
Insurance Portfolio Management

Michael Genesereth
Computer Science Department

Stanford University

The presentation begins with a brief introduction to insurance portfolio management. This is followed by a demonstration of a computer system that supports
insurance portfolio management. The presentation then concludes with a look at the underlying technology used in the demonstration.

Insurance Policies

We often think of insurance policies as being partitioned into distinct areas – home insurance, auto insurance, travel insurance, credit card insurance, and so
forth; and we frequently buy different policies to provide coverage in these different areas. In reality, things are more complicated, with policies in different
areas often providing overlapping coverage. For example, rental car damage may be covered by a policy purchased from a rental car company, a personal
auto insurance policy, a credit card, a travel insurance policy, and even, in some cases, a home insurance policy. If we are unaware of these overlaps, we can
end up paying more for insurance than we need; what’s worse, there can be gaps between policies of which we are unaware

Insurance portfolio management (IPM) is the process of
 managing overlapping insurance policies
 with an eye to minimizing insurance costs
 while ensuring adequate coverage.

Insurance Portfolio Management

Insurance portfolio management (IPM) is the process of managing multiple, potentially overlapping insurance policies, with an eye to minimizing insurance
costs while ensuring adequate coverage. By studying the contracts associated with insurance policies, we can avoid overlaps and ensure there are no gaps in
coverage.

Example

For example, while renting a car, we may realize that we do not need to purchase collision insurance from Hertz because we are already covered if we use
our Visa credit card. At the same time, we may realize that we need to purchase additional insurance for travel in Ireland, since our credit card insurance does
not apply there.

Complexity of Insurance Policies

Policies are complex, incomplete, inconsistent.

The problem is that insurance portfolio management is not easy. Insurees usually do not have the time or patience to compare policies from multiple
insurance providers; and, even if they have the time, they often do not have the legal background needed to understand the complex legal wording of the
lengthy, 100-page contracts associated with those policies.

In order to deal with this problem, we have been investigating ways to automate the process of insurance portfolio management. The current manifestation of
this work a web-based application called the CodeX Insurance Analyst (CIA). CIA incorporates data and policies from multiple insurance companies, and it
provides users with analysis across these policies. We are currently focussed on individuals. In the future, we will provide similar capabilities for businesses,
insurance companies, and insurance regulators.

The first page one sees after signing in is the splash page for the system. The tabs here indicate the principals types of entities represented in the system -
insurance products, policies, claims, people, properties (such as vehicles of houses), and events (such as accidents and hospitalizations).

The products page contains a list of insurance products available in the demonstration system. Clicking on the text icon shows the policy. It is possible to add
a policy for analysis by clicking the + button. More on that later.

The Policies page shows policies the user has selected for analysis. A policy is essentially a specific insurance product, specialized to a particular person, for
a specific range of dates, with desired riders, and so forth. Clicking on a text icon to see product description. Clicking on a magnifier requests a comparative
analysis of that policy. More on this later. Clicking the trash can deletes a policy.

The Claims page shows claims the user would like to analyze. In Steve's case, there are two hospitalization claims and one vehicle repair claim already
specified. According to the policies Steve has selected, one of the hospitalization claims should be declined, while the other should be paid. Clicking the
explanation button next to a claim gives an explanation of the listed recommendation. Additional claims can be added by clicking one of the Add buttons.

In order to see how claim analysis works, let's look at one of these claims. Clicking on the identifier for a claim brings up a form with details about that claim.
The panel at the top provides overall information about the claim. The panel in the middle shows details of the relevant hospitalization. In this case, Steve's
daughter Sally was treated for a sprained ankle at Johns Hopkins. At the bottom, is information about the event that led to the injury, in this case a mishap on
the dance floor. In this case, the claim is denied because Sally's stay at the hospital was too short - just 12 hours.

If we adjust the length of the stay, we notice that the claim is acceptable.

However, if Sally's sprained ankle was the result of skydiving rather than dancing, the claim would once again be declined since that is a hazardous activity
that is explicitly excluded.

The main feature to note here is the transparency provided by the worksheet. The rules defining the terms and conditions of the customer's policies are
embedded in the worksheet and that allows the worksheet to give the claimant immediate feedback on the claim would be honored. Changing various values
changes the prediction. Moreover, the worksheet is able to provide explanations for its conclusions so the claimant understands the reasons for its
conclusions.

Back to the policies page.

 Clicking on the magnifier next to codex_plana policy shows the provisions of the policy - steve, spouse, and kids covered for hospitalizations in a US hospital.

Recall that plan b covers steve in US hospitals. Checking the planb box leads to a checkmark next to the first provision. On other words, plan b covers the
first provision.

Planc covers his spouse anywhere in the world. Checking the planc box leads to a checkmark next to the second provision. On other words, plan b covers
the second provision.

Pland covers his kids. Checking the planbd box leads to a checkmark next to the third provision. In other words, plan c covers the first provision. The
upshot is that these three policies entirely cover the provisions of plana.

What if we were to reverse the analysis, pressing the magnifier next to plan b and checking the plan a box, nothing would happen in this case, since plan a
covers only US hospitlizations, whereas plan b covers hospitalizations anywhere in the world. In the next generation of the system, we expect to offer
explanations of gaps like this.

One more quick example. The visa_signature policy provides coverage in the us, while AXA is world-wide. If we ask te system to analyze the visa-signature
policy and check the axa-travel_insurance policy, we see that the AXA policy subsumes the visa_signature policy but not vice versa.

There is a lot more analysis one can do here. But hopefully these examples illustrate the basic idea of the Codex Insurance Analyst. Time now to say a few
words about the technology.

Computable Contracts

From Textual Policies to Computable Contracts

Our approach to preparing creating a system like CIA has two parts. (1) The first part is to formalize the terms and conditions of traditional textual policies as
"computable contracts", i.e. contracts specified in sufficient detail that it is possible to unambiguously determine compliance of clearly specified circumstances
with the terms and conditions of the contract.

Contract Automation

Automating Insurance Processes

(2) The second step is to use these computable contracts in automating the processes of the insurance ecosystem - thereby bringing the power of computers
and networks to bear on provide the capabilities we just saw.

Definitions of Concepts (Ontologies)
 A grandparent is a parent of a parent.
 grandparent(X,Z) :- parent(X,Y) & parent(Y,Z)

Constraints
 Parents are older than their children.
 illegal :- parent(X,Y) & age(X)<age(Y)

Policies - Definitions of Coverage
 Policy 1 covers all hospitalizations in the usa.
 covers(policy1,H) :- location(H,usa)

Formal, Declarative Representation

Our approach to formalizing and policies and implementing analysis is based on Logic programming. In this approach, we encode information in the language
of logic. Using this language, we can define new concepts; we can state physical constraints; and we can encode rules and regulations. A grandparent is a
parent of a parent. Parents are older than their children. And a particular policy applies to hospitals in the US. Like natural language, the language of Logic is
expressive; yet, unlike natural language, it is grammatically simple and unambiguous.

Logic Programming Interpreter

Answers

Rules

Data

Logic Program Interpreter
 (e.g. EpilogJS)Questions

Moreover, we know how to build interpreters that can reliably answer questions from data and rules, and we can use these interpreters for multiple purposes -
whether analyzing individual claims or analyzing whole policies.

Derivation Trees

 pay(c21)

 fullday(c21) acceptable(c21)

 active(c21)

activity(c21, dancing)

~excluded(c21,dancing)

25>24

duration(z21, 25)

hospitalization(c21,z21)

But wait, there's more. Things do not necessarily end with the derivation of answers. We can also give users explanations. In deriving conclusions, LP
systems implicitly or explicitly generate derivation trees for those conclusions, like the one shown here, and it is possible to generate sensible explanations by
incrementally exhibiting those derivation trees to the user. Claim 21 should be paid because it meets the full day requirement and the policy is active and the
activity that caused the hospitalization is not excluded. The claim meets the full day requirement because the underlying hospitalization had a duration of
greater than 24 hours. The claim is acceptable because the hospitalization was due to a dancing mishap and that is not excluded.

Template-Based NL Generation

Templates:
 fullday(X) "Claim X is full day"
 hospitalstay(X,Z) "the hospital stay of X is Z"
 duration(Z,H) "the duration of Z is H hours"
 H>J "H is greater than J"

Derivation Tree: Explanation:
 fullday(c21) :-

 hospitalstay(c21,z21)&

 duration(z21,25)&

 25>24

In progress: Pronouns, prepositional phrases, relative clauses

Claim c21 is full day because
 the hospital stay of c21 is z21 and
 the duration of z21 is 25 hours and
 25 is greater than 24.

Such explanations can be rendered into sensible (if not ideal) form using templates to generate snippets of natural language like the ones shown here. There
are subtleties in explanation and conversion to natural language, but this approach renders comprehensible and accurate explanations relatively easily.

View Definition Language (Epilog)
 terms of coverage in terms of domain concepts
 definitions of concepts in terms of available data

Contract / Insurance Ontology (in progress)
 offer, acceptance, consideration, etc.
 premiums, claims, claim lines, deductibles, exclusions

Domain Ontology and Data (in progress)
 e.g. diseases, drugs, medical procedures, etc.
 e.g. fenders, radiators, repair procedures, etc.
 e.g. walls, external water, internal water, etc.

Contract Definition Language (CDL)Contract Definition Language (CDL)

Key to our approach is a contract definition language of use in codifying computable contracts. There are three parts to the language - (1) a *view definition*
language, (2) a *contract ontology*, and (3) a *domain ontology*. (The view definition language is loosely analogous to the grammar of English; the contract
ontology consists of words for legal concepts; and the domain ontology consists of words for the subject matter or contracts.)

The view definition language provides a way for users to define higher level concepts in terms of lower level concepts. In this regard, we propose to use an off-
the-shelf Logic Programming Language. Over the years, a number of different Logic Programming languages have been developed, e.g. Datalog, Prolog, and
Epilog. In our work, we propose to use Epilog, as it provides greater expressiveness than Datalog and has a cleaner semantics than Prolog. Also, we have
used it effectively in the past in various Computational Law applications and in exploratory work on formalizing contracts.

The contract ontology is a collection of concepts related to contracts in general - notions such as meeting of the minds, offer and acceptance, consideration,
and so forth. We propose to establish vocabulary for naming such concepts so that those components of contracts can be recorded explicitly. While that this
ontology is essential for ensuring that contracts are valid, it is unnecessary for determining compliance of situations with the terms and conditions of contracts.
For that we need a domain ontology.

The domain ontology is a collection of concepts relevant to subject matter of contracts. For example, in the case of health insurance, it would contain words
for diseases and drugs and medical procedures. In the case of car insurance, it would contain words for car parts and repair techniques. For homeowners
insurance, it would contain words for foundations and walls and finishes.

Of these three, the domain ontology is requires the most work. Luckily, there are emerging standards in a variety of areas. For example, in the medical arena,
there are formal classifications of diseases and drugs and procedures; and there are data bases knowledge bases defining these concepts in terms of each
other, e.g. units and currency conversions. Our work will be in (1) finding suitable sources of ontologies, databases, and knowledge bases, (2) assessing their
suitability for encoding related contracts to computable form, and (3) relating these ontologies to the data schemas used by organizational database systems
containing information that must be accessed to determine compliance with the terms and conditions of contracts.

Contract IDE

In addition to CDL and appropriate interpreters, we are using a variety of tools to facilitate the authoring, revision, and debugging of computable policies. The
computer programming community has long recognized the value of Interactive Development Environments (IDEs) to help in developing and maintaining
programs. The use of LP makes possible the development of especially powerful IDEs for authoring, analyzing, and debugging policies as well.

Background Datasets
 Geography
 Hospitals

Background Rulesets
 e.g. a week is 7 days
 e.g. parents are older than their children

Open-Source Contract Processing Software
 Compliance checking (EpilogJS)
 Explaining contractual analysis (ExplainJS, EnglishJS)
 User Worksheets (WorksheetsJS)
 Containment Testing and Configuration Aids (TBD)

Github for Computable Insurance Contract Software

Contractnet

In order to promote the use of this technology, we propose to develop a repository of datasets, rulesets, and software for everyone to use, in a system called
Contractnet. GITHUB is a popular Internet site for programmers to use in sharing open-source code with others. We think of Contractnet as the GITHUB for
computable contracts.

CodeX Insurance Ecosystem

Ultimately, we believe that automated Insurance Portfolio Management can provide benefit for all parties in the insurance ecosystem. It can benefit customers
by analyzing their overall coverage and synthesizing portfolios of insurance products that meets their needs with minimal cost. It can help insurance companies
increase transparency, decrease meritless claims, detect upsell opportunities, and craft customized insurance products. And it can help regulators support and
enforce insurance regulations.

for Businesses

Although the current prototype is focussed on individuals, we believe that a similar system can be built to aid businesses in analyzing their insurance needs
and opportunities.

for Insurance Companies

And we think that insurance companies can benefit from analyzing their portfolios to understand their risks and business opportunities.

Legal Empowerment through Information Technology

The idea of automated insurance portfolio management is an appealing one, and our work thus far suggests that it is possible to build useful systems of this
sort. There is still more work to be done. However, we would like to move some of this work from the laboratory to the real world. We need to see whether it
works in practice; and, if not, we need to understand its weaknesses. Luckily, things are moving forward here. Insurance companies, such as AXA, understand
the potential benefits of computable insurance contracts, and they are actively investigating way in which they can utilize this technology in their businesses.

Thank you. Questions?

