Prove \(q \) from the sentences \(p \lor q \) and \(\neg p \)

Goal: \(q \)

Intuition: From the premises, it is clear that \(p \) is not true. Therefore, \(q \) must be true. Now how to prove it? We can perhaps prove it on a case by case basis.

The premise \(p \lor q \) says that at least one of \(p \) or \(q \) is true.
Case 1: If \(p \) is true, then we prove that \(q \) is true.
Case 2: If \(q \) is true, then we're done. This case by case proof is exactly what **OR Elimination** is.

High-level Approach:
1. Prove \(p \rightarrow q \)
2. Prove \(q \rightarrow q \)
3. Use **OR Elimination** (with premise \(p \lor q \))

Proving \(p \rightarrow q \) [Steps 3-12]
- Assume \(p \) and prove \(q \).

Observation: By assuming \(p \), we are introducing a contradiction since \(\neg p \) is a premise.