Prove \(a \land d \) from the following premises
\[
\begin{align*}
& a \land b \\
& c \land d \\
& \neg b \land \neg c
\end{align*}
\]

Goal: \(a \land d \)

Intuition: If you look carefully at the structure of this question, it is very similar to Fitch-Example1 where you had to prove \(q \) from the premises \(p \lor q \) and \(\neg p \).

High-level Approach:
1. **AND Elimination** of \(\neg b \land \neg c \) results in \(b \) and \(c \).
2. Use **OR Elimination** to prove \(a \) and \(d \) (similar to Example-Fitch1)
 - Prove \(a \implies a \) and \(b \implies a \) and then use OR Elimination with \(a \land b \) to prove \(a \)
 - Prove \(d \implies d \) and \(c \implies d \) and then use OR Elimination with \(c \land d \) to prove \(d \)
3. Use **AND Introduction** with \(a \) and \(d \) to prove the goal \(a \land d \).

Note that again we have used Shortcuts in Steps 6 and 7 for display purposes. You CANNOT USE SHORTCUTS in problems - instead you have to plug in the proofs of \(a \) and \(d \).