
Automatic Construction of a Heuristic Search Function for General Game Playing

Stephan Schiffel and Michael Thielscher

Department of Computer Science

Dresden University of Technology

{stephan.schiffel,mit}@inf.tu-dresden.de

Student Paper

Abstract

General Game Playing (GGP) is the art of design-
ing programs that are capable of playing previously
unknown games of a wide variety by being told
nothing but the rules of the game. This is in con-
trast to traditional computer game players like Deep
Blue, which are designed for a particular game and
can’t adapt automatically to modifications of the
rules, let alone play completely different games.
General Game Playing is intended to foster the de-
velopment of integrated cognitive information pro-
cessing technology. In this article we present an
approach to General Game Playing using a novel
way of automatically constructing a search heuris-
tics from a formal game description. Our system is
being tested with a wide range of different games.
Most notably, it is the winner of the AAAI GGP
Competition 2006.

1 Introduction

General Game Playing is concerned with the development of
systems that can play well an arbitrary game solely by being
given the rules of the game. This raises a number of issues
different from traditional research in game playing, where it
is assumed that the rules of a game are known to the pro-
grammer. Writing a player for a particular game allows to fo-
cus on the design of elaborate, game-specific evaluation func-
tions (e.g., [Morris, 1997]) and libraries (e.g, [Schaeffer et al.,
2005]). But these game computers can’t adapt automatically
to modifications of the rules, let alone play completely differ-
ent games.

Systems able to play arbitrary, unknown games can’t be
given game-specific knowledge. They rather need to be
endowed with high-level cognitive abilities such as general
strategic thinking and abstract reasoning. This makes General
Game Playing a good example of a challenge problem which
encompasses a variety of AI research areas including knowl-
edge representation and reasoning, heuristic search, planning,
and learning. In this way, General Game Playing also revives
some of the hopes that were initially raised for game playing
computers as a key to human-level AI [Shannon, 1950].

In this paper, we present an approach to General Game
Playing which combines reasoning about actions with heuris-

tic search. Our focus is on techniques for constructing a
search heuristics by the automated analysis of game speci-
fications. More specifically, we describe the following func-
tionalities of a complete General Game Player:

1. Determining legal moves and their effects from a formal
game description requires reasoning about actions. We
use the Fluent Calculus and its Prolog-based implemen-
tation FLUX [Thielscher, 2005].

2. To search a game tree, we use non-uniform depth-
first search with iterative deepening and general pruning
techniques.

3. Games which cannot be fully searched require auto-
matically constructing evaluation functions from formal
game specifications. We give the details of a method
that uses Fuzzy Logic to determine the degree to which
a position satisfies the logical description of a winning
position.

4. Strategic, goal-oriented play requires to automatically
derive game-specific knowledge from the game rules.
We present an approach to recognizing structures in
game descriptions.

All of these techniques are independent of a particular lan-
guage for defining games. However, for the examples given
in this paper we use the Game Description Language devel-
oped by Michael Genesereth and his Stanford Logic Group;
the full specification of syntax and semantics can be found
at games.stanford.edu. We also refer to a number of
different games whose formal rules are available on this web-
site, too. Since 2005 the Stanford Logic Group holds an an-
nual competition for General Game Players. The approach
described in this paper has been implemented in the system
FLUXPLAYER, which has has won the second AAAI Gen-
eral Game Playing competition.

2 Theorem Proving/Reasoning

Games can be formally described by giving an axiomatization
of their rules. A symbolic representation of the positions and
moves of a game is needed. For the purpose of a modular and
compact encoding, positions need to be composed of features
like, for example, (cell ?x ?y ?p) representing that ?p

is the contents of square (?x,?y) on a chessboard.1 The
moves are represented by symbols, too, like (move ?u ?v

?x ?y) denoting to move the piece on square (?u,?v) to
(?x,?y), or (promote ?u ?x ?p) denoting the pro-
motion of a pawn to piece ?p by moving it from file ?u on
the penultimate row to file ?x on the last row.

In the following, we give a brief overview of a specific
Game Description Language, GDL, developed by the Stan-
ford Logic Group and used for the AAAI competitions. For
details, we refer to games.stanford.edu. This language
is suitable for describing finite and deterministic n-player
games (n ≥ 1) with complete information. GDL is purely
axiomatic, so that no prior knowledge (e.g., of geometry or
arithmetics) is assumed. The language is based on a small set
of keywords, that is, symbols which have a predefined mean-
ing. A general game description consists of the following
elements.

• The players are described using the keyword (role

?p), e.g., (role white).

• The initial position is axiomatized using the key-
word (init ?f), for example, (init (cell a 1

white rook)).

• Legal moves are axiomatized with the help of the key-
words (legal ?p ?m) and (true ?f), where the
latter is used to describe features of the current position.
An example is given by the following implication:

(<= (legal white (promote ?u ?x ?p))

(true (cell ?u 7 white_pawn))

...)

• Position updates are axiomatized by a set of formulas
which entail all features that hold after a move, rela-
tive to the current position and the moves taken by the
players. The axioms use the keywords(next ?f) and
(does ?p ?m), e.g.,

(<= (next (cell ?x ?y ?p))

(does ?player (move ?u ?v ?x ?y))

(true (cell ?u ?v ?p)))

• The end of a game is axiomatized using the keyword
terminal, for example,

(<= terminal checkmate)

(<= terminal stalemate)

where checkmate and stalemate are auxiliary,
domain-dependent predicates which are defined in terms
of the current position, that is, with the help of predicate
true.

• Finally, the result of a game is described using the key-
word (goal ?p ?v), e.g.,

(<= (goal white 100)

checkmate (true (control black)))

(<= (goal black 0)

checkmate (true (control black)))

(<= (goal white 50) stalemate)

(<= (goal black 50) stalemate)

1Throughout the paper, we use KIF (the Knowledge Interchange
Format), where variables are indicated by a leading “?”.

where the domain-dependent feature (control ?p)

means that it’s player’s ?p turn.

In order to be able to derive legal moves, to simulate game
play, and to determine the end of a game, a general game
playing system needs an automated theorem prover. The first
thing our player does when it receives a game description is
to translate the GDL representation to Prolog. This allows for
efficient theorem proving. More specifically, we use the Pro-
log based Flux system [Thielscher, 2005] for reasoning. Flux
is a system for programming reasoning agents and for reason-
ing about actions in dynamic domains. It is based on the Flu-
ent Calculus and uses an explicit state representation and so
called state-update axioms for calculating the successor state
after executing an action. Positions correspond to states in
the Fluent Calculus and features of a game, i.e. atomic parts
of a position, are described by fluents. For the time being,
the state update axioms we obtain don’t take full advantage
of the efficient solution provided by the Fluent Calculus and
Flux for the inferential frame problem. Improvements to the
translation are work in progress.

3 Search Algorithm

The search method used by our player is a modified iterative-
deepening depth first search with two well-known enhance-
ments: transposition tables[Schaeffer, 1989] for caching the
value of states already visited during the search; and his-
tory heuristics[Schaeffer, 1989] for reordering the moves ac-
cording to the values found in lower-depth searches. For
higher depths we apply non-uniform depth first search, i.e. the
depth limit is higher for moves that got a high value in a
lower-depth search. This method allows for higher maximal
depth of the search, especially with big branching factors. It
seems to increase the probability that the search reaches ter-
minal states earlier in the match because all games considered
end after a finite number of steps. Thus non-uniform depth
first search helps to reduce the horizon problem[Russell and
Norvig, 2003]. The horizon problem arises often towards the
end of a match and particularly in games ending after a lim-
ited number of steps. In those games the heuristic evaluation
function can return a good value but the goal is in fact not
reachable anymore because there are not enough steps left. A
higher search depth for the moves considered best at the mo-
ment helps to avoid bad terminal states in that case. There is
another rational behind non-uniform depth-limited search: It
helps filling the transposition table with states we will look
at again and therefore speeds up search in the future. If we
search the state space behind a move we do not take, it is
unlikely that we will encounter these states again in the next
steps of the match.

Depending on the type of the game (single-player vs.
multi-player, zero-sum game vs. non-zero-sum game) we
use additional pruning techniques e.g., alpha-beta-pruning
for two-player games. Our player also decides between
turn-taking and simultaneous-moves games. For turn-taking
games the node is always treated as a maximization node for
the player making the move. So we assume each player wants
to maximize his own reward. For simultaneous-moves games
we make a paranoid assumption: we serialize the moves of

the players and move first. Thereby we assume that all our
opponents know our move. In effect of this we can easily ap-
ply pruning techniques to the search but the assumption may
lead to suboptimal play. There is currently work in progress
to use a more game-theoretic approach including the calcula-
tion of mixed strategy profiles and Nash-equilibria.

4 Heuristic Function

Because in most games the state space is too big to be
searched exhaustively, it is necessary to bound the search
depth and use a heuristic evaluation function for non-terminal
states. In game playing systems for specific games these
heuristic functions are often hand-made and very specific for
a concrete game. In fact, much of the work done for creat-
ing computer game players is put in hand tuning the search
heuristics. Because a general game playing system in our
setting must be able to play all games that can be described
with the GDL, it is not possible to provide a heuristic function
beforehand that depends on features specific for the concrete
game at hand. Therefore the heuristics function has to be gen-
erated automatically at runtime by using the rules given for
the game. We developed a method for generating a heuristic
function based on the rules of the game, specifically the rules
for terminal and goal states.

The idea for the heuristic evaluation function is to calcu-
late the degree of truth of the goal and terminal formulas in
the state to evaluate. The values for goal and terminal are
combined in such a way that terminal states are avoided as
long as the goal is not fullfilled, i.e. the value of terminal has
a negative impact on the evaluation of the state if goal has a
low value and a positive impact otherwise.

One trivial approach would be to use fuzzy logic, i.e. as-
sign values between 0 and 1 to atoms depending on their truth
value and use some standard t-norm and t-co-norm to calcu-
late the degree of truth of complex formulas. However this
approach has undesirable consequences: With any standard
t-norm the value of a conjunction is limited by the minimum
of the values of the conjuncts. That means we would get a
value of 0 for the whole conjunction if one of the conjuncts
is false. Consider a simple blocks world domain with three
blocks a, b and c and the goal on(a, b)∧on(b, c)∧ontable(c).
In that case we would want the value of the formula to reflect
the number of subgoals solved. However if the only subgoal
missing is on(a, b) we would still get a value of 0 although
the goal is almost reached. Another problem with this ap-
proach is that we can’t differentiate between states that both
fullfill a certain formula. E.g., the goal of the Othello game
is to have more pieces of your own color on the board than
there are opponent’s pieces. A good heuristics would be to
say the more pieces of your color are on the board the better.
However the formula greater(?whitepieces, ?blackpieces)
would get a value of 1 no matter if white has just one or many
more pieces than black.

To overcome these problems we use values 1 − p and p
with 0.5 < p < 1 for atoms that are false or true respectively.
However this introduces new problems if one uses a contin-
uous t-norm, e.g., a ∗ b. Now a conjunction with a lot of
conjuncts could get a value of nearly zero, although all con-

juncts are true and on the other hand a big disjunction could
get a value of nearly one although all disjuncts are false. But
we want to use a continuous function otherwise we would
still end up with the problem explained with the blocks world
domain above.

Therefore we introduce a threshold t with 0.5 < t < 1,
with the following intention: values above t denote true and
values below 1− t denote false. The truth function we use for
conjunction is now defined as:

T ′(a, b) =

{

max(T (a, b), t), if min(a, b) > 0.5

T (a, b) otherwise

where T denotes an arbitrary standard t-norm. This function
together with the associated truth function for disjunctions
(S′(a, b) = 1 − T ′(1 − a, 1 − b)) ensures that formulas that
are true always get a value greater or equal t and formulas that
are false get a value smaller or equal 1 − t. Thus the values
of different formulas stay comparable. This is necessary if
there are multiple goals in the game. The disadvantage is that
T ′ is not associative, at least in cases of continuous t-norms
T , and is therefore not a t-norm itself in general. The effect
of this is that the evaluation of semantically equivalent but
syntactically different formulas can be different. However by
choosing an appropriate t-norm T it is possible to minimize
that effect.

For the t-norm T we use an instance of the Yager family of
t-norms:

T (a, b) = 1 − S(1 − a, 1 − b)

S(a, b) = (aq + bq)
1

q

The Yager family of t-norms captures a wide range of differ-
ent t-norms. Ideally we would want a heuristic and thus a pair
of t-norm and t-co-norm that is able to differentiate between
all states that are different with respect to the goal and ter-
minal formulas. In principal this is possible with the Yager
family of t-norms. By varying q one can choose an appro-
priate t-norm for each game, depending on the structure of
the goal and terminal formulas to be evaluated, such that as
many states as possible that are different with respect to the
goal and terminal formulas are assigned a different value by
the heuristic function. Because S(a, b) >= max(a, b) and
S is monotonic in a and b, the more disjunctions occur in a
goal and terminal formulas the smaller q has to be in order for
the evaluation of the formula not to yield 1 for a lot of states,
although the states are quite different with respect to the goal.
On the other hand q has to be bigger the more conjunctions
occur in the formulas, otherwise the value of the formula will
be 0 for a lot of the states. However, at the moment we just use
a fixed value for q which seems to work well with most games
currently available on http://games.stanford.edu,
i.e. the evaluation function is able to differentiate a wide va-
riety of different states on most of the games.

Our evaluation function eval(f, z) for evaluating the state
z with respect to the formula f is defined as follows(a denotes

an atom, f and g are arbitrary formulas):

eval(a, z) =

{

p, if a holds in the current state

1 − p, otherwise

eval(f ∧ g, z) = T ′(eval(f, z), eval(g, z))

eval(f ∨ g, z) = S′(eval(f, z), eval(g, z))

eval(¬f, z) = 1 − eval(f, z)

According the the definitions above, the evaluation func-
tion has the following property, which shows its connection
to the logical formula:

(∀f, z) eval(f, z) ≥ t > 0.5 ⇐⇒ holds(f, z)

(∀f, z) eval(f, z) ≤ 1 − t < 0.5 ⇐⇒ ¬holds(f, z)

Where holds(f, z) denotes that formula f holds in state z.
The heuristic function for a state z in a particular game is

defined as follows:

h(z) =
1

∑

gv∈GV gv
∗

⊕

gv∈GV

h(gv, z) ∗ gv/100

h(gv, z) =

{

eval(goal(gv) ∨ term, z), if goal(gv)

eval(goal(gv) ∧ ¬term, z), if ¬goal(gv)
⊕

denotes a product t-co-norm sum, GV is the domain of
goal values, goal(gv) is the (unrolled) goal formula for the
goal value gv and term is the (unrolled) terminal formula of
the game. That means the heuristics of a state is calculated
by combining heuristics h(gv, z) for each goal value gv of
the domain of goal values GV weighted by the goal value gv
with a product t-co-norm (denoted by

⊕

). The heuristics for
each possible goal value is calculated as the evaluation of the
disjunction of the goal and terminal formulas in case the goal
fullfilled, i.e. the heuristics tries to reach a terminal state if
the goal is reached. On the other hand the heuristics tries to
avoid terminal states as long as the goal is not reached.

5 Identifying Structures

The evaluation function described above can be further im-
proved by using the whole range of values between 0 and 1
for atoms instead of assigning 1 − p for false and p for true
atoms.

The idea is to detect structures in the game description
which can be used for non-binary evaluations like successor
relations, order relations, quantities or game boards. The ap-
proach is similar to the one of [Kuhlmann et al., 2006] but
with some differences.

Static structures, i.e. structures that are independent of the
state of the game, like successor and order relations are de-
tected by checking certain properties of all relations that do
not depend on any instance of true(?x). E.g., binary re-
lations that are antisymmetric, functional and injective and
whose graph representation is acyclic are considered as suc-
cessor relations. Order relations are binary relations that are
antisymmetric and transitive. Those properties can be proved
quite easily as all domains are finite. Unlike [Kuhlmann et
al., 2006], who use syntactical structure of the rules to detect
e.g., successor relations, we use semantical properties of the

predicates. In addition to [Kuhlmann et al., 2006] we can also
detect higher level predicates like order relations. This is dif-
ficult to do when relying on the syntax of the rules, because
there are many semantically equivalent but syntactically dif-
ferent descriptions of a predicate.

Dynamic structures like game boards and quantities are
detected in the same way as described in [Kuhlmann et al.,
2006]. However our definition of a game board is broader
in that we don’t restrict ourselves to two-dimensional boards
with just one argument describing the content of the board’s
cells.

For us a game board is a multi-dimensional grid of cells
that have a state which can change. Each fluent in the game
description with at least 2 arguments is a potential board.
Some of the arguments must identify the cell of the board,
those are the coordinates. The remaining arguments form the
cell’s state. They must have a unique value for each instance
of the coordinate arguments in each state of the game. The
coordinates of the cell are input arguments and the remain-
ing arguments are output arguments of the fluent describ-
ing the board. A board is ordered if the coordinate argu-
ments are ordered, i.e. there is a successor relation for the
domain of the arguments. If only some of the coordinate ar-
guments are ordered then the fluent possibly describes mul-
tiple ordered boards. An example for this case is the fluent
cell(?b, ?y, ?x, ?c) in the Racetrack game (the final game in
the AAAI GGP Competition 2005), a two-player racing game
where each player moves on his own board. The arguments
?y and ?x are the coordinates of the cell on board ?b and ?c is
the content of the cell. The domains of ?x and ?y are ordered
but the domain of ?b is not, all three of ?x, ?y and ?b are the
input arguments of the fluent cell(?b, ?y, ?x, ?c).

A unary fluent describes a quantity if it’s argument is or-
dered and the fluent is a singleton. A singleton fluent is a
fluent without input arguments, that means the fluent occurs
at most once in every state of the game. A prominent example
is the step counter step(?x) occurring in many games, which
describes a quantity, namely the number of steps executed so
far in the game. Also states of board cells can be quantities if
they are ordered. E.g., the fluent money(?player, ?amount)
of the game Farmers (a three player economic game), which
describes the amount of money each player has in a certain
state, is identified as a one-dimensional unordered board with
one cell for each player where the content of each cell is a
quantity.

For deciding if a fluent describes a board or a quantity we
need to know the fluent’s input and output arguments as well
as the information if a certain argument of a fluent is ordered.
Similar to the method described in [Kuhlmann et al., 2006],
input and output arguments of all fluents are approximately
calculated by generating hypotheses and checking them in
states generated by random play until the hypotheses are sta-
ble. We start with an empty set of input arguments as hypoth-
esis and add one argument whenever the hypothesis turns out
not to be true in a state. Usually the hypotheses are stable
and correct after very few states (3 to 5). This simulation
stage is also used to check other properties of the game like if
the game is turn-based. For the decision if an argument of a
fluent is ordered it is necessary to know the domains of the ar-

guments of fluents and if there is a successor relation for this
domain. The domains, or rather supersets of the domains, of
all predicates and functions of the game description are com-
puted by generating a dependency graph from the rules of the
game description. The nodes of the graph are the arguments
of functions and predicates in game description and there is
an edge between two nodes whenever there is a variable in a
rule of the game description that occurs in both arguments.
Connected components in the graph share a (super-)domain.

The dependency tree in figure 1 is the one for the follow-
ing game rules describing a successor predicate and an unary
fluent step which is incremented every step:

(succ 0 1) (succ 1 2) (succ 2 3)

(init (step 0))

(<= (next (step ?x))

(true (step ?y)) (succ ?y ?x))

The domains of the arguments of the function step and the
predicate succ are all connected in the graph and thus share
the same domain, which consists of the 4 connected constants
0 to 3. The computed set of constants is actually a superset
of the real domain of the arguments of succ. The domain of
the first argument of succ doesn’t contain 3 and the domain
of the second argument doesn’t contain 0. But we disregard
this fact because we are more interested in the dependencies
between different functions and predicates than in the actual
domains.

step,1

succ,1

succ,2

0

1

2

3

Figure 1: A dependency graph for calculating domains of
functions and predicates. (Ellipses denote arguments of flu-
ents or predicates and squares denote constants.)

6 Using identified structures for the heuristic

function

The heuristic evaluation function is improved by introducing
non-binary evaluations of the atoms that correspond to iden-
tified structures.

The evaluation of an order relation r is computed as

eval(r(a, b), z) =

{

t + (1 − t) ∗ ∆(a,b)
|dom(r)| , if r(a, b)

(1 − t) − (1 − t) ∗ ∆(b,a)
|dom(r)| , if ¬r(a, b)

Where ∆(a, b) is the number of steps needed for reaching b
from a with the successor function that is the basis of this
order relation and |dom(r)| denotes the size of the domain of

the arguments of r. This evaluation function, which is used in
games like Othello (the goal is to have more pieces than the
opponent) or Farmers (the goal is to have more money as the
opponents), is reasonably fast to compute and has advantages
over a binary evaluation which just reflects the truth value of
the order relation: It prefers state with a narrow miss of the
goal over states with a strong miss. E.g., for the white player
in an Othello game it prefers a state with 15 white pieces
and 16 black ones over a state with 10 white and 21 black
pieces although both are on the losing side at the moment.
However the chances of white winning the game continuing
with the first state are probably much higher. The same holds
for states on the winning side, where the evaluation function
prefers strong wins over narrow ones.

The evaluation of atoms of the form (true f) can be
non-binary if the f in question describes an ordered game
board or a quantity. For ordered game boards that evaluation
reflects the distance (computed with a normalized city-block
metrics) of the position of a piece on the board in the current
state to the goal position. E.g., the evaluation of the atom
(true (cell wlane e ?x white)), which occurs
in the goal definition of the Racetrack game, in a state which
contains (true (cell wlane b 3 white)) is
based on the (normalized) Manhattan distance between the
coordinates of the white piece in both states. The distance for
the third coordinate is assumed to be zero because it is a vari-
able. The distances for each single coordinate are normalized
by the size of the coordinates domain. If there are multiple
matching pieces in a state like in Chinese Checkers where
the pieces of each player are indistinguishable, the evaluation
is based on the mean value of the distances for all matching
pieces.

E.g., the evaluation function for a two-dimensional ordered
board with the coordinates x and y is defined as follows:

eval(f(x, y, c), z) =

1

N
∗

∑

f(x′,y′,c)∈z

1

2
∗

(

∆(x, x′)

|dom(f, 1)|
+

∆(y, y′)

|dom(f, 2)|

)

Where N is the number of occurrences of f(x′, y′, c) in
z for arbitrary x′, y′ and the given c, |dom(f, i)| denotes the
size of the domain of the i-th argument of f and ∆(x, x′)
(∆(y, y′)) is the number of steps between x and x′ (y and
y′) according to the successor function that induces the order
for the domain. The function can easily be extended to arbi-
trary dimensional boards with an arbitrary number of output
arguments.

If the fluent f of the atom (true f) is a quantity (or a
board where the cells state is a quantity), the evaluation is
based on the difference between the quantity in the current
state and the quantity in the atom to evaluate. This evalua-
tion is effectively used in e.g., many games that use a step
counter. In games that end when the step counter reaches a
certain limit the evaluation of the terminal rule yields higher
values for higher step counters. The effect of this evaluation
is that of two states that are equal except for the step counter
the one with the smaller step counter is preferred as long as
the goal is not fullfilled. This coincides with a quite common
practice in planning problems, where shorter plans are pre-

ferred over longer ones. E.g., the evaluation function for and
unary quantity fluent f like the step counter is:

eval(f(x), z) =
∆(x, x′)

|dom(f, 1)|
, if f(x′) ∈ z

This function can be extended easily to an arbitrary (non-
zero) number of input and output arguments.

7 Evaluation

Due to the lack of freely available general game playing sys-
tems at this time it is not possible to make thorough compar-
isons of our approach with others. One noteworthy exception
is the annual AAAI GGP Competition. In the first GGP Com-
petition at AAAI’05 our game player with the name FLUX-
PLAYER performed reasonably well and it is the winner of
the AAAI GGP Competition 2006. It is also not easily pos-
sible to compare the performance of our general game player
with existing game playing systems for specific games like
Chess or Chinese Checkers, because the performance of our
systems highly depends on the description of the game rules,
which can be arbitrarily complex for the same game.

However, based on comparisons with human players and
analysis of the results of the heuristic evaluation function for
different games, it is possible to give an assessment which
types of games our game player is able to play well and which
games it has problems with. The informal notion of “play-
ing a game well” describes that the automatically constructed
heuristics captures the purpose of the game as a human under-
stands it. That means the heuristics yields a higher value for
states that seem to be advantageous as perceived by a human.
It is clear that this might not be the best choice of a heuris-
tics. Thorough experiments yielding quantitative results are
needed to be able to compare our approach to others, this is
work in progress.

Because our approach is highly based on the goal descrip-
tion our player performs well in all games where the goal de-
scription yields a meaningful heuristics. Those include goal
descriptions that describe concrete goal states preferably with
little interdependencies between the subgoals. Examples for
this are games like 8-Puzzle or Blocks World, where certain
configurations of the pieces have to be reached and actions
typically change only a small set of fluents. Other examples
are games with gradual goal values (goal values between 0
and 100 for reaching only part of the goal) like the 10-Queens
problem where the goal value is lower the more queens at-
tack each other or Crisscross, a two-player variant of Chinese
Checkers, where the goal value depends on the number of
pieces moved into their goal position.

All types of games where the goal value depends on reach-
ing a certain location on a board or reaching a certain amount
of some quantity are usually played well, if it is possible
to gradually improve the location or the amount over time.
Examples are Chinese Checkers, Racetrack and other racing
games as well as Othello or Farmers. However some fea-
tures necessary for very good performance are missing. E.g.,
our player is only able to recognize the worth of a corner
square in Othello if he is able to search to a certain depth.
The same holds for buying farms or factories in the game of

Farmers, a game with the purpose of buying, producing and
selling goods to make profit. That means certain advanta-
geous moves are only made when the search is deep enough
to see the advantage if they do not directly improve the goal
evaluation (occupying a corner square in Othello) or even de-
teriorate it at first (buying a farm or factory in Farmers de-
creases your amount of money at first).

Like in all search based approaches the performance de-
pends on the depth of the search, which is low if the branch-
ing factor of the game tree is high. This doesn’t seem to
be a problem with some games like the 10-Queens problem
(branching factor b ≈ 100), where the heuristics and the non-
uniform depth first search results in good play even with a
search depth of only 1 or 2 initially. High branching fac-
tors are a problem in games like Farmers (b ≈ 200) where a
deeper search is necessary for good play.

Other game descriptions that are problematic are those
with complex goal descriptions, that are expensive to eval-
uate and, on the other hand, goal descriptions that do not help
to differentiate non-terminal states. An example for the latter
category is Peg Jumping a game with the goal to remove all
pegs from the board by jumping over them. The goal descrip-
tion consists only of the goal position of the last peg and the
atom (true (pegs s1)), which means that there must
be only one peg left. That means the evaluation of a state
regarding the goal depends almost exclusively on the num-
ber of pegs currently on the board, which is the same for all
states of the same depth in the game tree. Two facts are the
reason that our game player plays this game well nonetheless:
First, the game ends if there is no possible move left. Thus
the terminal evaluation corresponds to a mobility heuristics,
which helps avoiding dead ends. And second, the very simple
goal description can be evaluated very fast which allows deep
searches.

8 Discussion

The evaluation function obtained by the method described
above is directly based on the goal description of the game.
The generation of the heuristics is much faster than learning-
based approaches. Thus our approach is particularly well
suited for games with a big state space and sparse goal states.
Those are typical properties of almost all singleplayer games
and some multi-player games like Chess. In both cases with
learning based approaches one has to play many random
matches to have significant data. Based on the same ratio-
nale our approach has advantages for games with little time
for learning parameters of the heuristic function.

However depending on the game description, our evalua-
tion function can be more complex to compute than learned
features or it might not be able to differentiate between non-
terminal states at all. Decomposition and abstraction tech-
niques like they are described in [Fawcett and Utgoff, 1992]

might be used to overcome the first problem. We want to
tackle the second problem by formal analysis of the rules of
the game for discovering relations between different proper-
ties of a state and thereby detecting features that are important
for reaching the goal.

Another advantage of our approach regarding possible fu-

ture extensions of the general game playing domains is, that it
is directly applicable to domains with incomplete information
about current position. Flux, which is used for reasoning, as
well as the heuristic evaluation function are in principle able
to handle incomplete information games.

9 Related Work

A work in the same setting is [Kuhlmann et al., 2006]. The
authors work on the same problem but use a different ap-
proach for heuristics construction. A set of candidate heuris-
tics are constructed, which are based on features detected in
the game, but don’t take the goal description into account.
The process of selecting which of the candidate heuristics is
leading to the goal remains an open challenge.

Previous work on general game playing includes Barney
Pell’s Metagamer [Pell, 1993] which addresses the domain of
Chess-like board games. Because the domain representation
differs from the GDL it is unclear if the techniques can be
directly applied to GGP.

Fawcett [Fawcett, 1993] applies a feature discovery algo-
rithm to a game of Othello. Features are generated by in-
ductively applying transformation operators starting with the
goal description. Discovered features need to be trained. The
method uses a STRIPS-style domain but may possibly be ap-
plied to GGP.

Much research has been done on heuristic-search planning
[Bonet and Geffner, 2001]. However, most of the work de-
pends on STRIPS-style domain descriptions. It is not clear
how much of the techniques can be applied to GGP. It is
also unknown if the methods can be adapted for multi-player
games.

10 Conclusion

We have presented an approach to General Game Play-
ing which combines reasoning about actions with heuristic
search. The main contribution is a novel way of constructing
a search heuristics by the automated analysis of game specifi-
cations. Our search heuristics evaluates states with regard to
the incomplete description of goal and terminal states given in
the rules of the game. It takes advantage of features detected
in the game like boards, quantities and order relations.

Our General Game player performed well in a wide vari-
ety of games, including puzzles, board games, and economic
games. However there is ample room for improvement: We
are currently working on enhancing the translation of the
game description to Prolog in order to make reasoning and
especially the calculation of successor states more efficient
and therefore the search faster. There is also work in progress
directed at an improved evaluation of non-leaf nodes of the
search tree, which uses methods from game theory and al-
lows better opponent modeling.

A number of problems of the heuristics need to be ad-
dressed. This includes a more efficient evaluation of com-
plex goal descriptions which might be achieved by using ab-
straction and generalization techniques to focus on important
features and disregard features which are less important but
expensive to compute.

We plan to use formal analyses of the game description to
get a more thorough picture of the function of each part of the
game description and their connections. This information can
then be used to increase the efficiency of the theorem prover
as well as detecting new features of the game which might
improve the heuristics.

For directing future research we need to analyse the impact
of the different evaluation functions on the game playing per-
formance. For this analysis it is necessary to define realistic
opponent models and problem sets. Ideally, we would want
to have a range of benchmark domains and opponents such
that objective comparisons between different general game
playing systems are possible.

References

[Bonet and Geffner, 2001] Blai Bonet and Hector Geffner.
Planning as heuristic search. Artificial Intelligence, 129(1-
2):5–33, 2001.

[Fawcett and Utgoff, 1992] Tom Elliott Fawcett and Paul E.
Utgoff. Automatic feature generation for problem solv-
ing systems. In D. Sleeman and P. Edwards, editors, Pro-
ceedings of the 9th International Conference on Machine
Learning, pages 144–153. Morgan Kaufmann, 1992.

[Fawcett, 1993] T. Fawcett. Feature discovery for inductive
concept learning, 1993.

[Kuhlmann et al., 2006] Gregory Kuhlmann, Kurt Dresner,
and Peter Stone. Automatic heuristic contruction in a com-
plete general game player. In Proceedings of the Twenty-
First National Conference on Artificial Intelligence, July
2006. To appear.

[Morris, 1997] Robert Morris, editor. Deep Blue Versus Kas-
parov: The Significance for Artificial Intelligence. AAAI
Press, 1997.

[Pell, 1993] B. Pell. Strategy generation and evaluation for
meta-game playing, 1993.

[Russell and Norvig, 2003] Stuart Russell and Peter Norvig.
Artificial Intelligence: A Modern Approach (Second Edi-
tion). Prentice-Hall, 2003.

[Schaeffer et al., 2005] Jonathan Schaeffer, Yngvi
Björnsson, Neil Burch, Akihiro Kishimoto, Martin
Müller, Robert Lake, Paul Lu, and Steve Sutphen. Solving
checkers. In L. Kaelbling and A. Saffiotti, editors,
Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI), pages 292–297, Edinburgh,
UK, August 2005.

[Schaeffer, 1989] J. Schaeffer. The history heuristic and
alpha-beta search enhancements in practice. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
11(11):1203–1212, 1989.

[Shannon, 1950] Claude Shannon. Programming a com-
puter for playing chess. Philosophical Magazine 7,
41(314):256–275, 1950.

[Thielscher, 2005] Michael Thielscher. Reasoning Robots:
The Art and Science of Programming Robotic Agents, vol-
ume 33 of Applied Logic Series. Kluwer, 2005.

