Prove $p \land q$ from the premise $\neg(\neg p \land \neg q)$

Goal: $p \land q$

Intuition: Since the goal is of the general form $\Phi \land \Psi$, perhaps **AND Introduction** is a good way to go. Start by proving p and q separately from the premise.

High-level Approach:
1. Prove p
2. Prove q
3. Use **AND Introduction** on p and q

Proving $\neg(\neg p \land \neg q)$ [Steps 2 - 9]
- Assume $\neg p$
- Prove $\neg \neg p$ using **Negation Introduction** and subsequently use **Negation Elimination** to prove p.

Similar steps to prove $\neg(\neg p \land \neg q) \Rightarrow q$ [Steps 10 - 17]