi} \Rightarrow \psi & & \hline (\varphi \Rightarrow (\psi \Rightarrow \chi)) & & \overline{-\psi} \Rightarrow \neg \varphi \\ IE & IC & ID & IR & \\ \end{array}$$

Given $\neg \neg p$, prove p.

1.
$$\neg \neg p$$
 Premise

2.
$$\neg\neg\neg p \Rightarrow \neg\neg p$$
 IC: 1

$$\begin{array}{c|cccc} \varphi \Rightarrow \psi & & & \\ \hline \varphi & & \psi & & \\ \hline \psi & & \overline{\varphi} \Rightarrow \psi & & \hline (\varphi \Rightarrow (\psi \Rightarrow \chi)) & & \overline{-\psi} \Rightarrow \neg \varphi \\ IE & IC & ID & IR & \\ \end{array}$$

Given $\neg \neg p$, prove p.

1.
$$\neg \neg p$$
 Premise

2.
$$\neg\neg\neg p \Rightarrow \neg\neg p$$
 IC: 1

3.
$$\neg p \Rightarrow \neg \neg \neg p$$
 IR: 2

4.
$$\neg \neg p \Rightarrow p$$
 IR: 3

$$\begin{array}{c|cccc} \varphi \Rightarrow \psi & & & \\ \hline \varphi & & \psi & & \\ \hline \psi & & \overline{\varphi} \Rightarrow \psi & & \hline (\varphi \Rightarrow (\psi \Rightarrow \chi)) & & \overline{-\psi} \Rightarrow \neg \varphi \\ \hline \text{IE} & \text{IC} & \text{ID} & & \\ \hline \end{array}$$

Given $\neg \neg p$, prove p.

1.
$$\neg \neg p$$
 Premise

2.
$$\neg \neg \neg p \Rightarrow \neg \neg p$$
 IC: 1

3.
$$\neg p \Rightarrow \neg \neg \neg p$$
 IR: 2

4.
$$\neg \neg p \Rightarrow p$$
 IR: 3

$$\begin{array}{c|cccc} \varphi \Rightarrow \psi & & & \\ \hline \varphi & & \psi & & \\ \hline \psi & & \overline{\varphi} \Rightarrow \psi & & \hline (\varphi \Rightarrow (\psi \Rightarrow \chi)) & & \hline -\psi \Rightarrow \neg \varphi \\ \hline \text{IE} & \text{IC} & \text{ID} & & \hline \text{IR} \\ \end{array}$$

Proof Systems

Proof Systems

A proof system is a finite set of (usually valid) axiom schemata and (usually sound) rules of inference.

Examples:

Hilbert / Lukasiewicz

Frege

Mendelson

Meredith

Hilbert System

Rule of Inference (IE):

$$\frac{\phi \Rightarrow \psi}{\phi}$$

Theoretically interesting.

Practically useless.

Pedagogical value.

Axiom Schemata (due to Lukasiewicz):

IC: $\varphi \Rightarrow (\psi \Rightarrow \varphi)$

ID: $(\phi \Rightarrow (\psi \Rightarrow \chi)) \Rightarrow ((\phi \Rightarrow \psi) \Rightarrow (\phi \Rightarrow \chi))$

IR: $(\neg \psi \Rightarrow \neg \varphi) \Rightarrow (\varphi \Rightarrow \psi)$

NB: Any PL sentence can be converted algorithmically into a logically equivalent sentence involving just \neg and \Rightarrow . (Substitution Theorem and validities.)

Example 1 - Transitivity

Given $(p \Rightarrow q)$ and $(q \Rightarrow r)$, prove $(p \Rightarrow r)$.

1.
$$p \Rightarrow q$$
 Premise

2.
$$q \Rightarrow r$$
 Premise

3.
$$(q \Rightarrow r) \Rightarrow (p \Rightarrow (q \Rightarrow r))$$
 IC

4.
$$(p \Rightarrow (q \Rightarrow r))$$
 IE: 2, 3

5.
$$(p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow r))$$
 ID

6.
$$(p \Rightarrow q) \Rightarrow (p \Rightarrow r)$$
 IE: 4, 5

7.
$$p \Rightarrow r$$
 IE: 1, 6

Example 2 - Reflexivity

Prove $(p \Rightarrow p)$.

1.
$$p \Rightarrow (p \Rightarrow p)$$
 IC
2. $p \Rightarrow ((p \Rightarrow p) \Rightarrow p)$ IC
3. $p \Rightarrow ((p \Rightarrow p) \Rightarrow p) \Rightarrow ((p \Rightarrow (p \Rightarrow p)) \Rightarrow (p \Rightarrow p))$ ID
4. $(p \Rightarrow (p \Rightarrow p)) \Rightarrow (p \Rightarrow p)$ IE: 2, 3
5. $(p \Rightarrow p)$

Example 3 - Inconsistency

Given p and $\neg p$, prove q.

l .	p		Pren	nise
	_			

2.
$$\neg p$$
 Premise

3
$$\neg p \Rightarrow (\neg q \Rightarrow \neg p)$$
 IC

$$4 \quad \neg q \Rightarrow \neg p$$
 IE: 3, 2

5.
$$(\neg q \Rightarrow \neg p) \Rightarrow (p \Rightarrow q)$$
 IR

6.
$$p \Rightarrow q$$
 IE: 5, 4

Meredith System

Rule of Inference:

$$\frac{\phi \Rightarrow \psi}{\phi}$$

Axiom Schema:

$$((((((\varphi \Rightarrow \psi) \Rightarrow (\neg \chi \Rightarrow \neg \theta)) \Rightarrow \chi) \Rightarrow \tau) \Rightarrow ((\tau \Rightarrow \varphi) \Rightarrow (\theta \Rightarrow \varphi)))$$

Meredith System

Unfortunately:

Proofs hard to generate

Proofs hard to understand

Theoretically interesting.

Practically useless.

No pedagogical value.

Rules and Axiom Schemata

Axiom Schemata as 0-ary Rules of Inference

$$\varphi \Rightarrow \varphi$$
 $\varphi \Rightarrow \varphi$

Rules of Inference as Axiom Schemata

$$\frac{\neg \psi \Rightarrow \neg \phi}{\phi \Rightarrow \psi} \qquad (\phi \Rightarrow \psi) \Rightarrow (\neg \psi \Rightarrow \neg \phi)$$

NB: We must keep at least one rule of inference. By convention, we retain Implication Elimination.

Axiom Schemata and Rules

Fact: If a sentence is valid, then it is true under all interpretations. Consequently, there should be a proof without making any assumptions at all.

Fact: $(p \Rightarrow p)$ is a valid sentence.

Problem: Prove $(p \Rightarrow p)$ without any premises.

NB: We must have some schemata or 0-ary rules of inference.

Soundness and Completeness

Provability

If there exists a proof of a sentence φ from a set Δ of premises using the rules of inference in R, we say that φ is *provable* from Δ using R.

We usually write this as $\Delta \vdash_R \varphi$, using the provability operator \vdash (which is sometimes called *single turnstile*). (If the set of rules is clear from context, we usually drop the subscript, writing just $\Delta \vdash \varphi$.)

$$\{p \Rightarrow q, q \Rightarrow r\} \vdash (p \Rightarrow r)$$

Logical Entailment and Provability

A set of premises Δ *logically entails* a conclusion φ ($\Delta \vDash \varphi$) if and only if every interpretation that satisfies Δ also satisfies φ .

If there exists a proof of a sentence φ from a set Δ of premises using the rules of inference in R, we say that φ is *provable* from Δ using R (written $\Delta \vdash_R \varphi$).

Soundness and Completeness

A proof system is *sound* if and only if every provable conclusion is logically entailed.

If
$$\Delta \vdash \varphi$$
, then $\Delta \vDash \varphi$.

A proof system is *complete* if and only if every logically entailed conclusion is provable.

If
$$\Delta \vDash \varphi$$
, then $\Delta \vdash \varphi$.

Hilbert System

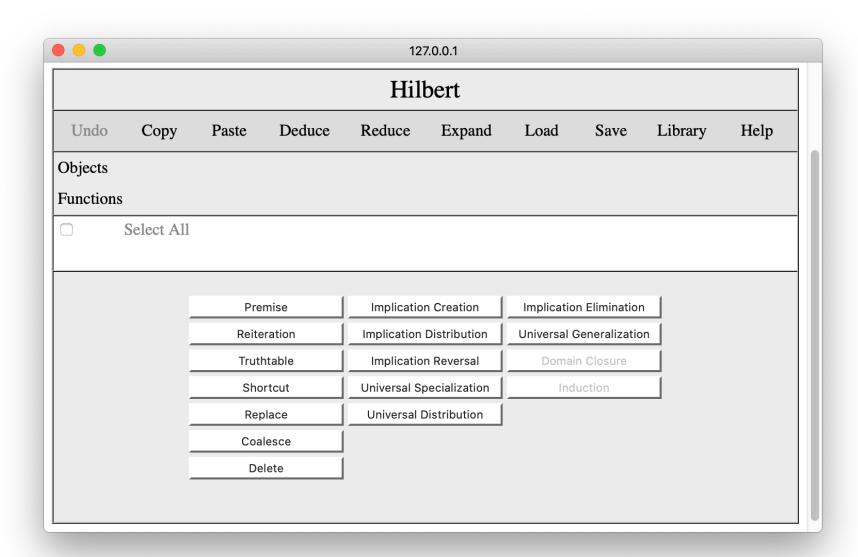
Theorem: The Hilbert System is sound and complete for Propositional Logic.

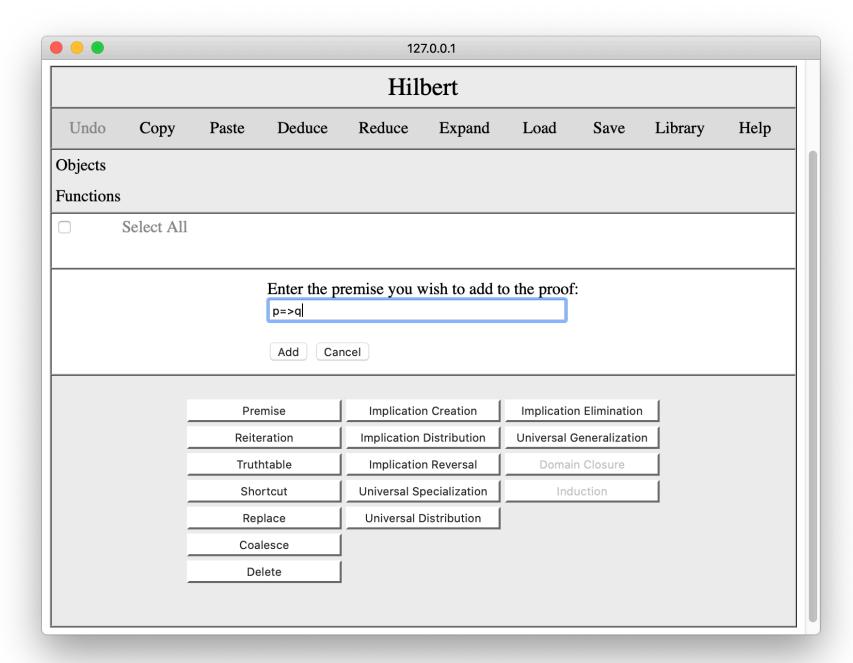
$$\Delta \vdash_{\mathsf{Hilbert}} \varphi \text{ if and only if } \Delta \vDash \varphi.$$

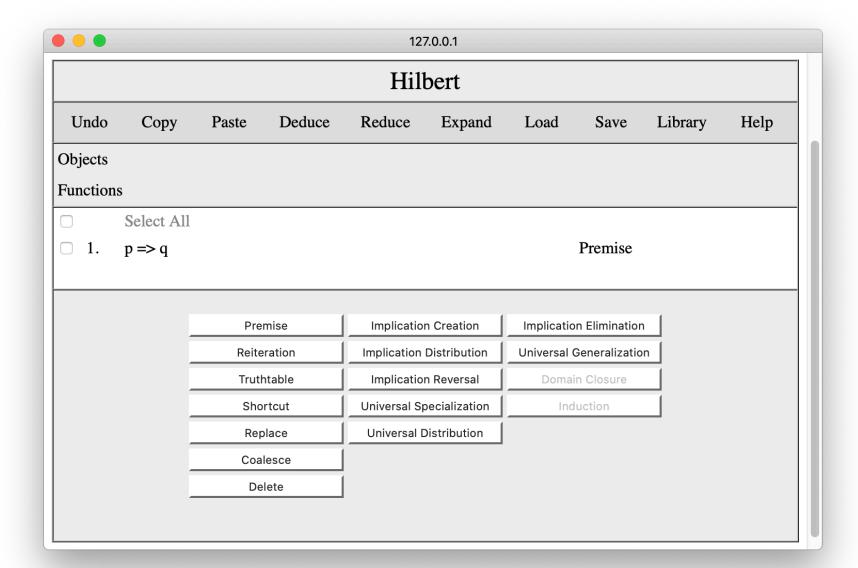
Translation: The truth table method and the proof method succeed in exactly the same cases.

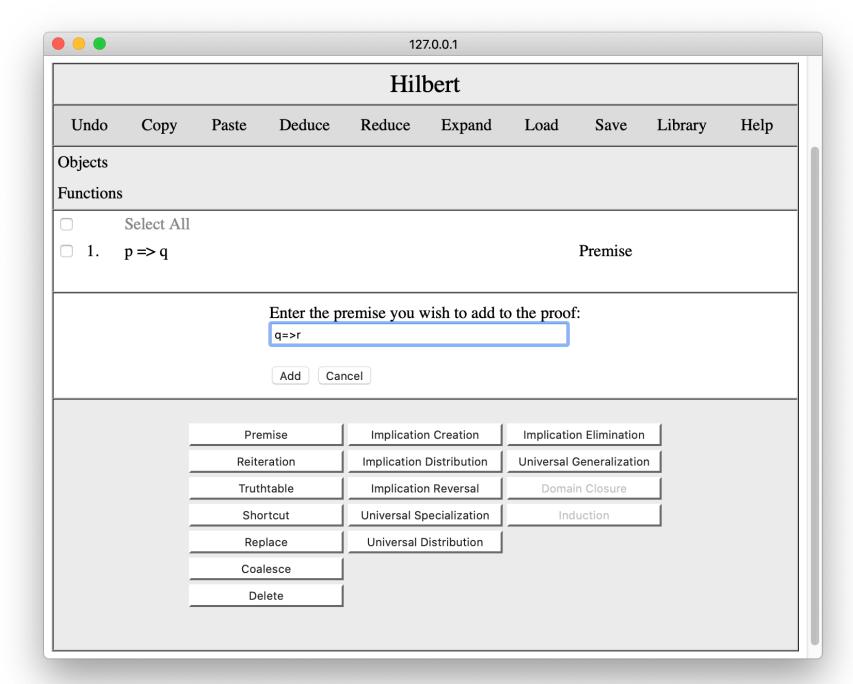
NB: The Meredith System is also sound and complete.

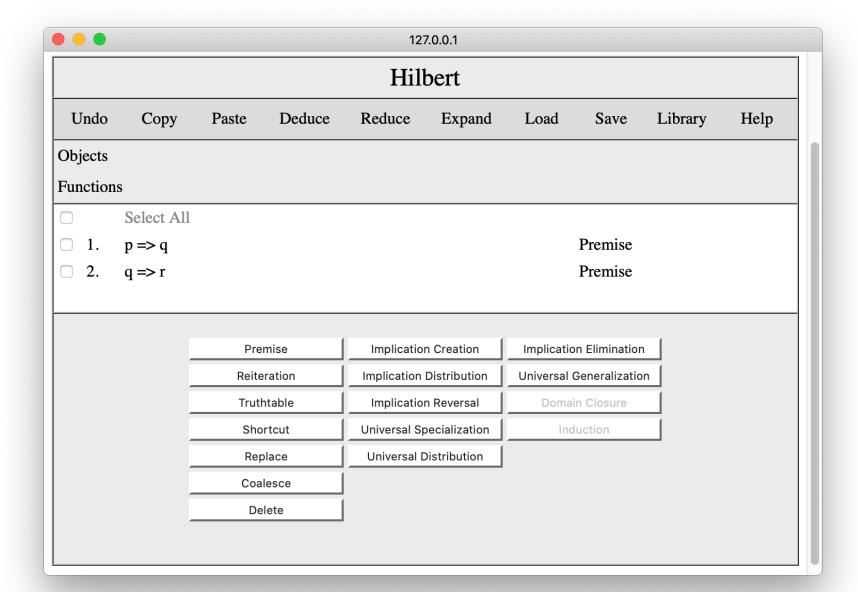
$$\Delta \vdash_{\mathsf{Meredith}} \varphi \text{ if and only if } \Delta \vDash \varphi.$$

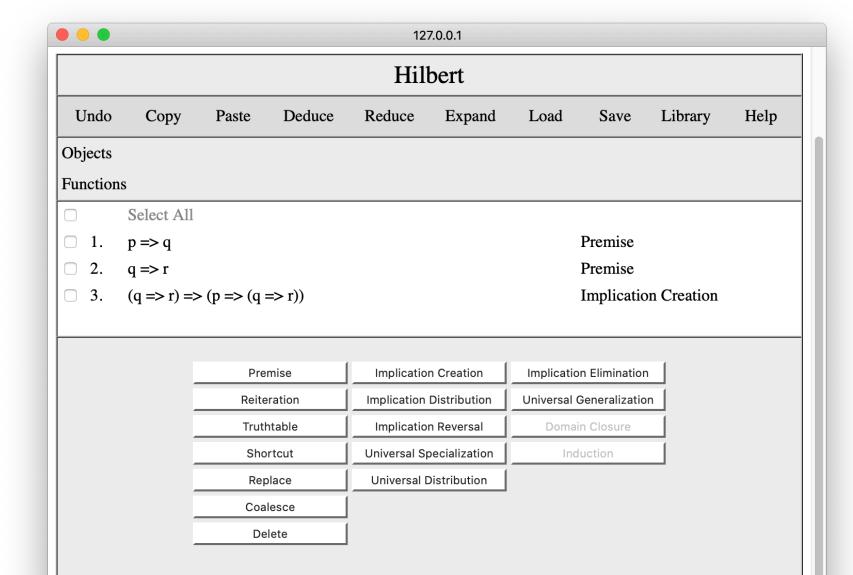

Significance

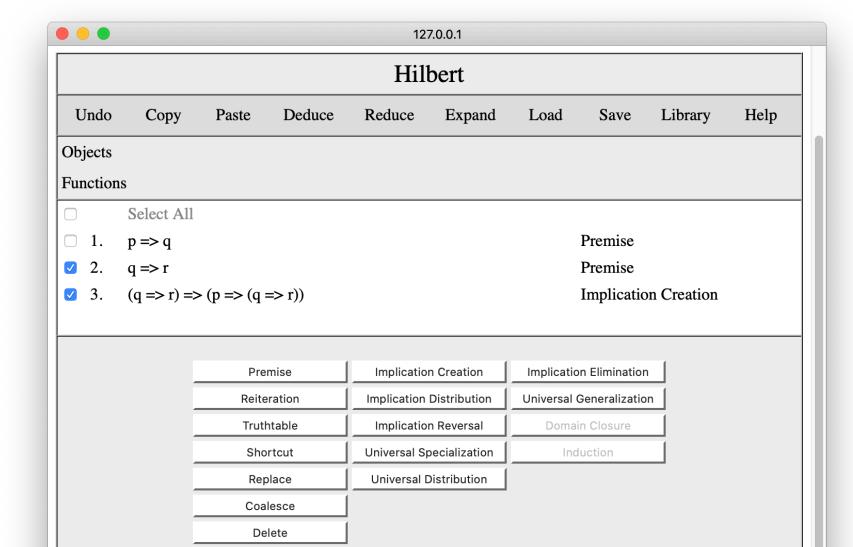

Proofs are often much smaller than the corresponding truth tables.


Finding a proof often takes fewer steps than the truth table method. (However, in the worst case, this may take just as many or even more steps.)


Hilbert Online System


http://logica.stanford.edu/documentation/hilbert.html





Hilbert									
Undo	Сору	Paste	Deduce	Reduce	Expand	Load	Save	Library	Hel
Objects									
Function	s								
	Select All								
□ 1.	p => q						Premise		
□ 2.	$q \Rightarrow r$						Premise		
Implication Introduction:									
		I	mplication l	Introduction:					
		I	mplication l	Introduction: $\phi \Rightarrow (\psi$	<i>γ</i> => φ)				
			_	Introduction: $\phi \Rightarrow (\psi)$ for the meta	<i>γ</i> => φ)	the schem	ıa:		
		E	Enter values	$\phi \Rightarrow (\eta$	<i>γ</i> => φ)	the schem	ıa:		
		E	Enter values p: q=>r	$\phi \Rightarrow (\eta$	<i>γ</i> => φ)	the schem	na:		
		E	Enter values	$\phi \Rightarrow (\eta)$ for the meta	y => φ) -variables in	the schem	na:		
		E	Enter values p: q=>r	$\phi \Rightarrow (\eta$	<i>γ</i> => φ)	the schem	na:		
		E	Enter values φ: q=>r ψ: p	$\phi \Rightarrow (\eta)$ for the meta	y => φ) -variables in		na: n Elimination		
		E	Enter values φ: q=>r ψ: p	$\phi \Rightarrow (\eta)$ for the meta	y => φ) -variables in Cancel	Implicatio		_	
		Prer	Enter values φ: q=>r ψ: p mise ration	φ => (η for the meta	P => φ) -variables in Cancel Cancel Distribution	Implicatio Universal (n Elimination	_	
		Prer Reiter	Enter values φ: q=>r ψ: p mise ration	φ => (η for the meta Add Implication	P => φ) -variables in Cancel Cancel Distribution Reversal	Implicatio Universal (n Elimination Generalization	_	
		Prer Reiter Truth	Enter values φ: q=>r ψ: p mise ration table	φ => (η for the meta Add Implication Implication	Cancel Creation Distribution n Reversal Decialization	Implicatio Universal (n Elimination Generalization	_	
		Prer Reiter Truth Shor	Particut	φ => (γ) for the meta Add Implication Implication Universal Sp	Cancel Creation Distribution n Reversal Decialization	Implicatio Universal (n Elimination Generalization	_	

Undo Copy Paste Deduce Reduce Expand Load Save Library Help

Objects

Functions

Select All

1. $p \Rightarrow q$ Premise

Delete

2. $q \Rightarrow r$ Premise

3. $(q \Rightarrow r) \Rightarrow (p \Rightarrow (q \Rightarrow r))$ Implication Creation

 \Box 4. $p \Rightarrow (q \Rightarrow r)$ Implication Elimination: 3, 2

Premise Implication Creation Implication Elimination
Reiteration Implication Distribution Universal Generalization
Truthtable Implication Reversal Domain Closure
Shortcut Universal Specialization Induction
Replace Universal Distribution
Coalesce

Hilbert Save Copy Paste Deduce Reduce Expand Library Help Undo Load Objects **Functions** Select All Premise $p \Rightarrow q$ Premise $q \Rightarrow r$ $(q \Rightarrow r) \Rightarrow (p \Rightarrow (q \Rightarrow r))$ Implication Creation Implication Elimination: 3, 2 \Box 4. $p \Rightarrow (q \Rightarrow r)$ Implication Distribution: $(\phi \Rightarrow (\psi \Rightarrow \chi)) \Rightarrow ((\phi \Rightarrow \psi) \Rightarrow (\phi \Rightarrow \chi))$ Enter values for the meta-variables in the schema: ф: р ψ: q **χ:** r Add Cancel Implication Creation Implication Elimination Premise Reiteration Implication Distribution Universal Generalization Truthtable Implication Reversal Domain Closure Shortcut Universal Specialization Universal Distribution Replace Coalesce Delete

Hil	bert
T TT 1	

Objects

Functions

Select All

 $1. p \Rightarrow q$

2. $q \Rightarrow r$

3. $(q \Rightarrow r) \Rightarrow (p \Rightarrow (q \Rightarrow r))$

4. $p \Rightarrow (q \Rightarrow r)$

5. $(p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow r))$

Premise

Premise

Implication Creation

Implication Elimination: 3, 2

Implication Distribution

Premise	Implication Creation	Implication Elimination
Reiteration	Implication Distribution	Universal Generalization
Truthtable	Implication Reversal	Domain Closure
Shortcut	Universal Specialization	Induction
Replace	Universal Distribution	
Coalesce		
Delete		

H _i 1	bert
T T T	

Objects

Functions

Select All

1. $p \Rightarrow q$

 \supset 2. $q \Rightarrow r$

3. $(q \Rightarrow r) \Rightarrow (p \Rightarrow (q \Rightarrow r))$

- 4. $p \Rightarrow (q \Rightarrow r)$

5. $(p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow r))$

6. $(p \Rightarrow q) \Rightarrow (p \Rightarrow r)$

Premise

Premise

Implication Creation

Implication Elimination: 3, 2

Implication Distribution

Implication Elimination: 5, 4

Premise	Implication Creation	Implication Elimination
Reiteration	Implication Distribution	Universal Generalization
Truthtable	Implication Reversal	Domain Closure
Shortcut	Universal Specialization	Induction
Replace	Universal Distribution	
Coalesce		
Delete		

T 1	r•1	1	
ш	1	h	ert
11	u	יטו	
		_	

Objects

Functions

Select All

1. $p \Rightarrow q$

 $\begin{array}{ccc} 2. & q \Rightarrow r \end{array}$ Premise

 \Box 3. $(q \Rightarrow r) \Rightarrow (p \Rightarrow (q \Rightarrow r))$ Implication Creation

4. $p \Rightarrow (q \Rightarrow r)$ Implication Elimination: 3, 2

Premise

5. $(p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow r))$ Implication Distribution

6. $(p \Rightarrow q) \Rightarrow (p \Rightarrow r)$ Implication Elimination: 5, 4

 \Box 7. $p \Rightarrow r$ Implication Elimination: 6, 1

Premise	Implication Creation	Implication Elimination
Reiteration	Implication Distribution	Universal Generalization
Truthtable	Implication Reversal	Domain Closure
Shortcut	Universal Specialization	Induction
Replace	Universal Distribution	
Coalesce		
Delete		

Hilbert

Objects

Functions

Select All

1. $p \Rightarrow q$ Premise

 $\begin{array}{ccc}
2. & q \Rightarrow r
\end{array}$

 $\exists 3. \quad (q \Rightarrow r) \Rightarrow (p \Rightarrow (q \Rightarrow r))$ Implication Creation

4. $p \Rightarrow (q \Rightarrow r)$ Implication Elimination: 3, 2

5. $(p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow r))$ Implication Distribution

6. $(p \Rightarrow q) \Rightarrow (p \Rightarrow r)$ Implication Elimination: 5, 4

7. $p \Rightarrow r$ Implication Elimination: 6, 1

Premise	Implication Creation	Implication Elimination
Reiteration	Implication Distribution	Universal Generalization
Truthtable	Implication Reversal	Domain Closure
Shortcut	Universal Specialization	Induction
Replace	Universal Distribution	
Coalesce		
Delete		

Objects

Functions

Select All

1. $p \Rightarrow q$

 $2. q \Rightarrow r$

3. $(q \Rightarrow r) \Rightarrow (p \Rightarrow (q \Rightarrow r))$

- 4. $p \Rightarrow (q \Rightarrow r)$

 \Box 5. $(p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow r))$

 \Box 6. $(p \Rightarrow q) \Rightarrow (p \Rightarrow r)$

 \Box 7. $p \Rightarrow r$

- 8. $p \Rightarrow (q \Rightarrow r)$

Premise

Premise

Implication Creation

Implication Elimination: 3, 2

Implication Distribution

Implication Elimination: 5, 4

Implication Elimination: 6, 1

Reiteration: 4

Premise	Implication Creation	Implication Elimination
Reiteration	Implication Distribution	Universal Generalization
Truthtable	Implication Reversal	Domain Closure
Shortcut	Universal Specialization	Induction
Replace	Universal Distribution	
Coalesce		
Delete		

Objects

Functions

Select All

1. $p \Rightarrow q$

 $2. q \Rightarrow r$

3. $(q \Rightarrow r) \Rightarrow (p \Rightarrow (q \Rightarrow r))$

- 4. $p \Rightarrow (q \Rightarrow r)$

 \Box 5. $(p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow r))$

 \Box 6. $(p \Rightarrow q) \Rightarrow (p \Rightarrow r)$

 \Box 7. $p \Rightarrow r$

- 8. $p \Rightarrow (q \Rightarrow r)$

Premise

Premise

Implication Creation

Implication Elimination: 3, 2

Implication Distribution

Implication Elimination: 5, 4

Implication Elimination: 6, 1

Reiteration: 4

Premise	Implication Creation	Implication Elimination
Reiteration	Implication Distribution	Universal Generalization
Truthtable	Implication Reversal	Domain Closure
Shortcut	Universal Specialization	Induction
Replace	Universal Distribution	
Coalesce		
Delete		

T 1	r•1	1	
ш	1	h	ert
11	u	יטו	
		_	

Objects

Functions

Select All

1. $p \Rightarrow q$

 $\begin{array}{ccc} 2. & q \Rightarrow r \end{array}$ Premise

 \Box 3. $(q \Rightarrow r) \Rightarrow (p \Rightarrow (q \Rightarrow r))$ Implication Creation

4. $p \Rightarrow (q \Rightarrow r)$ Implication Elimination: 3, 2

Premise

5. $(p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow r))$ Implication Distribution

6. $(p \Rightarrow q) \Rightarrow (p \Rightarrow r)$ Implication Elimination: 5, 4

 \Box 7. $p \Rightarrow r$ Implication Elimination: 6, 1

Premise	Implication Creation	Implication Elimination
Reiteration	Implication Distribution	Universal Generalization
Truthtable	Implication Reversal	Domain Closure
Shortcut	Universal Specialization	Induction
Replace	Universal Distribution	
Coalesce		
Delete		

Undo Copy Paste Deduce Reduce Expand Load Save Library Help

Objects

Functions

Select All

1. $p \Rightarrow q$

2. $q \Rightarrow r$

3. $(q \Rightarrow r) \Rightarrow (p \Rightarrow (q \Rightarrow r))$

4. $p \Rightarrow (q \Rightarrow r)$

5. $(p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow r))$

6. $(p \Rightarrow q) \Rightarrow (p \Rightarrow r)$

 \Box 7. $p \Rightarrow r$

Premise

Premise

Implication Creation

Implication Elimination: 3, 2

Implication Distribution

Implication Elimination: 5, 4

Implication Elimination: 6, 1

Premise	Implication Creation	Implication Elimination
Reiteration	Implication Distribution	Universal Generalization
Truthtable	Implication Reversal	Domain Closure
Shortcut	Universal Specialization	Induction
Replace	Universal Distribution	
Coalesce		
Delete		

Undo Copy Paste Deduce Reduce Expand Load Save Library Help

Objects

Functions

Select All

1. $q \Rightarrow r$ Premise

2. $(q \Rightarrow r) \Rightarrow (p \Rightarrow (q \Rightarrow r))$ Implication Creation

3. $p \Rightarrow (q \Rightarrow r)$ Implication Elimination: 2, 1

4. $(p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow r))$ Implication Distribution

5. $(p \Rightarrow q) \Rightarrow (p \Rightarrow r)$ Implication Elimination: 4, 3

Premise	Implication Creation	Implication Elimination
Reiteration	Implication Distribution	Universal Generalization
Truthtable	Implication Reversal	Domain Closure
Shortcut	Universal Specialization	Induction
Replace	Universal Distribution	
Coalesce		
Delete		

T 1	r•1	1	
ш	1	h	ert
11	u	יטו	
		_	

Objects

Functions

Select All

1. $p \Rightarrow q$

 $\begin{array}{ccc} 2. & q \Rightarrow r \end{array}$ Premise

 \Box 3. $(q \Rightarrow r) \Rightarrow (p \Rightarrow (q \Rightarrow r))$ Implication Creation

4. $p \Rightarrow (q \Rightarrow r)$ Implication Elimination: 3, 2

Premise

5. $(p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow r))$ Implication Distribution

6. $(p \Rightarrow q) \Rightarrow (p \Rightarrow r)$ Implication Elimination: 5, 4

 \Box 7. $p \Rightarrow r$ Implication Elimination: 6, 1

Premise	Implication Creation	Implication Elimination
Reiteration	Implication Distribution	Universal Generalization
Truthtable	Implication Reversal	Domain Closure
Shortcut	Universal Specialization	Induction
Replace	Universal Distribution	
Coalesce		
Delete		

T 1	r•1	1	
ш	1	h	ert
ш	u	יטו	
		_	

Objects

Functions

Select All

1. $p \Rightarrow q$

 $\begin{array}{ccc} 2. & q \Rightarrow r \end{array}$ Premise

 \Box 3. $(q \Rightarrow r) \Rightarrow (p \Rightarrow (q \Rightarrow r))$ Implication Creation

4. $p \Rightarrow (q \Rightarrow r)$ Implication Elimination: 3, 2

Premise

5. $(p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow r))$ Implication Distribution

6. $(p \Rightarrow q) \Rightarrow (p \Rightarrow r)$ Implication Elimination: 5, 4

 \Box 7. $p \Rightarrow r$ Implication Elimination: 6, 1

Premise	Implication Creation	Implication Elimination
Reiteration	Implication Distribution	Universal Generalization
Truthtable	Implication Reversal	Domain Closure
Shortcut	Universal Specialization	Induction
Replace	Universal Distribution	
Coalesce		
Delete		

Undo Copy Paste Deduce Reduce Expand Load Save Library Help

Objects

Functions

Select All

1. $q \Rightarrow r$

2. $(q \Rightarrow r) \Rightarrow (p \Rightarrow (q \Rightarrow r))$

3. $p \Rightarrow (q \Rightarrow r)$

4. $(p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow r))$

5. $(p \Rightarrow q) \Rightarrow (p \Rightarrow r)$

Premise

Implication Creation

Implication Elimination: 2, 1

Implication Distribution

Implication Elimination: 4, 3

Premise	Implication Creation	Implication Elimination
Reiteration	Implication Distribution	Universal Generalization
Truthtable	Implication Reversal	Domain Closure
Shortcut	Universal Specialization	Induction
Replace	Universal Distribution	
Coalesce		
Delete		

Undo Copy Paste Deduce Reduce Expand Load Save Library Help

Premise

Objects

Functions

Select All

1. $p \Rightarrow q$

2. $q \Rightarrow r$ Premise

3. $(q \Rightarrow r) \Rightarrow (p \Rightarrow (q \Rightarrow r))$ Implication Creation

4. $p \Rightarrow (q \Rightarrow r)$ Implication Elimination: 3, 2

5. $(p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow r))$ Implication Distribution

6. $(p \Rightarrow q) \Rightarrow (p \Rightarrow r)$ Implication Elimination: 5, 4

Premise	Implication Creation	Implication Elimination
Reiteration	Implication Distribution	Universal Generalization
Truthtable	Implication Reversal	Domain Closure
Shortcut	Universal Specialization	Induction
Replace	Universal Distribution	
Coalesce		
Delete		

Undo Copy Paste Deduce Reduce Expand Load Save Library Help

Objects

Functions

Select All

1. $p \Rightarrow q$

 $2. q \Rightarrow r$

3. $(q \Rightarrow r) \Rightarrow (p \Rightarrow (q \Rightarrow r))$

4. $p \Rightarrow (q \Rightarrow r)$

5. $(p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow r))$

 \Box 6. $(p \Rightarrow q) \Rightarrow (p \Rightarrow r)$

Premise

Premise

Implication Creation

Implication Elimination: 3, 2

Implication Distribution

Implication Elimination: 5, 4

Premise	Implication Creation	Implication Elimination
Reiteration	Implication Distribution	Universal Generalization
Truthtable	Implication Reversal	Domain Closure
Shortcut	Universal Specialization	Induction
Replace	Universal Distribution	
Coalesce		
Delete		

T 1	r•1	1	
ш	1	h	ert
ш	u	יטו	
		_	

Objects

Functions

Select All

1. $p \Rightarrow q$

 $\begin{array}{ccc} 2. & q \Rightarrow r \end{array}$ Premise

 \Box 3. $(q \Rightarrow r) \Rightarrow (p \Rightarrow (q \Rightarrow r))$ Implication Creation

4. $p \Rightarrow (q \Rightarrow r)$ Implication Elimination: 3, 2

Premise

5. $(p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow r))$ Implication Distribution

6. $(p \Rightarrow q) \Rightarrow (p \Rightarrow r)$ Implication Elimination: 5, 4

 \Box 7. $p \Rightarrow r$ Implication Elimination: 6, 1

Premise	Implication Creation	Implication Elimination
Reiteration	Implication Distribution	Universal Generalization
Truthtable	Implication Reversal	Domain Closure
Shortcut	Universal Specialization	Induction
Replace	Universal Distribution	
Coalesce		
Delete		

Hilbert

Undo Copy Paste Deduce Reduce Expand Load Save Library Help

Objects

Functions

Select All

✓ 1. p => q

 \checkmark 2. $q \Rightarrow r$

 \Box 3. $(q \Rightarrow r) \Rightarrow (p \Rightarrow (q \Rightarrow r))$

- 4. $p \Rightarrow (q \Rightarrow r)$

5. $(p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow r))$

 \Box 6. $(p \Rightarrow q) \Rightarrow (p \Rightarrow r)$

 \Box 7. $p \Rightarrow r$

Premise

Premise

Implication Creation

Implication Elimination: 3, 2

Implication Distribution

Implication Elimination: 5, 4

Implication Elimination: 6, 1

Select premises.

Enter your proposed conclusion:

1<=q

Must be provable from selected premises via truthtable.

Delete

Add Cancel

Premise	Implication Creation	Implication Elimination
Reiteration	Implication Distribution	Universal Generalization
Truthtable	Implication Reversal	Domain Closure
Shortcut	Universal Specialization	Induction
Replace	Universal Distribution	
Coalesco		

т 1	r • 1	11 .
Н	1	lbert

Undo Copy Paste Deduce Reduce Expand Load Save Library Help

Objects

Functions

Select All

1. $p \Rightarrow q$

q = r

3. $(q \Rightarrow r) \Rightarrow (p \Rightarrow (q \Rightarrow r))$

- 4. $p \Rightarrow (q \Rightarrow r)$

 \Box 5. $(p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow r))$

 \Box 6. $(p \Rightarrow q) \Rightarrow (p \Rightarrow r)$

 \Box 7. $p \Rightarrow r$

 \bigcirc 8. $p \Rightarrow r$

Premise

Premise

Implication Creation

Implication Elimination: 3, 2

Implication Distribution

Implication Elimination: 5, 4

Implication Elimination: 6, 1

Truth Table: 1, 2

Premise	Implication Creation	Implication Elimination
Reiteration	Implication Distribution	Universal Generalization
Truthtable	Implication Reversal	Domain Closure
Shortcut	Universal Specialization	Induction
Replace	Universal Distribution	
Coalesce		
Delete		

127.0.0.1 Hilbert Copy Deduce Reduce Expand Library Undo Paste Load Save Help Objects **Functions** Select All **Premise 1**. p => q**2**. Premise $q \Rightarrow r$ \Box 3. $(q \Rightarrow r) \Rightarrow (p \Rightarrow (q \Rightarrow r))$ Implication Creation \Box 4. $p \Rightarrow (q \Rightarrow r)$ Implication Elimination: 3, 2 \Box 5. $(p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow r))$ Implication Distribution \Box 6. $(p \Rightarrow q) \Rightarrow (p \Rightarrow r)$ Implication Elimination: 5, 4 \Box 7. $p \Rightarrow r$ Implication Elimination: 6, 1 \bigcirc 8. $p \Rightarrow r$ Truth Table: 1, 2 Enter the conclusion you wish to add to the proof: p=>r Enter the justification for this conclusion: I said so Cancel Add Premise Implication Creation Implication Elimination Reiteration Implication Distribution Universal Generalization Truthtable Implication Reversal Domain Closure Shortcut Universal Specialization Replace Universal Distribution

Coalesce Delete

T T.	11 .	
H 1	lbert	

Undo Copy Paste Deduce Reduce Expand Load Save Library Help

Objects

• • •

Functions

Select All

1. $p \Rightarrow q$

2. $q \Rightarrow r$

3. $(q \Rightarrow r) \Rightarrow (p \Rightarrow (q \Rightarrow r))$

 \Box 5. $(p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow r))$

 \Box 6. $(p \Rightarrow q) \Rightarrow (p \Rightarrow r)$

 \Box 7. $p \Rightarrow r$

8. $p \Rightarrow r$

 \bigcirc 9. $p \Rightarrow r$

Premise

Premise

Implication Creation

Implication Elimination: 3, 2

Implication Distribution

Implication Elimination: 5, 4

Implication Elimination: 6, 1

Truth Table: 1, 2

I said so: 1, 2

Implication Creation	Implication Elimination
Implication Distribution	Universal Generalization
Implication Reversal	Domain Closure
Universal Specialization	Induction
Universal Distribution	
	Implication Distribution Implication Reversal Universal Specialization

Name	Description	Depth
Implication Elimination	$\{p = >q, p\} \vdash q$	0
Implication Creation	⊢ p=>(q=>p)	0
Implication Distribution	$\vdash (p=>(q=>r))=>((p=>q)=>(p=r))$	0
Implication Reversal	⊢ (~q=>~p)=>(p=>q)	0
Identity	⊢ p=>p	1
Inconsistency	⊢ ~p=>(p=>q)	3
Negation Elimination	⊢ ~~p=>p	3
Negation Introduction	⊢ p=>~~p	4
Implication Creation	$\{p\} \vdash q \Rightarrow p$	1
Implication Distribution	$\{p{=}{>}(q{=}{>}r)\} \vdash (p{=}{>}q){=}{>}(p{=}r)$	1
Implication Reversal	$\{\sim q => \sim p\} \vdash (p => q)$	1
Negation Elimination	${\sim p} \vdash p$	2
Negation Introduction	{p} ⊢ ~~p	4
Inconsistency	$\{p, \sim p\} \vdash q$	2
Conditional Deduction	$\{p=>(q=>r), p=>q\} \vdash p=>r$	2
Transitivity	$\{p=>q, q=>r\} \vdash p=>r$	2
Condition Introduction	$\{q=>r\} \vdash (p=>q)=>(p=>r)$	2
Conclusion Introduction	$\{p=>q\} \vdash (q=>r)=>(p=>r)$	3
Condition Reversal	$\{p=>(q=>r)\} \vdash q=>(p=>r)$	3
Contradiction	$\{p=>r, q=>\sim r\} \vdash p=>\sim q$	3
Contrapositive	$\{p = >q\} \vdash \sim q = > \sim p$	4
Modus Tollens	$\{p=>q, \sim q\} \vdash \sim p$	5
Implication Reduction	{p=>~p} ⊢ ~p	5
Contradiction Realization	$\{p{=>}q, p{=}{>\sim}q\} \vdash {\sim}p$	6

Hilbert					
		Copy	Load	Save	Library
Objects					
Function	S				
	Select All				
□ 1.	p => q				Premise
□ 2.	q => r				Premise
□ 3.	$p \Longrightarrow (q \Longrightarrow r)$				Implication Creation : 2
□ 4.	(p => q) => (p => r)				<u>Implication Distribution</u> : 3
□ 5.	p => r				Implication Elimination: 4, 1

Hilbert					
		Сору	Load	Save	Library
Objects	Objects				
Functions					
	Select All				
□ 1.	p				Premise
□ 2.	$p \Longrightarrow (q \Longrightarrow p)$				Implication Creation Schema
□ 3.	q => p				Implication Elimination: 2, 1

Hilbert					
		Copy	Load	Save	Library
Objects					
Functions					
	Select All				
□ 1.	$p \Longrightarrow (q \Longrightarrow r)$				Premise
□ 2.	$(p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \Rightarrow r)) \Rightarrow $	> q) => (p	=> r))		Implication Distribution Schema
□ 3.	$(p \Rightarrow q) \Rightarrow (p \Rightarrow r)$				Implication Elimination: 2, 1

From Hilbert to Fitch

Example

Example: Given $(p \Rightarrow q)$ and $(q \Rightarrow r)$, prove $(p \Rightarrow r)$.

1.
$$p \Rightarrow q$$

$$2. \quad q \Rightarrow r$$

3.
$$(q \Rightarrow r) \Rightarrow (p \Rightarrow (q \Rightarrow r))$$

4.
$$(p \Rightarrow (q \Rightarrow r))$$

5.
$$(p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow r))$$

6.
$$(p \Rightarrow q) \Rightarrow (p \Rightarrow r)$$

7.
$$p \Rightarrow r$$

Deduction Theorem

Deduction Theorem: $\Delta \vDash (\varphi \Rightarrow \psi)$ if and only if $\Delta \cup \{\varphi\} \vDash \psi$. Corollary: $\Delta \vdash (\varphi \Rightarrow \psi)$ if and only if $\Delta \cup \{\varphi\} \vdash \psi$.

Problem: Given $(p \Rightarrow q)$ and $(q \Rightarrow r)$, prove $(p \Rightarrow r)$.

Equivalent: Given $(p \Rightarrow q)$ and $(q \Rightarrow r)$ and p, prove r.

Deduction Theorem Example

Example: Given $(p \Rightarrow q)$ and $(q \Rightarrow r)$, prove $(p \Rightarrow r)$.

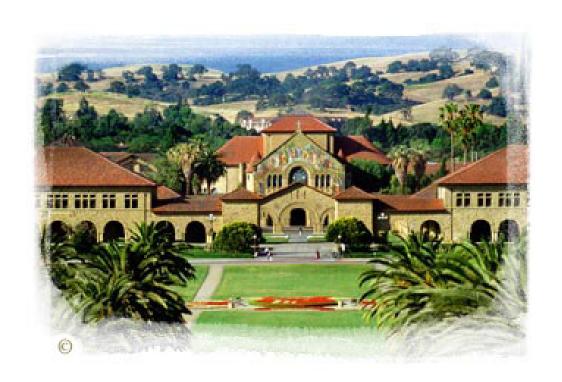
1.
$$p \Rightarrow q$$

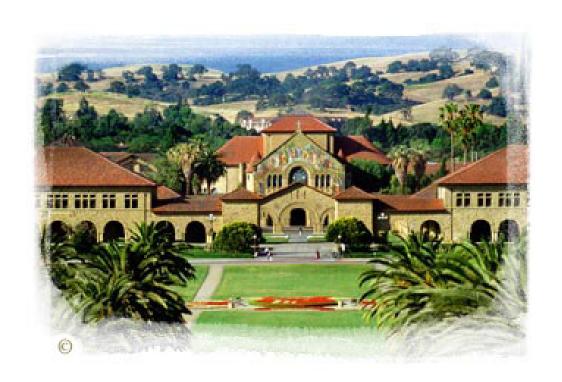
$$2. \quad q \Rightarrow r$$

3.
$$(q \Rightarrow r) \Rightarrow (p \Rightarrow (q \Rightarrow r))$$

4.
$$(p \Rightarrow (q \Rightarrow r))$$

5.
$$(p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow r))$$
 5. r


6.
$$(p \Rightarrow q) \Rightarrow (p \Rightarrow r)$$


7.
$$p \Rightarrow r$$

1.
$$p \Rightarrow q$$

$$2. \quad q \Rightarrow r$$

Possible to derive long proof from short proof automatically. Basis for the Fitch procedure.

