Introduction to Logic Propositional Analysis

Michael Genesereth Computer Science Department Stanford University

Syntax and Semantics

Syntax of Propositional Logic

 $\neg p$ $(p \land q)$ $(p \lor q)$ $(p \Rightarrow q)$ $(p \Leftrightarrow q)$

Semantics of Propositional Logic

Evaluation versus Satisfaction

Evaluation:

$$p^{i} = T$$
 $(p \lor q)^{i} = T$
 $q^{i} = F$ $(\neg q)^{i} = T$

Satisfaction:

$$\begin{array}{rcl} (p \lor q)^i &= & \mathbf{T} & \longrightarrow & p^i &= & \mathbf{T} \\ (\neg q)^i &= & \mathbf{T} & \longrightarrow & q^i &= & \mathbf{F} \end{array}$$

Programme for Today

Properties of Sentences Validity, Contingency, Unsatisfiability Satisfiability and Falsifiability

Relationships between Sentences Equivalence, Entailment, Consistency

Useful "Metatheorems" Equivalence, Unsatisfiability, Deduction, Consistency Substitution, Monotonicity, Ramification

Properties of Sentences

Truth Tables

A *truth table* is a table of all possible interpretations for the propositional constants in a language.

q rp Т Т Т T T F One column per constant. T F T T F F One row per interpretation. F T T For a language with *n* constants, F T F there are 2^n interpretations. FFT FFF

Example

Constants			Premises
р	q	r	p & q => r
1	1	1	1
1	1	0	0
1	0	1	1
1	0	0	1
0	1	1	1
0	1	0	1
0	0	1	1
0	0	0	1

Oddities

Constants			Premises
р	q	r	$p \& q \Rightarrow r \sim r$
1	1	1	1
1	1	0	1
1	0	1	1
1	0	0	1
0	1	1	1
0	1	0	1
0	0	1	1
0	0	0	1

Constants			Premises
р	q	r	$\mathbf{p} \mid (\mathbf{q} \mid \mathbf{\neg p}) \Longrightarrow \mathbf{r} \And \mathbf{\neg r}$
1	1	1	0
1	1	0	0
1	0	1	0
1	0	0	0
0	1	1	0
0	1	0	0
0	0	1	0
0	0	0	0

Properties of Sentences

Valid

Contingent

Unsatisfiable

A sentence is *valid* if and only if *every* interpretation satisfies it.

A sentence is *contingent* if and only if *some* interpretation satisfies it and *some* interpretation falsifies it.

A sentence is *unsatisfiable* if and only if *no* interpretation satisfies it.

Properties of Sentences

Constants		Pre	emises		
р	q	r	p => q & r	q => r	~r
1	1	1	1	1	0
1	1	0	0	0	1
1	0	1	0	1	0
1	0	0	0	1	1
0	1	1	1	1	0
0	1	0	1	0	1
0	0	1	1	1	0
0	0	0	1	1	1

Î

Constants		Pre	emises		
р	q	r	p => q & r	q => r	~r
1	1	1	1	1	0
1	1	0	0	0	1
1	0	1	0	1	0
1	0	0	0	1	1
0	1	1	1	1	0
0	1	0	1	0	1
0	0	1	1	1	0
0	0	0	1	1	1

Constants		Pre	emises			
р	q	r	p => q & r	q => r	~r	ſ
1	1	1	1	1	0	
1	1	0	0	0	1	
1	0	1	0	1	0	ſ
1	0	0	0	1	1	
0	1	1	1	1	0	ſ
0	1	0	1	0	1	
0	0	1	1	1	0	Γ
0	0	0	1	1	1	Γ

	Constants			Pre	mises	
	р	q	r	p => q & r	q => r	~r
	1	1	1	1	1	0
	1	1	0	0	0	1
	1	0	1	0	1	0
	1	0	0	0	1	1
	0	1	1	1	1	0
	0	1	0	1	0	1
	0	0	1	1	1	0
•	0	0	0	1	1	1

 $\uparrow \uparrow \uparrow$

Constants		ts	Premises
р	q	r	$(p \Rightarrow q \& r) \sim (p \Rightarrow q \& r)$
1	1	1	1
1	1	0	1
1	0	1	1
1	0	0	1
0	1	1	1
0	1	0	1
0	0	1	1
0	0	0	1

C	onstan	ts	Premises	
р	q	r	$(p \Rightarrow q \& r) \& \sim (p \Rightarrow q \& r)$	
1	1	1	0	
1	1	0	0	
1	0	1	0	
1	0	0	0	
0	1	1	0	
0	1	0	0	
0	0	1	0	
0	0	0	0	

Valid Equivalences

Double Negation:

$$p \Leftrightarrow \neg \neg p$$

deMorgan's Laws:

$$\neg (p \land q) \Leftrightarrow (\neg p \lor \neg q) \neg (p \lor q) \Leftrightarrow (\neg p \land \neg q)$$

Implications:

 $(p \Rightarrow q) \Leftrightarrow (\neg p \lor q)$

Biconditionals:

$$(p \Leftrightarrow q) \Leftrightarrow ((p \Rightarrow q) \land (q \Rightarrow p))$$

Valid Implications

Implication Introduction:

 $p \Rightarrow (q \Rightarrow p)$

Implication Distribution $(p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow r))$

Implication Reversal

$$(\neg q \Rightarrow \neg p) \Rightarrow (p \Rightarrow q)$$

Relationships Between Sentences

Comparison of Sentences

Cons	tants	Pren	nises
р	q	p => q	~p q
1	1	1	1
1	0	0	0
0	1	1	1
0	0	1	1

Logical Equivalence

A sentence ϕ is *logically equivalent* to a sentence ψ if and only they have the same value for every propositional interpretation.

> $(p \Rightarrow q)$ is logically equivalent to $(\neg p \lor q)$ p is logically equivalent to $\neg \neg p$

 $(p \land q)$ is *not* logically equivalent to $(p \lor q)$

Another Comparison of Sentences

Cons	tants	Pren	nises
p q		p & q	plq
1	1	1	1
1	0	0	1
0	1	0	1
0	0	0	0

Logical Entailment

A premise φ *logically entails* a conclusion ψ (written as $\varphi \models \psi$) if and only if every interpretation that satisfies φ also satisfies ψ .

 $(p \land q) \vDash (p \lor q)$ $p \vDash (p \lor q)$ $(p \land q) \vDash p$

 $p \nvDash (p \land q)$

Logical Entailment ≠ Logical Equivalence

 $p \vDash (p \lor q)$

 $(p \lor q) \nvDash p$

Analogy in arithmetic: inequalities rather than equations

Sets of Premises

A *set* of premises Δ *logically entails* a conclusion φ (written as $\Delta \models \varphi$) if and only if every interpretation that satisfies *all* of the premises also satisfies the conclusion.

 $\{p, q\} \vDash (p \land q)$

Sets of Conclusions

A premise φ *logically entails* a *set* of conclusions if and only if every interpretation that satisfies the premise satisfies *all* of the conclusions.

 $(p \land q) \vDash \{p, q\}$

Validities

If $\{\} \models \varphi$, then φ is valid.

Examples: $\{\} \vDash p \lor \neg p$ $\{\} \nvDash p$ $\{\} \nvDash p \land \neg p$

The empty set of premises is satisfied by every interpretation. Consequently, if it entails a sentence, that sentence must be true in every interpretation, i.e. it is valid.

Vacuity

If Δ is unsatisfiable, then $\Delta \models \varphi$ for *all* φ .

Examples: $\{p, \neg p\} \vDash p$ $\{p, \neg p\} \vDash \neg p$ $\{p, \neg p\} \vDash q$

By definition, an unsatisfiable set of sentences is not satisfied by *any* interpretation. Consequently, it is trivially true that every interpretation that satisfies that set satisfies every sentence.

Unsatisfiable assumptions entail everything!!!

Monotonicity

If $\Gamma \vDash \varphi$ and $\Gamma \subseteq \Delta$, then $\Delta \vDash \varphi$.

Example: $\{p, q\} \vDash p \land q$ Therefore $\{p, q, r\} \vDash p \land q$

The more you know, the more is entailed.

Ramification

If $\Omega \vDash \Delta$ and $\Gamma \subseteq \Delta$, then $\Omega \vDash \Gamma$.

Example: $\{p \land q\} \vDash \{p, q\}$. Therefore $\{p \land q\} \vDash \{p\}$.

If you can conclude more, you can conclude less.

Third Comparison of Sentences

Cons	tants	Premises		
p q		plq	~p ~q	
1	1	1	0	
1	0	1	1	
0	1	1	1	
0	0	0	1	

Logical Consistency

A sentence ϕ is *consistent with* a sentence ψ if and only if there is a truth assignment that satisfies both ϕ and ψ .

p is logically consistent with *q* ($p \lor q$) is logically consistent with $(\neg p \lor \neg q)$ ($p \Rightarrow q$) is logically consistent with $(\neg p \lor q)$

p is *not* consistent with $\neg p$

Is $(p \land \neg p)$ logically consistent with $(q \land \neg q)$? Is $(p \land \neg p)$ logically consistent with $(p \land \neg p)$?

Connections

Propositional Metatheorems

A metatheorem is a theorem **about** logic.

Monotonicity Theorem Ramification Theorem

Equivalence Theorem Substitution Theorem Deduction Theorem

Unsatisfiability Theorem Consistency Theorem

Monotonicity Theorem

If $\Gamma \vDash \varphi$ and $\Gamma \subseteq \Delta$, then $\Delta \vDash \varphi$.

Example: $\{p, q\} \vDash p \land q$ Therefore $\{p, q, r\} \vDash p \land q$

The more you know, the more is entailed.

Ramification Theorem

If $\Omega \vDash \Delta$ and $\Gamma \subseteq \Delta$, then $\Omega \vDash \Gamma$.

Example: $\{p \land q\} \vDash \{p, q\}$ Therefore $\{p \land q\} \vDash \{p\}$

If you can conclude more, you can conclude less.

Theorem: A sentence ϕ and a sentence ψ are *logically equivalent* if and only if the sentence ($\phi \Leftrightarrow \psi$) is *valid*.

 $\neg (p \land q) \text{ is logically equivalent to } (\neg p \lor \neg q)$ if and only if $(\neg (p \land q) \Leftrightarrow (\neg p \lor \neg q)) \text{ is valid}$

Upshot: We can determine equivalence of sentences by checking validity of a single sentence.

Upshot: We can demonstrate validity of a biconditional by checking equivalence of the constituents.

Equivalence Theorem

Constants		Prem	ises	Conclusions	
р	q	~(p & q)	~p ~q	~(p & q) <=> ~p ~	
1	1	0	0	1	
1	0	1	1	1	
0	1	1	1	1	
0	0	1	1	1	

Substitution Theorem

Let $\chi_{\phi \leftarrow \psi}$ stand for a copy of χ where zero or more occurrences of ϕ have been replaced by ψ .

Example: Let $\chi = (\neg \neg p \lor q)$, then $\chi_{\neg \neg p \leftarrow p} = (p \lor q)$.

Substitution Theorem: If $(\varphi \Leftrightarrow \psi)$ is valid, then the sentence $\chi_{\varphi \leftarrow \psi}$ is logically equivalent to χ .

Example: Since $(p \Leftrightarrow \neg \neg p)$ is valid, we know that the sentence $(\neg \neg p \lor q)$ is logically equivalent to $(p \lor q)$.

Substitution Example

		Bab	bage		Show Instructions
Premises:					
b d b d					
		Trut	h Table		
					-
	Cons	Constants Premises			
	р	q	~~p q	plq	
	1	1	1	1	-
	1	0	1	1	-
	0	1	1	1	-
	0	0	0	0	-
		,,		,	-

Deduction Theorem

Theorem: A sentence ϕ *logically entails* a sentence ψ if and only if ($\phi \Rightarrow \psi$) is *valid*.

More generally, a finite set of sentences $\{\phi_1, \dots, \phi\}$ logically entails ϕ if and only if the compound sentence $(\phi_1 \land \dots \land \phi_n \Rightarrow \phi)$ is valid.

Is
$$((p \Rightarrow q) \land (m \Rightarrow p \lor q) \Rightarrow (m \Rightarrow q))$$
 valid?
 $\{(p \Rightarrow q), (m \Rightarrow p \lor q)\} \vDash (m \Rightarrow q)$?

Upshot: We can determine logical entailment between sentences by checking validity of a single sentence. *And vice versa*.

Deduction Theorem

 $\{(m \Rightarrow p \lor q), (p \Rightarrow q)\} \vDash (m \Rightarrow q)?$ Is $((m \Rightarrow p \lor q) \land (p \Rightarrow q) \Rightarrow (m \Rightarrow q))$ valid?

Constants			Premises			Conclusions	
m	р	q	m => p q	p => q	m => q	$(\mathbf{m} \Longrightarrow \mathbf{p} \mid \mathbf{q}) \And (\mathbf{p} \Longrightarrow \mathbf{q}) \Longrightarrow (\mathbf{m} \Longrightarrow \mathbf{q})$	
1	1	1	1	1	1	1	
1	1	0	1	0	0	1	
1	0	1	1	1	1	1	
1	0	0	0	1	0	1	
0	1	1	1	1	1	1	
0	1	0	1	0	1	1	
0	0	1	1	1	1	1	
0	0	0	1	1	1	1	

Unsatisfiability Theorem

Theorem: $\Delta \vDash \varphi$ if and only if $\Delta \cup \{\neg \varphi\}$ is unsatisfiable.

Proof: Suppose that $\Delta \vDash \varphi$. If an interpretation satisfies Δ , then it must also satisfy φ . But then it cannot satisfy $\neg \varphi$. Therefore, $\Delta \cup \{\neg \varphi\}$ is unsatisfiable.

Suppose that $\Delta \cup \{\neg \varphi\}$ is unsatisfiable. Then every interpretation that satisfies Δ must *fail* to satisfy $\neg \varphi$, i.e. it must satisfy φ . Therefore, $\Delta \vDash \varphi$.

Upshot: We can determine logical entailment between sentences by checking unsatisfiability of a set of sentences.

Translation: Assume false and show contradiction.

Consistency Theorem

Theorem: A sentence ϕ is logically *consistent* with a sentence ψ if and only if the sentence $(\phi \land \psi)$ is *satisfiable*. More generally, a sentence ϕ is logically consistent with a finite set of sentences $\{\phi_1, \dots, \phi_n\}$ if and only if the compound sentence $(\phi_1 \land \dots \land \phi_n \land \phi)$ is satisfiable.

Is $(p \lor q)$ consistent with $(\neg p \lor \neg q)$? Is $((p \lor q) \land (\neg p \lor \neg q))$ satisfiable?

Upshot: We can determine consistency of sentences by checking satisfiability of a single sentence.

Metareasoning

Is the sentence $(p \Rightarrow q) \Leftrightarrow (p \Rightarrow (q \Rightarrow p))$ valid, contingent, or unsatisfiable?

Is the sentence $(p \Rightarrow q) \Leftrightarrow (p \Rightarrow (q \Rightarrow p))$ valid, contingent, or unsatisfiable?

$$p$$
 q
 $(p \Rightarrow q) \Leftrightarrow (p \Rightarrow (q \Rightarrow p))$

 1
 1
 1

 1
 0
 0

 0
 1
 1

 0
 0
 1

 0
 0
 1

Is the sentence $(p \Rightarrow q) \Leftrightarrow (p \Rightarrow (q \Rightarrow p))$ valid, contingent, or unsatisfiable?

 $(p \Rightarrow q)$ is sometimes true and sometimes false. $(p \Rightarrow (q \Rightarrow p))$ is always true, i.e. it is a valid sentence.

$$(p \Rightarrow q)^{i} = (p \Rightarrow (q \Rightarrow p))^{i}$$
 for some *i*.
 $(p \Rightarrow q)^{i} \neq (p \Rightarrow (q \Rightarrow p))^{i}$ for some *i*.

 $(p \Rightarrow q) \Leftrightarrow (p \Rightarrow (q \Rightarrow p))$ is contingent.

Is the sentence $((p \Leftrightarrow \neg q) \Rightarrow (\neg p | \neg q))$ valid, contingent, or unsatisfiable?

 $((p \Leftrightarrow \neg q) \Rightarrow (\neg p \mid \neg q))$

$$((p \Leftrightarrow \neg q) \Rightarrow (\neg p | \neg q))$$
$$(p \Leftrightarrow \neg q) \Rightarrow (p \Rightarrow \neg q)$$
$$(p \Rightarrow \neg q) \land (\neg q \Rightarrow p) \Rightarrow (p \Rightarrow \neg q)$$
$$(p \Rightarrow \neg q) \land (\neg q \Rightarrow p) \models (p \Rightarrow \neg q)$$
Deduction Theorem

$$((p \Leftrightarrow \neg q) \Rightarrow (\neg p \mid \neg q))$$
$$(p \Leftrightarrow \neg q) \Rightarrow (p \Rightarrow \neg q)$$
$$(p \Rightarrow \neg q) \land (\neg q \Rightarrow p) \Rightarrow (p \Rightarrow \neg q)$$
$$(p \Rightarrow \neg q) \land (\neg q \Rightarrow p) \models (p \Rightarrow \neg q)$$
$$\{(p \Rightarrow \neg q), (\neg q \Rightarrow p)\} \models (p \Rightarrow \neg q)$$
$$\{(p \Rightarrow \neg q), (\neg q \Rightarrow p)\} \models (p \Rightarrow \neg q)$$
Definition of Entailment
Definition of Conjunction

$$((p \Leftrightarrow \neg q) \Rightarrow (\neg p \mid \neg q))$$
$$(p \Leftrightarrow \neg q) \Rightarrow (p \Rightarrow \neg q)$$
$$(p \Rightarrow \neg q) \land (\neg q \Rightarrow p) \Rightarrow (p \Rightarrow \neg q)$$
$$(p \Rightarrow \neg q) \land (\neg q \Rightarrow p) \models (p \Rightarrow \neg q)$$
$$\{(p \Rightarrow \neg q), (\neg q \Rightarrow p)\} \models (p \Rightarrow \neg q)$$
$$\{(p \Rightarrow \neg q), (\neg q \Rightarrow p)\} \models (p \Rightarrow \neg q)$$
$$\{(p \Rightarrow \neg q)\} \models (p \Rightarrow \neg q)$$
Monotonicity Theorem

Let Γ and Δ be arbitrary sets of sentences. Let φ be an arbitrary sentence. If $\Gamma \vDash \varphi$ and $\Delta \vDash \varphi$, does $\Gamma \cup \Delta \vDash \varphi$?

Let Γ and Δ be arbitrary sets of sentences. Let φ be an arbitrary sentence. Is $\Gamma \vDash \varphi$ and $\Delta \vDash \varphi$, does $\Gamma \cup \Delta \vDash \varphi$?

Let Γ be $\{p\}$ and Δ be $\{q\}$ and φ be $(p \lor q)$.

```
Obviously \{p\} \vDash p \lor q
Obviously \{q\} \vDash p \lor q
```

But $\{p\} \cup \{q\} = \{p, q\}$ and $\{p, q\} \vDash p \lor q$

Does this work for all Γ and Δ and ϕ ? Yes, by Monotonicity Theorem.

Let Γ and Δ be arbitrary sets of sentences. Let φ be an arbitrary sentence. Is $\Gamma \vDash \varphi$ and $\Delta \vDash \varphi$, does $\Gamma \cap \Delta \vDash \varphi$?

Let Γ and Δ be arbitrary sets of sentences. Let φ be an arbitrary sentence. Is $\Gamma \vDash \varphi$ and $\Delta \vDash \varphi$, does $\Gamma \cap \Delta \vDash \varphi$?

Let Γ be $\{p\}$ and Δ be $\{q\}$ and φ be $(p \lor q)$.

```
Obviously \{p\} \vDash p \lor q
Obviously \{q\} \vDash p \lor q
```

But $\{p\} \cap \{q\} = \{\}$ and $\{\} \not\models p \lor q$.

Answer to our question: No.

Tools

http://logica.stanford.edu

Babbage Show Instructions Premises: ((p <=> ~q) => (~p | ~q))

Truth Table

Cons	tants	Premises		
р	q	$(p \iff q) \implies p \mid q$		
1	1	1		
1	0	1		
0	1	1		
0	0	1		

Quine								
Undo Redo Help								
(p <=> ~q) => [~p ~q]								
Enter a replacement: p=>~q Add Cancel								
Press the escape key to enter edit mode. Use the arrow keys to navigate. Press escape key again to exit.								
Replace	Negation Introduction	Universal Introduction						
	Negation Elimination	Implication Elimination	Universal Elimination					
	Negation Distribution	Contrapositive	Quantifier Reversal					
	Negation Extraction	Biconditional Introduction	Quantifier Distribution					
	Reorder	Biconditional Elimination	Variable Renaming					
	Distribute							

