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1 Introduction

General Game Playing (GGP) is the challenge to build an autonomous agent that
can effectively play games that it has never seen before. Unlike classical game
playing programs, which are designed to play a single game like chess or checkers,
the properties of these games are not known to the programmer at design time.
Instead, they have to be discovered by the agent itself at runtime; this demand for
higher flexibility requires the use and integration of various Artificial Intelligence
techniques. This makes GGP an ideal testbed for the development of new Artificial
Intelligence methods.

Since 2005, the Stanford Logic Group, headed by Michael Genesereth, holds an
annual General Game Playing competition to foster research efforts in this area.
Sponsored by the American Association for Artificial Intelligence, this competition
offers the opportunity to compare different approaches in a competitive setting. In
the course of several rounds, the participating general game playing systems are
pitted against each other on different types of games.

One special class of games that appeared in the last two GGP competitions can
be described as composite games : games that are composed of simpler subgames.
Examples from the last year’s competition include “doubletictactoe” (two games of
tic-tac-toe, played on separate boards in parallel) and “incredible amazing blocks
world”, or short “incredible” (a single player game consisting of a “blocks world”
problem, mixed with another simple puzzle called “maze”).

Although the subgames themselves were relatively easy to solve, as they had a
comparatively small search space, all of the players showed a bad performance on the
composite games because of the exponentially bigger search space of the composite
game.

This is due to the fact that the current systems are not able to separate the
consequence of a move in one of the subgames from a move in another, and even
if they were able to extract subgame information from the game description, the
employed standard search algorithms have no way of exploiting this information.

Therefore, the aim of this work is

• to formulate a suitable formalism for expressing subgame information,

• to develop an algorithm that detects subgames inside composite games, and

• to acquire a search algorithm that can make use of the detected symmetries
in order to accelerate search.
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Chapter 1 Introduction

In order to limit the scope of this project, only single player games are considered.
All algorithms are implemented in Prolog and integrated into the General Game
Player “Fluxplayer” (Schiffel & Thielscher, 2007).

The remainder of this work is organized as follows:

• Chapter 2 (Preliminaries) will introduce two formalisms that will be needed
as a foundation, particularly the Game Description Language and the Fluent
Calculus.

• Chapter 3 (Subgame Detection) will contain a formalization of the context as
well as an algorithm for extracting subgame information from a game descrip-
tion.

• Chapter 4 (Greedy Decomposition Search) will deal with a simple, albeit non-
optimal algorithm that can make use of this subgame information for speeding
up search.

• Chapter 5 (Concept Decomposition Search) will treat a more complex search
algorithm for composite games that is provably optimal.

• Chapter 6 (Discussion) will conclude with an evaluation of the results.
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2 Preliminaries

2.1 Game Description Language (GDL)

The Game Description Language (Genesereth et al., 2005), a subset of the Knowl-
edge Interchange Format, is the language used to communicate the rules of the game
to each player. It is a variant of first order logic, enhanced by distinguished symbols
for the conceptualization of games. GDL is purely axiomatic, i.e. no algebra or
arithmetics is included in the language; if a game requires this, the relevant portions
of arithmetics have to be axiomatized in the game description.

The class of games that can be expressed in GDL can be classified as n-player
(n ≥ 1), deterministic, perfect information games with simultaneous moves. “De-
terministic” excludes all games that contain any element of chance, while “prefect
information” prohibits that any part of the game state is hidden from some players,
as is common in most card games. “Simultaneous moves” allows to describe games
like “roshambo”, where all players move at once, while still permitting to describe
games with alternating moves, like chess or checkers, by restricting all players except
one to a single “no-op” move. Also, GDL games are finite in several ways: The state
space consists of finitely many states; there is a finite, fixed number of players; each
player has finitely many possible actions in each game state, and the game has to
be formulated such that it leads to a terminal state after a finite number of moves.
Each terminal state has an associated goal value for each player, which need not be
zero-sum.

A game is modeled in GDL as a game state graph; the nodes in the graph are
called game states, which in turn consist of atomic properties, so-called datums,
that are represented as ground terms. One of these game states is designated as the
initial state. The transitions are determined by the combined actions of all players.
The game progresses until a terminal state is reached.

Example 2.1. Listing 2.1 on the following page shows the GDL game description of
the well-known “blocks world” domain.

The role keyword (line 1) declares the argument, robot, to be a player in the
game. From the fact that there is only one role statement in the game description,
we can see that this is a single player game. Also note that the infix notation of
GDL is used; in the prefix notation, the same statement would read role(robot).

The initial state of the game is described by the keyword init (lines 3–8). A
blocks world state with three blocks (a, b and c) is described, where b and c are
clear (no block on top of them), c is on a, and both a and b are directly on the

3



Chapter 2 Preliminaries

Listing 2.1 Blocks world

1 ( role robot )
2

3 ( in i t ( c l e a r b ) )
4 ( in i t ( c l e a r c ) )
5 ( in i t ( on c a ) )
6 ( in i t ( t a b l e a ) )
7 ( in i t ( t a b l e b ) )
8 ( in i t ( s tep 1) )
9

10 (<= (next ( on ?x ?y ) )
11 (does robot ( s ?x ?y ) ) )
12

13 (<= (next ( on ?x ?y ) )
14 (does robot ( s ?u ?v ) )
15 ( true ( on ?x ?y ) ) )
16

17 (<= (next ( t a b l e ?x ) )
18 (does robot ( s ?u ?v ) )
19 ( true ( t a b l e ?x ) )
20 ( distinct ?u ?x ) )
21

22 (<= (next ( c l e a r ?y ) )
23 (does robot ( s ?u ?v ) )
24 ( true ( c l e a r ?y ) )
25 ( distinct ?v ?y ) )
26

27 (<= (next ( on ?x ?y ) )
28 (does robot (u ?u ?v ) )
29 ( true ( on ?x ?y ) )
30 ( distinct ?u ?x ) )
31

32 (<= (next ( t a b l e ?x ) )
33 (does robot (u ?x ?y ) ) )
34

35 (<= (next ( t a b l e ?x ) )
36 (does robot (u ?u ?v ) )
37 ( true ( t a b l e ?x ) ) )
38

39 (<= (next ( c l e a r ?y ) )
40 (does robot (u ?x ?y ) ) )
41

42 (<= (next ( c l e a r ?x ) )
43 (does robot (u ?u ?v ) )
44 ( true ( c l e a r ?x ) ) )
45

46 (<= (next ( s tep ?y ) )
47 ( true ( s tep ?x ) )
48 ( succ ?x ?y ) )
49

50 ( succ 1 2)
51 ( succ 2 3)
52 ( succ 3 4)
53

54 (<= ( legal robot ( s ?x ?y ) )
55 ( true ( c l e a r ?x ) )
56 ( true ( t a b l e ?x ) )
57 ( true ( c l e a r ?y ) )
58 ( distinct ?x ?y ) )
59 (<= ( legal robot (u ?x ?y ) )
60 ( true ( c l e a r ?x ) )
61 ( true ( on ?x ?y ) ) )
62

63 (<= ( goal robot 100)
64 ( true ( on a b ) )
65 ( true ( on b c ) ) )
66 (<= ( goal robot 0)
67 (not ( true ( on a b ) ) ) )
68 (<= ( goal robot 0)
69 (not ( true ( on b c ) ) ) )
70

71 (<= terminal
72 ( true ( s tep 4 ) ) )
73 (<= terminal
74 ( true ( on a b ) )
75 ( true ( on b c ) ) )

4



2.1 Game Description Language (GDL)

table.

The term (step 1) defined on line 8 is a “step counter”, a technicality often
encountered in GDL games. As was mentioned before, only games with finite length
are permitted. Whereas some games, like tic-tac-toe or nim, are guaranteed to
terminate after a limited number of steps, most games, including blocks world, have
cycles in their game graph that would allow infinite sequences of actions (for example,
stacking and unstacking the same two blocks over and over again). Therefore, the
game designer must ensure that a state in the game graph can never be reached twice
during the same match, and that all matches eventually reach a terminal state. The
most common way to do this is by adding a primitive feature (here: step) to the
game state, increment its value after each action (lines 46–48), and terminate the
game when a certain maximal value is reached (lines 71–72). These step counters
can have a negative impact on the performance of many search enhancements, e.g.
transposition tables, and also on subgame decomposition (chapter 3). Therefore, a
separate part of the algorithm will be dedicated to their treatment.

The keyword next (10–48) defines the effects of the players’ actions. For example,
lines 10 and 11 declare that, after the player robot has executed action s (short for
“stack”) on two blocks ?x and ?y, these blocks are on top of each other in the
resulting state 1 . The reserved keyword does can be used to access the actions
executed by the players, while true refers to all primitive features that are true in
the current state.

GDL also requires the game designer to state the non-effects of actions by speci-
fying frame axioms, as can be seen on lines 17–20: Stacking a block ?u onto another
block ?v leaves all other blocks ?x on the table, if they were on the table before.

The rule on lines 46–48 increments the step counter, using the successor function
defined on lines 50–52. GDL contains no definitions of arithmetics; therefore the
constants 1, 2, 3 and 4 have no special meaning and could be replaced by something
completely different; they only gain meaning as ordinal numbers through the aux-
iliary predicate succ. This is a very simple example of how the vocabulary can be
extended by user-defined functions.

The keyword legal (54–61) defines what actions are possible for each player in
the current state; the game designer has to ensure that each player has at least one
legal action in each reachable state of the game tree.

The goal predicate (63–69) assigns a number between 0 (loss) and 100 (win) to
each role in a terminal state (this is the only place where numbers, such as 100, have
a special meaning). Games need not be zero-sum; each player’s goal is to maximize
its own payoff. The game is over when a state is reached where the terminal

predicate (71–75) holds.

1The symbol <= is the reverse implication operator; all expressions beginning with a question mark
are variables. Additionally, GDL provides the keyword distinct for syntactical inequality and
the logical operators and, or and not.
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Chapter 2 Preliminaries

2.2 Game Representation in the Fluent Calculus

While GDL is used to communicate the game description to the players, the players
are free to choose a different internal representation of the game, as long as both
representations are equivalent. One such alternative representation is the fluent
calculus (Thielscher, 1998) and its Prolog-based implementation FLUX, which is the
approach chosen by the General Game Player “Fluxplayer” (Schiffel & Thielscher,
2007).

The subgame detection algorithm (presented in chapter 3) will need to prove
potential positive and negative effects of actions; for this task, the fluent calculus
representation is much better suited than the original GDL representation, because
in fluent calculus, positive and negative effects are given directly. The translation
from GDL to fluent calculus/FLUX is still work in progress, but lies outside the
scope of this work; therefore, in the following, I will assume that the rules of the
game have already been translated into a fluent calculus domain axiomatization.

Since GDL only permits deterministic domains with complete knowledge of states,
the special fluent calculus (which, in contrast to the general fluent calculus, has no
extensions for incomplete states and knowledge representation) is expressive enough.
For the sake of brevity, “special fluent calculus” will from now on often be referred
to simply as “fluent calculus”.

For a thorough introduction to the fluent calculus, refer to Thielscher (2005). The
definitions from this book that are most relevant to this work will briefly be repeated
in the following section.

2.3 Fluent Calculus

The special fluent calculus is a formalism for reasoning about actions in first-order
logic with sorts and equality. Each “datum” in GDL corresponds to a fluent (sort
Fluent) in fluent calculus, and each “game state” corresponds to a state (of sort
State, a supersort of Fluent).

Definition 2.1. A triple 〈F , ◦, ∅〉 is a fluent calculus state signature if

• F finite, non-empty set of function symbols into sort Fluent(the set of fluent
functions)

• ◦ : State× State→ State

• ∅ : State

The following macro is an abbreviation for the statement that a fluent f holds in
a state z2:

Holds(f, z)
def
= (∃z′)(z = f ◦ z′)

2Free variables in formulas are assumed to be universally quantified.
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2.3 Fluent Calculus

The function ◦ must obey the following properties, similar to the union operation
for sets:

Definition 2.2. The foundational axioms Σsstate of special fluent calculus are

1. Associativity and commutativity:

(z1 ◦ z2) ◦ z3 =z1 ◦ (z2 ◦ z3)

z1 ◦ z2 =z2 ◦ z1

2. Empty state axiom: ¬Holds(f, ∅)
3. Irreducibility: Holds(f, g) =⇒ f = g

4. Decomposition: Holds(f, z1 ◦ z2) =⇒ Holds(f, z1) ∨Holds(f, z2)

5. State Equality: (∀f)(Holds(f, z1) ≡ Holds(f, z2)) =⇒ z1 = z2

Definition 2.3. A finite state τ is a term f1◦· · ·◦fn such that each fi (1 ≤ i ≤ n)
is a fluent (n ≥ 0). If n = 0, then τ is ∅. A ground state is a state without
variables.

Due to the constraints of GDL, all states can in the following be assumed to be
ground and finite.

Fluent calculus uses two more sorts: Action for representing the actions of the
robot, and Sit for situations. Situations represent series of actions, or nodes in the
game tree; due to transpositions, several different situations can correspond to the
same state.

Definition 2.4. A tuple S ∪ 〈A, S0, Do, State, Poss〉 is a fluent calculus signa-
ture if

• S state signature

• A finite, non-empty set of function symbols into sort Action (the set of ac-
tion functions)

• S0 : Sit (the initial situation)

• Do : Action×Sit→ Sit (the successor situation, after performing an action)

• State : Sit→ State (the mapping of a situation to its corresponding state)

• Poss : Action× State (the precondition predicate, denoting if performing a
certain action in a given state is possible)

For convenience, two more macros are declared:

7



Chapter 2 Preliminaries

• z1 − z2 (removal of all fluents of state z2 from z1)

• z1 + z2 (addition of all fluents of state z2 to z1)

Example 2.2. To illustrate how a game can be expressed in fluent calculus, a running
example will be provided throughout this section. The game is, again, blocks world,
which helps to compare the fluent calculus formulation to the GDL representation
from listing 2.1.

The initial state S0 is characterized by the following formula:

State(S0) = Clear(B) ◦ Clear(C) ◦On(C,A) ◦ Table(A) ◦ Table(B) ◦ Step(1)

Definition 2.5. A state formula ∆(z) is a first-order formula with free state
variable z and without any occurrence of states other than in expressions of the
form Holds(f, z), and without actions of situations. If ∆(z) is a state formula and
s a situation variable, then ∆(z){z/State(s)} is a situation formula, written
∆(s).

Definition 2.6. Consider a fluent calculus signature with action functions A, and
let A ∈ A. A precondition axiom for A is a formula

Poss(A(~x), z) ≡ Π(z)

where Π(z) is a state formula with free variables among ~x, z.

Example 2.2 (cont.). In our blocks world example, the legal clauses from GDL can
be translated pretty straightforwardly into the following precondition axioms.

Poss(S(x, y), z) ≡Holds(Clear(x), z) ∧Holds(Table(x), z)

∧Holds(Clear(y), z) ∧ x 6= y ∧ ¬Terminal(z)

Poss(U(x, y), z) ≡Holds(Clear(x), z) ∧Holds(On(x, y), z)

∧ ¬Terminal(z)

The predicate Terminal(z) can be ignored for now, it will be defined in defini-
tion 2.10.

Definition 2.7. Consider a fluent calculus signature with action functions A, and
let A ∈ A. A state update axiom for A is a formula

Poss(A(~x), s) =⇒
(∃~y1)(∆1(s) ∧ State(Do(A(~x), s)) = State(s)− ϑ−1 + ϑ+

1 )

∨ · · · ∨
(∃~yn)(∆n(s) ∧ State(Do(A(~x), s)) = State(s)− ϑ−n + ϑ+

n )

where

8



2.3 Fluent Calculus

• n ≥ 1;

• for i = 1, . . . , n,

– ∆i(s) is a situation formula with free variables among ~x, ~yi, s;

– ϑ+
i , ϑ

−
i are finite states with variables among ~x, ~yi.

The terms ϑ+
i and ϑ−i are called, respectively, positive and negative effects of A(~x)

under condition ∆i(s).

Example 2.2 (cont.). The following two state update axioms describe the effects of
the blocks world actions. As has been mentioned before, the (potential) effects of
actions are given directly – compare this to the GDL next axioms, where not all
action effects are obvious at first glance. State update axioms are the hardest part
of the translation between GDL and fluent calculus; while the (potential) positive
effects of an action can usually also be easily proven in GDL, the negative effects
are specified by a missing frame axiom, or a restricted frame axiom that does not
sustain a fluent under all conditions.

Poss(S(x, y), s) =⇒ Holds(Step(u), s) ∧ Succ(u, v)

∧ State(Do(S(x, y), s)) = State(s)

− Table(x) ◦ Clear(y) ◦ Step(u)

+On(x, y) ◦ Step(v)

Poss(U(x, y), s) =⇒ Holds(Step(u), s) ∧ Succ(u, v)

∧ State(Do(U(x, y), s)) = State(s)

−On(x, y) ◦ Step(u)

+ Table(x) ◦ Clear(y) ◦ Step(v)

The predicate Succ that is used here is part of the so-called auxiliary axioms that
will be specified later.

Definition 2.8. Consider a fluent calculus signature with action functions A. A
domain axiomatization in special fluent calculus is a finite set of axioms Σ =
Σdc ∪ Σposs ∪ Σsua ∪ Σaux ∪ Σinit ∪ Σsstate where

• Σdc set of domain constraints;

• Σposs set of precondition axioms, one for each A ∈ A;

• Σsua set of state update axioms, one for each A ∈ A;

• Σaux set of auxiliary axioms, with no occurrence of states except for fluents,
no occurrence of situations, and no occurrence of Poss;

9



Chapter 2 Preliminaries

• Σinit = {State(S0) = τ0} where τ0 is a ground state;

• Σsstate foundational axioms of special fluent calculus.

As Σdc has no counterpart in GDL, it will not be used in this work, and the
definition of domain constraints will be omitted.

Example 2.2 (cont.). The sets Σinit, Σposs and Σsua for blocks world have already
been specified; the following axiom is the only auxiliary axiom that is needed for
blocks world:

Succ(1, 2) ∧ Succ(2, 3) ∧ Succ(3, 4)

Definition 2.9. A domain axiomatization Σ is deterministic iff it is consistent
and for any ground state τ and ground action a there exists a ground state τ ′ such
that

Σ |= State(s) = τ ∧ Poss(a, s) =⇒ State(Do(a, s)) = τ ′

Since GDL only allows the formulation of deterministic games, it is permissible
to assume that all domain axiomatizations considered here are deterministic.

In order to accommodate the GDL concepts of terminal states and goal values,
we will need two additional types of axioms that are not part of standard fluent
calculus; these can be defined in a way similar to the precondition and state update
axioms.

Definition 2.10. A termination axiom is a formula

Terminal(z) ≡ Ω(z)

where Ω(z) is a state formula with free variable z.

Example 2.2 (cont.). The single termination axiom for blocks world is:

Terminal(z) ≡Holds(Step(4), z)

∨Holds(On(A,B), z) ∧Holds(On(B,C), z)

Definition 2.11. A goal value axiom is a formula

Terminal(z) =⇒
(∃~y1)(Γ1(z) ∧Goal(z) = g1)

∨ · · · ∨
(∃~yn)(Γn(z) ∧Goal(z) = gn)

where

• Goal is a function into the interval [0, 100]

10



2.3 Fluent Calculus

• n ≥ 1;

• for i = 1, . . . , n,

– Γi(z) is a state formula with free variables among ~yi, z;

– gi ∈ N, 0 ≤ gi ≤ 100.

As usual, two macros

Terminal(s)
def
= Terminal(State(z))

and
Goal(s)

def
= Goal(State(z))

are defined.

Example 2.2 (cont.). Like the termination axiom, the goal value axiom for blocks
world can be translated very easily:

Terminal(z) =⇒ Holds(On(A,B), z) ∧Holds(On(B,C), z)

∧Goal(z) = 100

∨ ¬Holds(On(A,B), z) ∧Goal(z) = 0

∨ ¬Holds(On(B,C), z) ∧Goal(z) = 0

Definition 2.12. A game axiomatization is a finite set of axioms Σ = Σda ∪
Σterminal ∪ Σgoal where

• Σda domain axiomatization in special fluent calculus;

• Σterm set containing only the single termination axiom;

• Σgoal set containing only the single goal value axiom.

In order for a set Σ to be a valid game axiomatization, the following properties
must hold:

• Each terminal state has a goal value:

Σ |= Terminal(z) =⇒ (∃g)Goal(z) = g

• In a terminal state, no actions are possible:

Σ |= Terminal(z) =⇒ ¬Poss(a, z)

The two formalisms introduced in this chapter, the game description language
and the fluent calculus, will help to formulate an algorithm for detecting subgames
in the next chapter.

11



3 Subgame Detection

3.1 Games, Subgames and Independency

In this chapter, a method to recognize symmetries in games will be presented. The
goal of this subgame detection algorithm is to determine if a certain game has inde-
pendent parts that do not affect each other. If this is the case, the game is called
a composite game and the parts are called subgames. This information can then be
used to search the game more efficiently, as we will see in chapters 4 and 5.

Definition 3.1. A game is a pair 〈F,A〉, where F is a set of fluent functions and
A a set of action functions.

Intuitively, a definition of the term “game” should also include the rules of the
game. However, the rules (which are given in the form of a fluent calculus game
axiomatization, cf. definition 2.12) will be considered fixed, so they do not have to
be explicitly included here.

Definition 3.2. A game σ = 〈Fσ,Aσ〉 is a subgame of another game σ̂ = 〈Fσ̂,Aσ̂〉,
written σ / σ̂, iff Fσ ⊆ Fσ̂ and Aσ ⊆ Aσ̂.

Next, we need to define what it should mean for two subgames to be independent.
Loosely speaking, two subgames are independent if the execution of an action A(~x)
from one subgame has no influence on the fluents F (~y) of the other subgame. More-
over, this “intervention” should not change what actions are possible in the second
subgame afterwards, nor what the effects of any sequence of actions are. This is
depicted in the following diagram, followed by a formal definition of independency.

s
Â1(~z1)−−−−→ • Â2(~z2)−−−−→ . . .

Ân(~zn)−−−−→ s′′

A(~x)

yall F (~y) identical all F ′(~y′) identical

s′
Â1(~z1)−−−−→ • Â2(~z2)−−−−→ . . .

Ân(~zn)−−−−→ s′′′

Definition 3.3. Consider two games σ1 = 〈Fσ1 ,Aσ1〉 and σ2 = 〈Fσ2 ,Aσ2〉 that are
subgames of σ̂ = 〈Fσ̂,Aσ̂〉. The game σ1 is called non-dependent on the game σ2

iff the following holds:
If, for any action function A ∈ Aσ2, ground terms ~x and ground situations s, s′

Poss(A(~x), s) ∧Do(A(~x), s) = s′

12



3.1 Games, Subgames and Independency

then, for all action functions {Â1, . . . , Ân} ⊆ Aσ̂, ground terms ~y, ~y′, ~z1, . . . , ~zn,
ground situations s′′, s′′′ and fluent functions F, F ′ ∈ Fσ1,

1. Holds(F (~y), s) ≡ Holds(F (~y), s′)

2. Poss([Â1(~z1), . . . , Ân(~zn)], s) ∧Do([Â1(~z1), . . . , Ân(~zn)], s) = s′′

∧ Poss([Â1(~z1), . . . , Ân(~zn)], s′) ∧Do([Â1(~z1), . . . , Ân(~zn)], s′) = s′′′

=⇒ Holds(F ′(~y′), s′′) ≡ Holds(F ′(~y′), s′′′)

and, for all action functions {A1, . . . , Am} ⊆ Aσ1 and ground terms ~w1, . . . , ~wm,

3. Poss([A1(~w1), . . . , Am(~wm)], s) =⇒
Terminal(s′) ∨ Poss([A1(~w1), . . . , Am(~wm)], s′)

If additionally σ2 is non-dependent on σ1, the two games are called independent
of each other.

Note that non-dependency and independency are not equivalent – in the case
Aσ2 = ∅, σ1 is automatically non-dependent on σ2, although the converse is not
always true.

On another side remark, only considering sequences of actions with finite length
n and m in the above definition is admissible, because in GDL, all games have only
a finite number of steps (refer to section 2.1).

Independent subgames can, in a way, be thought of as parallel games, each having
its own game tree, where any move made in one of the independent games does
not affect the position in the game trees of the other ones – except for possibly
reaching a terminal state in the composite game. However, there is a second type
of independency:

Definition 3.4. Consider a game 〈Fσ̂,Aσ̂〉. The fluent function F is called action-
independent iff, for all action functions A1, A2 ∈ Aσ̂, ground situations s, s′1, s

′
2,

and ground terms ~x, ~y, ~z,

Poss(A1(~x), s) ∧Do(A1(~x), s) = s′1 ∧ Poss(A2(~y), s) ∧Do(A2(~y), s) = s′2
=⇒ Holds(F (~z), s′1) ≡ Holds(F (~z), s′2)

A subgame (Fais, ∅), where each element of Fais is an action-independent fluent
function, is called an action-independent subgame.

In other words, all actions of σ̂ have the same effect on the fluent function F ; thus,
F is independent of the choice of action. This typically occurs with fluent functions
such as step in “incredible” that are used as a step counter to end the game after a
certain number of actions.

Definition 3.5. A set Φ = {σ1, σ2, . . . , σn} with σ1 = 〈Fσ1 ,Aσ1〉, σ2 = 〈Fσ2 ,Aσ2〉,
. . . , σn = 〈Fσn ,Aσn〉 is called a subgame decomposition of a game σ̂ = 〈Fσ̂,Aσ̂〉
iff

13



Chapter 3 Subgame Detection

1. all σi (1 ≤ i ≤ n) are either

a) action-independent subgames of σ̂ or

b) non-action-independent subgames of σ̂ that are pairwise independent,

2. all σi (1 ≤ i ≤ n) are non-empty (i.e. Fσi
6= ∅ ∨ Aσi

6= ∅),

3.
⋃

1≤i≤nFσi
= Fσ̂ and

⋃
1≤i≤nAσi

= Aσ̂, and

4. Fσi
∩ Fσj

= ∅ and Aσi
∩ Aσj

= ∅ (1 ≤ {i, j} ≤ n, i 6= j).

A subgame decomposition Φ of σ̂ is called maximal iff there is no other subgame
decomposition Φ′ of σ̂ with |Φ′| > |Φ|.

At first glance, it may seem strange that this definition does not explicitly demand
that the non-action-independent subgames (item 1b) are not affected by any fluents
from the action-independent subgames (item 1a). But the definition of independency
(def. 3.3) ensures that no such “indirect” effects can occur, so the requirement that
the non-action-independent subgames be pairwise independent is sufficient.

3.2 Subgame Detection Algorithm

The idea of the algorithm is to build a dependency graph of the game’s action
functions and fluent functions and then identify this graph’s connected components.
These connected components correspond to the game’s subgames. In building this
graph, the algorithm assumes a dependency between an action function A and a
fluent function F , if F occurs in a state update or precondition axiom of A.

We will shortly see that while this leads to a correct solution (in the sense that
the algorithm always produces a subgame decomposition), and the algorithm has
very good computational behavior, the resulting subgame decomposition may not
be maximal. The reason for this is that not all potential effects detected by the
algorithm really come into play. Further discussion of this topic is delayed until
section 3.4, after the algorithm has been presented.

It can easily be seen that this approach, in its näıve form, fails in the presence of
action-independent fluent functions: By definition, these fluent functions appear in
the positive and negative effects of all actions. Hence, all actions would end up in
the same connected component, preventing any decomposition. This is illustrated
(for the example game of “incredible” 1 ) in figure 3.1a.

On the other hand, if an action-independent fluent function does not occur in the
preconditions of any action, the (identical) effects of all actions on the fluent could
be ignored and the game could be decomposed, as is shown in figure 3.1b.

1Throughout the remainder of this work, I will use the game of “incredible” as an example. For
reference, the source code is included in appendix A. “Incredible” consists of the two simple
subgames “maze” and “blocks world”.
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3.2 Subgame Detection Algorithm

(a) without action-independency information

(b) with fluent function step marked as action-independent

Figure 3.1: Feature and action dependency graphs for the game “incredible”. Flu-
ent functions are shown in boxes and action functions in circles; the dotted lines
represent positive effects, the dashed lines represent negative effects and the contin-
uous lines represent preconditions. Please note that although the lines are shown
with arrowheads in the figure, the edges of the graph used by the algorithm are
undirected.
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Chapter 3 Subgame Detection

To make use of this circumstance, the algorithm is enhanced by the possibility to
use a set S of action-independent fluent functions. Since the algorithm is unable to
prove action-independency of fluent functions itself, this set needs to be supplied to
the algorithm by some external procedure.

The full algorithm is thus as follows:

Algorithm 3.1 Subgame Detection Algorithm

Algorithm. Let σ̂ = 〈Fσ̂,Aσ̂〉 be the game to be decomposed, and let S ⊆ Fσ̂ be
the set of action-independent fluents, if that information is available. Construct the
undirected graph G = (V,E) as follows:

1. Add each fluent function F ∈ Fσ̂ and action function A ∈ Aσ̂ to the set of
vertices V .

2. Repeat the following step for all precondition axioms:

a) Let Poss(A(~x), z) ≡ Π(z) be the current precondition axiom.

b) For each fluent function F that occurs in Π(z), add the edge {F,A} to
E.

c) If F ∈ S, abort and return Φ = {σ̂}.
3. Repeat the following steps for all positive effects, negative effects and all con-

ditions of all state update axioms:

a) Let ϑ+
i and ϑ−i be the positive and negative effects of action A(~x) under

condition ∆i(s).

b) For each fluent function F that occurs in ∆i(s), add the edge {F,A} to
E.

c) If F ∈ S, abort and return Φ = {σ̂}.
d) For each fluent function F that is not contained in the set of action-

independent fluents (if available) and occurs in either ϑ+
i or ϑ−i , add the

edge {A,F} to E.

4. Find the connected components of this graph.

5. For each connected component (Vcc, Ecc), let F and A be the set of fluent
functions resp. action functions in Vcc. Add 〈F,A〉 to the set Φ. This set Φ
is the required subgame decomposition.

Example 3.1. As an example, the result of running the subgame detection algorithm
on the game σincredible = ({cell, gold, on, clear, table, step}, {move, grab, drop,
stack, unstack}) with action-independent fluent set S = {step} is the subgame
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decomposition Φ = {σmaze, σblocks, σais} with

σmaze = ({cell, gold}, {move, grab, drop})
σblocks = ({on, clear, table}, {stack, unstack})
σais = ({step}, ∅)

3.3 Proof of Correctness

Before the proper proof of correctness, let us prove the following corollary:

Corollary 3.1. Let Φ be the result of the application of the subgame detection al-
gorithm to a game σ̂ = 〈Fσ̂,Aσ̂〉 with action-independent fluent functions S. Then
the following are equivalent:

1. No F ∈ S occurs in any ∆i(s) of a state update axiom or right-hand side Π(z)
of a precondition axiom.

2. (∀F ∈ Fσ̂)F ∈ S =⇒ ({F}, ∅) ∈ Φ

Proof. We will show each direction in turn.

“⇒” Let F be an arbitrary element of S. The steps 3b and 2b of the algorithm do
not add any edge to the graph, because F does not occur in any ∆i(s) or Π(z).
Step 3d does not add an edge, because F ∈ S. Therefore, there are no edges
including F in the graph, which means that the graph contains the connected
component {F}, and therefore ({F}, ∅) ∈ Φ.

“⇐” The fact that all F ∈ S are in their own game, and therefore in their own
connected component, implies that no edges were added to the graph during
the execution of the algorithm. Thus, no F can occur in any ∆i(s) or Π(z).

Corollary 3.2. If there is an F ∈ S that occurs in any ∆i(s) of a state update
axiom or right-hand side Π(z) of a precondition axiom, then Φ = {σ̂}.
Proof. If an F ∈ S occurs in any ∆i(s) or Π(z), the algorithm aborts in step 2c
resp. 3c with result Φ = {σ̂}.

In the following lemma, correctness should mean that the algorithm always re-
turns a subgame decomposition. Maximality of that decomposition is explicitly not
required.

Lemma 3.1. Correctness: The result Φ of the subgame detection algorithm is always
a subgame decomposition of the game σ̂.
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Proof. We need to show that Φ meets each of the four criteria of definition 3.5 (see
page 13).

1. All σi(1 ≤ i ≤ n) are either

a) action-independent subgames of σ̂ or

b) non-action-independent subgames of σ̂ that are pairwise independent

The fact that all σi are indeed subgames of σ̂ follows from criterion 3, which
will be proved below. Also, in the case where at most one σi is not action-
independent, the statement is trivially true. Thus assume there are two sub-
games σ1 = 〈Fσ1 ,Aσ1〉 and σ2 = 〈Fσ2 ,Aσ2〉, such that σ1, σ2 ∈ Φ, σ1 6= σ2 and
σ1, σ2 not action-independent.

It remains to show that w.l.o.g. σ1 is non-dependent on σ2. By definition 3.3,
for all actions A ∈ Aσ2 , ground terms ~x and ground situations s, s′ such that
Poss(A(~x), s) ∧Do(A(~x), s) = s′, all of the following must hold for all action
functions {Â1, . . . , Ân} ⊆ Aσ̂, {A1, . . . , Am} ⊆ Aσ1 , ground terms ~w1, . . . , ~wm,
~y, ~y′, ~z1, . . . , ~zn, ground situations s′′, s′′′ and fluent functions F, F ′ ∈ Fσ1 :

a) Holds(F (~y), s) ≡ Holds(F (~y), s′)

Since each fluent function Fais ∈ S occurs in an action-independent sub-
game ({Fais}, ∅) (by corollaries 3.1 and 3.2), and no fluent function occurs
in more than one subgame (by criterion 4, also proved below), no action-
independent fluent function is contained in σ1 and σ2 (Fσ1 ∩ S = ∅ and
Fσ2 ∩ S = ∅). Hence, F /∈ S.

Moreover, as σ1 6= σ2 and F ∈ Fσ1 and A ∈ Aσ2 , the fluent function
F and the action function A are in two different connected components.
Hence, F does not occur in any positive or negative effect of A; otherwise,
since F /∈ S, step 3d would have added an edge between them, and they
would have ended up in the same connected component. Therefore, all
F (~y) remain unchanged by the execution of any A(~x).

b) Poss([Â1(~z1), . . . , Ân(~zn)], s) ∧Do([Â1(~z1), . . . , Ân(~zn)], s) = s′′

∧ Poss([Â1(~z1), . . . , Ân(~zn)], s′) ∧Do([Â1(~z1), . . . , Ân(~zn)], s′) = s′′′

=⇒ Holds(F ′(~y′), s′′) ≡ Holds(F ′(~y′), s′′′)

Let L1 be the sublist of [Â1(~z1), . . . , Ân(~zn)] that only consists of actions
of the subgame σ1, and let L2 be the sublist with all actions that are not
in σ1. None of the fluents with fluent functions from Fσ1 have changed
between s and s′ (see 1a), and the ∆i(s)’s, ϑ

+
i ’s and ϑ−i ’s of the actions

in L1 only contain fluent functions from Fσ1 (and only in the case of the
positive and negative effects from S). Also, the domain axiomatization is
deterministic. Therefore, the execution of the actions in L1 has the same
effect on all fluents with fluent functions from Fσ1 . There can also be
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no interference by actions from L2, because their ∆i(s)’s, ϑ
+
i ’s and ϑ−i ’s

contain no fluents with fluent functions from Fσ1 .

c) Poss([A1(~w1), . . . , Am(~wm)], s) =⇒
Terminal(s′) ∨ Poss([A1(~w1), . . . , Am(~wm)], s′)

If Terminal(s′) holds, we are done; otherwise, due to the facts that all
fluents with fluent functions from Fσ1 are equal in s and s′ and that
only these are evaluated by the precondition and state update axioms of
the actions in [A1(~w1), . . . , Am(~wm)] (as was stated before), the sequence
[A1(~w1), . . . , Am(~wm)] is executable in s′.

2. All σi, 1 ≤ i ≤ n are non-empty (i.e. Fσi
6= ∅ ∨ Aσi

6= ∅)
As there are no empty connected components, this is trivial.

3.
⋃

1≤i≤nFσi
= Fσ̂ and

⋃
1≤i≤nAσi

= Aσ̂
Each fluent and action function gets added to the graph, which is partitioned
into connected components. Each of these are converted into an element of Φ,
so each fluent and action function is retained.

4. Fσi
∩ Fσj

= ∅ and Aσi
∩ Aσj

= ∅ (1 ≤ {i, j} ≤ n, i 6= j)

Obviously, each node of the graph (which corresponds to either an action
function or a fluent function) is assigned a unique connected component.

3.4 Properties of the Algorithm

3.4.1 Complexity

The algorithm works in time linear in the number of precondition and state update
axioms plus the time it takes to find the connected components. This is commonly
done as an application of depth-first search. The time complexity is the time com-
plexity of depth-first search: O(|V |+ |E|) (see for example Cormen et al., 2001).

Here, |V | and |E| are bounded by the number of fluent functions |Fσ̂| and action
functions |Aσ̂| used in the precondition and state update axioms. More specifically,
|V | ≤ |Fσ̂|+ |Aσ̂| and |E| ≤ |Fσ̂| ∗ |Aσ̂|.

Space complexity is O(h), where h is the length of the longest simple path in the
graph.

3.4.2 Solution Quality

As has been mentioned before, the algorithm is correct, but not optimal in that
there are cases in which the returned solution is not maximal. This is due to the
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fact that, when analyzing the state update axioms, the algorithm can only detect po-
tential dependencies between fluent and action functions. To illustrate this, take the
following precondition axiom with fluent function foo and action function foobar:

Poss(foobar(x), z) ≡ (Holds(foo(23), z) ∨ ¬Holds(foo(23), z)) ∧ x > 0

The algorithm recognizes a potential dependency between fluent function foo and
action function foobar, because foo appears on the right-hand side of the precon-
dition axiom of foobar. But clearly, the fluent foo(23) is not really a precondition
for executing foobar(x), therefore foo and foobar could still be in independent
subgames.
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4 Greedy Decomposition Search

In the preceding chapter, we saw how a game can be decomposed into relatively
independent subgames. Still, standard search algorithms cannot make use of this
information. This chapter and the next will cover two different search algorithms
that use subgame information to improve performance.

The first of these algorithms, which is the topic of this chapter, is called the greedy
decomposition search. The idea of this algorithm is relatively simple: Each subgame
is searched separately, assuming no move is made in any of the other subgames, using
any standard iterative deepening search algorithm. After each iteration step, the
highest-valued actions of all subgames are compared and the action with the highest
expected value is greedily chosen for execution (hence the algorithm’s name).

This idea is depicted in pseudocode notation in algorithm 4.1 on the next page.
The parameter Φ is a subgame decomposition, as introduced in definition 3.5 on
page 13. The function LimitedDepthSearch is any standard implementation of
a depth-first or breadth-first search algorithm, with the only modification that only
the actions with action functions from the subgame σ are included in the search. The
second parameter is an integer depth, which limits the search depth. The function
returns a number val (0 ≤ val ≤ 100), which denotes the expected value of the best
move found by the search, and the best move move itself.

As it is common in iterative deepening search, the algorithm can be aborted at
any time, returning the current movemax.

4.1 Properties of the Algorithm

4.1.1 Complexity

The runtime of the algorithm is determined by the runtime of the inner search
algorithm, LimitedDepthSearch. The current implementation uses depth-first
search, which has a time complexity of O(bd11 + · · · + bdn

n ), where b1, . . . , bn and
d1, . . . , dn denote the breadth and solution depth of the search tree of the subgames
σi ∈ Φ (1 ≤ i ≤ n). This is exponentially faster than searching the composite game
σ̂ directly, which would lead to a complexity of O((b1 + · · ·+ bn)(d1+···+dn)).

The space complexity of this algorithm equals that of the inner search algorithm,
which is (in the case of depth-first search) O(max(d1, . . . , dn)).
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Algorithm 4.1 Greedy Decomposition Search

1: function GreedyDecompositionSearch(Φ)
2: depth← 1
3: valmax ← (−1)
4: movemax ← ∅
5: while (valmax < 100) and (∃ unfinished subgames) do
6: for each σ ∈ Φ do
7: 〈val,move〉 ← LimitedDepthSearch(σ, depth)
8: if val > valmax then
9: valmax ← val

10: movemax ← move
11: end if
12: end for
13: depth← depth+ 1
14: end while
15: return movemax
16: end function

4.1.2 Solution Quality

Like most greedy algorithms, the greedy decomposition search is not optimal in the
general case. The reason for this is that there can be an indirect interaction between
subgames via the Goal function or the Terminal predicate. More precisely, if a
certain combination of fluents from different subgames must hold in a state z in
order for that state to be assigned a high goal value, and if achieving only certain
subsets of these fluents does not lead to a higher goal value, then the algorithm may
not be able to achieve this goal.

Example 4.1. Imagine a game that consists of two subgames, σ1 = 〈Fσ1 ,Aσ1〉 and
σ2 = 〈Fσ2 ,Aσ2〉, and F1 ∈ F1, F2 ∈ F2. Let the Goal function be defined such that
a state z is assigned 100 points only if for some ~x and ~y, F1(~x) ∧ F2(~y) holds in z,
and 0 points otherwise. Starting from a state where neither F1(~x) nor F2(~y) hold,
the algorithm will try to maximize the outcome of each subgame separately, while
assuming that the other subgame remains unchanged; since achieving one of the
fluents without achieving the other does not increase the goal value, the algorithm
will not find a solution.

Likewise, sometimes the Terminal predicate makes it impossible for the algorithm
to find a good solution. This is the case when the game tree is a “maze” of bad
terminal states, and only a combination of moves from different subgames can find
a path toward a good terminal state. This problem will be explored more formally,
along with an attempt to solve it, in the next chapter.
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Conditions for optimality
However, there is a class of games which can be solved optimally with the greedy
decomposition search algorithm. The example game “incredible” is such a case.
Table 4.1 depicts the goal values of“incredible”with respect to the truth values of the
sub-formulas that occur in the GDL definition of the goal predicate. Obviously, the
goals are additive: (true (gold w)) is worth 45 points, (completed caetower) is
worth 30 points and (completed bdftower) is worth 25 points.

(true (gold w)) (completed caetower) (completed bdftower) goal

false false false 0
false false true 25
false true false 30
false true true 70
true false false 45
true false true 70
true true false 75
true true true 100

Table 4.1: Goal values for “incredible”

In games with such additive (or rather “strictly ordered”) goal values and a “suf-
ficiently nice” terminal predicate, the algorithm returns an optimal result. Inciden-
tally, most of the composite games that have appeared in the AAAI competition fall
into this class.

The terms “strictly ordered” and “sufficiently nice” are still very imprecise; also, it
is not clear what role the sub-formulas (true (gold w)), (completed caetower)

and (completed bdftower) play and where they come from, which calls for a deeper
analysis of the goal and terminal predicates. This will be conducted in the next
chapter, in an attempt to develop an optimal search algorithm for composite games.

23



5 Concept Decomposition Search

5.1 Algorithm

The main shortcoming of greedy decomposition search is that it can only find an
optimal solution for a very restricted class of games. Hence, the goal of this chapter
is to deliver an optimal and correct algorithm for a much broader class of composite
games. However, the cost is a very high space and time complexity, which will be
discussed in section 5.3.1.

As we have seen in the preceding chapter, the reason for the non-optimality of
greedy decomposition search is that each subgame is searched separately, ignoring
any possible interaction via the goal and terminal predicates. To account for this
interaction, concept decomposition search combines the results of the separate sub-
game searches in a more sophisticated manner.

5.1.1 Overview of the Algorithm

The search process is split into two stages, local search and global search. Local search
only considers one subgame at a time, collecting all local plans (i.e., sequences of
actions that only contain actions from the given subgame) that may be relevant to
the global solution. In a second step, global search tries to combine these local plans
to find a global plan that leads to a globally optimal terminal state.

As algorithm 5.1 on the next page shows, these two steps are embedded into an
iterative deepening framework, similar to that of algorithm 4.1 on page 22, with
depth as the iteration counter and the variables movemax and valmax for holding the
currently best move and its value.

The local search is implemented by the function LocalSearch (section 5.1.2),
which searches the game tree of subgame σ up to the given depth, returning all rele-
vant local plans that are not yet contained in local plans. (The variable local plans
is an array indexed by the subgames, containing all local plans that have been found
so far.)

GlobalSearch (section 5.1.3) then takes these new local plans, combining them
with all “old” local plans from other subgames, and returning the value and first
action of the best global plan that was found in 〈val,move〉. Then, the search
continues.

If time runs out before all subgames have been exhaustively searched, the iterative
deepening framework returns the best action found so far, stored in movemax.
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5.1 Algorithm

Algorithm 5.1 Concept Decomposition Search

1: function ConceptDecompositionSearch(Φ)
2: depth← 1
3: valmax ← (−1)
4: movemax ← ∅
5: local plans← ∅
6: while (valmax < 100) and (∃ unfinished subgames) do
7: for each σ ∈ Φ do
8: new local plans← LocalSearch(σ, depth, local plans)
9: local plans[σ]← local plans[σ] ∪ new local plans

10: 〈val,move〉 ← GlobalSearch(σ, local plans, new local plans)
11: if val > valmax then
12: valmax ← val
13: movemax ← move
14: end if
15: end for
16: depth← depth+ 1
17: end while
18: return movemax
19: end function

A word on notation: Of course, all of these search algorithms –and also all local
and global plans– only make sense when seen relative to an initial state, which is
the current state of the game. For the sake of clarity, this initial state is omitted
in all algorithms and implicitly assumed to be passed as an additional parameter to
every function.

Also, due to time constraints, the search may be aborted and continued after ex-
ecuting the currently best action. In order to re-use as much information from pre-
vious searches as possible, the implementation includes an elaborate update mech-
anism. However, this is not central to this treatment and will therefore also be
ommitted.

Further, in the course of this chapter, the GDL and fluent calculus representations
of a game will be used interchangably, depending which of them is better suited to
represent the topic. In the context of General Game Playing, both representations
are assumed to be equivalent.

5.1.2 Local Search

The local search (algorithm 5.2 on the next page) traverses the game tree of a
single subgame σ, limiting the search to a given depth. This traversal can be done
in a manner similar to that of LimitedDepthSearch from section 4. Only the
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Chapter 5 Concept Decomposition Search

Algorithm 5.2 Local Search

1: function LocalSearch(σ, depth, local plans)
2: new local plans← ∅
3: traverse game tree using LimitedDepthSearch(σ, depth)
4: for each leaf node that is reached via action sequence plan do
5: plan signature← CalculatePlanSignature(plan)
6: if 〈plan signature, 〉 /∈ new local plans ∪ local plans[σ] then
7: new local plans← new local plans ∪ 〈plan signature, plan〉
8: end if
9: end for

10: return new local plans
11: end function

action performed when a leaf node is reached needs to be adjusted: In the original
LimitedDepthSearch, the leaf node is evaluated, either via the goal predicate (if
the node is terminal), or heuristically otherwise. Here, the algorithm instead checks
if the action sequence plan (i.e. the sequence of actions from the root of the search
tree to the leaf node) constitutes a “relevant” new local plan.

This notion of relevance is based on the following claim: In composite games, not
all local plans have to be included into the global search. Instead, it is possible
to compute some characteristics of local plans, here called plan signature, with the
property that, if two local plans have the same plan signature, it does not matter
which one of them is included in the global search. This will be proven in section 5.2.

Example 5.1. As an example from “incredible”, the two plans

[U(F,E), U(E,D), U(C,A), S(A,E), S(C,A)]

and
[U(C,A), U(F,E), U(E,D), S(A,E), S(C,A)],

executed in the initial state

State(S0) = Cell(w) ◦Gold(y) ◦ Clear(B) ◦ Clear(C) ◦ Clear(f) ◦On(C,A)

◦On(E,D) ◦On(F,E) ◦ Table(A) ◦ Table(B) ◦ Table(D)Step(1)

lead to situations S1 and S2 with

Holds(On(C,A) ◦On(A,E), State(S1))

and
Holds(On(C,A) ◦On(A,E), State(S2)),

and therefore should have the same plan signature.

This plan signature is calculated by a function CalculatePlanSignature,
whose inner workings will be examined in section 5.1.5; for now, it suffices to treat
it as a black box.
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Algorithm 5.3 Global Search

1: function GlobalSearch(σ, local plans, new local plans)
2: valmax ← (−1)
3: movemax ← ∅
4: for each plan ∈ new local plans do
5: subsets← ChoosePlans(σ, local plans, plan)
6: for each plan set ∈ subsets do
7: 〈val,move〉 ← CombinePlans(plan set)
8: if val > valmax then
9: valmax ← val

10: movemax ← move
11: end if
12: end for
13: end for
14: return 〈valmax,movemax〉
15: end function

5.1.3 Global Search

In between local search iterations, global search (algorithm 5.3) tries to find a glob-
ally optimal execution order of the local plans. Global search thus is not a state
space search, but a search on the space of plans. It repeatedly takes one of the
new local plans found in the last run of LocalSearch and tries to combine it
with the previously found local plans from other subgames in various ways to pro-
duce an optimal combined plan.

In doing so, the function ChoosePlans simply calculates all subsets of local plans
that include the currently considered plan from subgame σ and at most one plan
from each of the other subgames. Then, CombinePlans (section 5.1.4) tries to
find an execution order of the actions in each of those plan sets such that the re-
sulting global plan can be executed (i.e., does not reach a terminal state until all its
actions have been executed). This issue will be discussed more elaborately in the
corresponding section.

In the process, the value and first action of the currently best global plan is stored
in 〈valmax,movemax〉 and returned in the end.

5.1.4 Combination of Plans

As was mentioned in the preceding section, the purpose of CombinePlans is to
combine a set of plans {plan1, . . . , plann} such that the resulting global plan does
not reach a terminal state prematurely.

Since the plans come from separate subgames and thus cannot have any influence
on each others fluents, it may at first seem that it is sufficient to search all per-
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mutations of the plans as a whole. Unfortunately, this is not the case; instead, it
is necessary to interleave the plans, i.e. to search all permutations of actions that
respect the ordering of the actions in their respective local plans. This is illustrated
in an example.

Example 5.2. Consider the game from listing 5.1 on the next page. It is a game
played on the following two, very simple, graphs:

(pos1 a)
(move1 b)−−−−−−−−→ (pos1 b)

(move1 c)−−−−−−−−→ (pos1 c)

and

(pos2 x)
(move2 y)−−−−−−−−→ (pos2 y)

(move2 z)−−−−−−−−→ (pos2 z)

The initial situation is [(pos1 a), (pos2 x)], and each move action moves to the
corresponding node on the graph. The two situations [(pos1 a), (pos2 z)] and
[(pos1 c), (pos2 x)] are terminal and have the goal value 0. Only the situation
[(pos1 c), (pos2 z)] has a goal value of 100.

The game can be decomposed into the two subgames σ1 = 〈{move1}, {pos1}〉 and
σ2 = 〈{move2}, {pos2}〉. Both have only one local plan, [(move1 b), (move1 c)]
resp. [(move2 y), (move2 z)], so there are only the following two global plans that
are permutations of the whole local plans:

[(move1 b), (move1 c), (move2 y), (move2 z)]

and
[(move2 y), (move2 z), (move1 b), (move1 c)]

It is easy to see that both global plans reach one of the “bad” terminal situations
before the whole plan has been executed. This demonstrates that CombinePlans
needs to interleave the local plans, which leads to the following solution (amongst
others):

[(move1 b), (move2 y), (move2 z), (move1 c)]

This said, the näıve approach of simply enumerating all permutations would have a
factorial time complexity; for n local plans with lengths m1,m2, . . . ,mn, the number
of permutations is:

(
∑n

i=1mi)!

m1! ∗m2! ∗ · · · ∗mn!
Luckily, using a dynamic programming technique, the problem can be solved in
polynomial space and time. The idea is to search the plan space recursively via
depth-first search, while maintaining a map of already visited nodes, so that no
node is visited twice1. Since there are only m1 ∗ · · · ∗mn unique nodes in the search
space and each of them is at most visited once, both space and time complexity
are polynomial in the number of actions. The detailed algorithm can be found in
appendix B on page 44.

1Each “node” of the search space is determined by the set of executed actions, without regarding
their order.
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5.1 Algorithm

Listing 5.1 GDL description for example 5.2

1 ( role p layer )
2

3 ( in i t ( pos1 a ) )
4 ( in i t ( pos2 x ) )
5

6 (<= ( legal p layer (move1 ?n ) )
7 ( true ( pos1 ?m) )
8 ( conn1 ?m ?n ) )
9

10 (<= ( legal p layer (move2 ?n ) )
11 ( true ( pos2 ?m) )
12 ( conn2 ?m ?n ) )
13

14 (<= (next ( pos1 ?n ) )
15 (does p layer (move1 ?n ) ) )
16

17 (<= (next ( pos1 ?n ) )
18 ( true ( pos1 ?n ) )
19 (does p layer (move2 ?m) ) )
20

21 (<= (next ( pos2 ?n ) )
22 (does p layer (move2 ?n ) ) )
23

24 (<= (next ( pos2 ?n ) )
25 ( true ( pos2 ?n ) )
26 (does p layer (move1 ?m) ) )
27

28 (<= terminal
29 ( true ( pos1 c ) )

30 ( true ( pos2 z ) ) )
31

32 (<= terminal
33 ( true ( pos1 a ) )
34 ( true ( pos2 z ) ) )
35

36 (<= terminal
37 ( true ( pos1 c ) )
38 ( true ( pos2 x ) ) )
39

40 (<= ( goal p layer 100)
41 ( true ( pos1 c ) )
42 ( true ( pos2 z ) ) )
43

44 (<= ( goal p layer 0)
45 (not ( true ( pos1 c ) ) ) )
46

47 (<= ( goal p layer 0)
48 (not ( true ( pos2 z ) ) ) )
49

50 ; graph 1 : a −−> b −−> c
51 ; graph 2 : x −−> y −−> z
52

53 ( conn1 a b)
54 ( conn1 b c )
55

56 ( conn2 x y )
57 ( conn2 y z )
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Chapter 5 Concept Decomposition Search

5.1.5 Calculating Plan Signatures

So far, we have avoided the topic what exactly constitutes a “plan signature”. The
only requirement was that, if two local plans have the same plan signature, both
of them must be equivalent with respect to the global search. In order to properly
define plan signatures, the notion of “local goal and terminal concepts”will first have
to be introduced. The definition of the plan signature will follow at the end of the
section.

Local Goal and Terminal Concepts
One obvious feature that distinguishes one local plan from another is the final sit-
uation that is reached by executing the plan. More precisely, the distinguishing
feature is the evaluation of the goal and terminal predicates. But unfortunately,
since local plans only affect fluents from the subgame that the plan belongs to, the
resulting situation is only partially determined. This makes it impossible to say in
the general case what the goal value of a partial situation is, or whether it is termi-
nal or not. It’s even possible that a particular local plan from one subgame leads
to a good terminal situation when combined with another particular plan from a
different subgame, but to a bad terminal situation in combination with other local
plans. Therefore, a local plan has no “value” of its own; instead, only global plans,
i.e. whole combinations of local plans can be evaluated.

This was the main reason for introducing the division between local search and
global search; it enables local search to collect only those local plans whose final
situation might have a novel effect on the global goal and terminal predicates, while
deferring evaluation of these predicates to the point when the complete situation is
known.

But how to decide if a situation is relevant to the goal and terminal predicates?
One idea might be to propositionalize a subgame, i.e. fully instantiate all fluents
and actions. This would make it possible to check which (combinations of) fluents
from a subgame are relevant for the goal or terminal predicate. Unfortunately, this
is only feasible for the smallest of instances. Therefore, we need a more abstract
representation.

The idea of this approach is to split the goal and terminal predicates into sub-
predicates that are local to a single subgame. These subpredicates often represent
a concept like “checkmate” or “line” that is used to describe the terminal and goal
states abstractly. Hereafter, these subpredicates will be called local goal (resp. ter-
minal) concepts.

Definition 5.1. A local goal (resp. terminal) concept, or short “local concept”,
is a ground predicate call2 that occurs in the body of the goal (resp. terminal)

2In the terminology of Genesereth et al. (2005), the local goal (resp. terminal) concepts are
“relational sentences”.
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Algorithm 5.4 FindLocalConcepts

1: function FindLocalConcepts(call graph)
2: local concepts← ∅
3: open nodes← all direct children of root of call graph (goal/terminal)
4: while open nodes 6= ∅ do
5: node← arbitrary element of open nodes
6: open nodes← open nodes \ {node}
7: if node not ground or node has backedge (recursion) then
8: abort
9: end if

10: n← number of subgames with fluents in the subtree of node
11: if n = 0 then
12: discard node
13: else if n = 1 then local concepts← local concepts ∪ node
14: else if n > 1 then
15: open nodes← open nodes ∪ all direct children of node
16: end if
17: end while
18: return local concepts
19: end function

predicate’s definition. The expanded definition of a local goal (resp. terminal) concept
must contain fluents with fluent functions from exactly one subgame.

To find these concepts, call graphs of the goal and terminal predicates are built.
These graphs are then traversed from the root nodes (goal or terminal) downward
until a predicate is found whose children all belong to the same subgame (see algo-
rithm 5.4). The algorithm requires that the upper part of the call graph, i.e. the
part up to the local concepts, is ground and does not contain any recursion3. The
concepts themselves may be both non-ground and recursive.

Example 5.3. The goal and terminal definition of “incredible” is given in listing 5.2
on the following page. The corresponding call graphs are depicted in figure 5.1 on
page 33. Application of algorithm 5.4 leads to the following local goal and terminal
concepts:

• (true (gold w)) (goal and terminal concept, subgame σmaze
4 on page 16)

• (completed bdftower) (goal concept, subgame σblocks)

3In a ground call graph, recursion would not make sense anyway, as it would lead to an infinite
recursion.

4also refer to example 3.1
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Listing 5.2 goal and terminal description of the game “incredible”

1 (<= ( completed bdftower )
2 ( true ( on d f ) )
3 ( true ( on b d ) ) )
4

5 (<= ( completed caetower )
6 ( true ( on a e ) )
7 ( true ( on c a ) ) )
8

9 (<= ( goal robot 100)
10 ( true ( go ld w) )
11 ( completed bdftower )
12 ( completed caetower ) )
13

14 (<= ( goal robot 75)
15 ( true ( go ld w) )
16 (not ( completed bdftower ) )
17 ( completed caetower ) )
18

19 (<= ( goal robot 70)
20 ( true ( go ld w) )
21 ( completed bdftower )
22 (not ( completed caetower ) ) )
23

24 (<= ( goal robot 55)
25 ( completed bdftower )
26 ( completed caetower )
27 (not ( true ( go ld w) ) ) )

28

29 (<= ( goal robot 45)
30 ( true ( go ld w) )
31 (not ( completed bdftower ) )
32 (not ( completed caetower ) ) )
33

34 (<= ( goal robot 30)
35 ( completed caetower )
36 (not ( completed bdftower ) )
37 (not ( true ( go ld w) ) ) )
38

39 (<= ( goal robot 25)
40 ( completed bdftower )
41 (not ( completed caetower ) )
42 (not ( true ( go ld w) ) ) )
43

44 (<= ( goal robot 0)
45 ( true ( s tep c20 ) )
46 (not ( completed caetower ) )
47 (not ( completed bdftower ) )
48 (not ( true ( go ld w) ) ) )
49

50 (<= terminal
51 ( true ( s tep c20 ) ) )
52

53 (<= terminal
54 ( true ( go ld w) ) )

• (completed caetower) (goal concept, subgame σblocks)

• (true (step c20)) (goal and terminal concept, subgame σais)

Definition 5.2. A situation concept evaluation is a sequence of boolean values
[b1, b2, . . . , bn]. Assuming a fixed order among the local concepts, bi(1 ≤ i ≤ n)
corresponds to the evaluation of the ith local (goal or terminal) concept of the plan’s
subgame σ.

Example 5.3 (cont.). In the initial state of “incredible”, the situation concept eval-
uation of σmaze is [false], that of σblocks is [false, false] and that of σais is also
[false].

One last auxiliary definition is the following:

Definition 5.3. The terminal concept evaluation sequence is a sequence of
situation concept evaluations, but restricted to the terminal concepts of the plan’s
subgame σ, of all situations that are traversed by executing the local plan.
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5.2 Proof of Correctness

(a) goal predicate

(b) terminal predicate

Figure 5.1: Call graphs of the game “incredible”

With this in hand, we can finally give a formal definition of the term “plan signa-
ture”.

Definition 5.4. A plan signature of a local plan p is a pair 〈s, t〉, where

• s is the situation concept evaluation of the local plan’s final situation; and

• t is the plan’s terminal concept evaluation sequence.

The motivation for defining the plan signature in this specific way will be clarified
in the following proof of correctness.

5.2 Proof of Correctness

Lemma 5.1. For any given game, algorithm 5.1 (concept decomposition search) will
eventually find a global plan that leads to a terminal state with maximal goal value.

Proof. The function LocalSearch (algorithm 5.2 on page 26) only excludes local
plans with a duplicate plan signature; everything else is passed to the global search.
Inside the function GlobalSearch (algorithm 5.3 on page 27), all possible com-
binations of local plans are generated by the function ChoosePlans and tested;
subsequently, CombinePlans searches all possible combinations of actions inside
these local plans, until one global plan has been found; thus, if there is a solution,
it will eventually be found.

What remains to show is therefore that
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1. of all plans with identical plan signature, only one needs to be searched; and

2. if CombinePlans finds one global plan for a given set of local plans, all other
possible global plans for these same local plans do not need to be considered.

Proof of (1). Let Φ be a subgame decomposition. Let p1 and p2 be two local
plans of the same subgame σ ∈ Φ with identical plan signature 〈s, t〉. Further,
let q1, . . . , qn be local plans from Φ \ σ, with no qi, qj with i 6= j from the same
subgame. Let g1 = [a1, . . . , am] be a global plan that is the result of a combination
of the local plans {p1, q1, . . . , qn}, and let s0 be the initial situation of the search and
s1 = Do(a1, s0), s2 = Do(a2, s1), . . . , sm = Do(am, sm−1) be the situations reached
by executing the global plan g1.

Now assume that the global plan is not terminal prematurely, i.e. ¬Terminal(si)
for all 0 ≤ i ≤ (m − 1). Then, a global plan g2 for the local plans {p2, q1, . . . , qn}
that is also not terminal prematurely can be constructed as follows:

Since the terminal concept evaluation sequence t of the plans p1 and p2 contains
one element for each situation that is reached by one action in p1 resp. p2, both
plans must have the same length: |t| = |p1| = |p2|. Therefore, g2 can be constructed
by replacing each action in g1 that is an element of p1 by the corresponding element
from p2. Let [s′1, . . . , s

′
m] be the situations reached by executing the global plan g2.

Each predicate call inside the definition of the terminal predicate, and therefore
also of the corresponding Terminal axiom, is either

1. a call to an auxiliary predicate that does not include any fluents;

2. a call to a terminal concept of an action-independent subgame;

3. a call to a terminal concept of a subgame 6= σ from Φ; or

4. a call to a terminal concept of subgame σ.

We will show that in each of these cases, the evaluation of the call has the same
result in all si and s′i (1 ≤ i ≤ m), and that therefore g2 is also not terminal
prematurely.

1. Since there are no fluents involved, the evaluation of auxiliary predicates is the
same in any situation.

2. Since action-independent subgames by definition do not depend on the exe-
cuted action, but only on the number of actions (which is identical in g1 and
g2), the evaluation of this type of call is the same in both global plans.

3. The terminal concepts of subgames different from σ do not depend on fluents
from σ, and are therefore identical in both global plans.
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4. The terminal concepts of σ are identical in both g1 and g2, since p1 and p2

have the same terminal concept evaluation sequence.

Further, Goal(sm) = Goal(s′m) (since p1 and p2 have the same situation concept
evaluation of the local plans’ final situation), and Terminal(sm) ≡ Terminal(s′m)
(this has already been proven). Hence, both plans are equivalent.

Proof of (2). By definition of independency (def. 3.3), the order of actions from
different subgames is not relevant for the fluents that hold in a given situation.
Therefore, all orders of executing the actions in the given set of local plans –provided
all intermediary states are not terminal– are equivalent.

5.3 Properties of the Algorithm

5.3.1 Complexity

Time Complexity

Before considering the runtime complexity of concept decomposition search, it is
important to point out an important fact: It is not possible to decide locally (inside
a subgame’s local search) if a state is terminal; hence, the algorithm may search
parts of the game tree that are not even reachable and therefore not traversed by a
direct search.

Therefore, the time complexity of the algorithm is O(bd11 ∗ b̄d̄11 + · · · + bdn
n ∗ b̄d̄n

n ),
where b1, . . . , bn and d1, . . . , dn denote the breadth and solution depth of the search
tree of the subgames σi ∈ Φ (1 ≤ i ≤ n), and b̄1, . . . , b̄n and d̄1, . . . , d̄n denote the
breadth and depth of the “unreachable” parts of these subgames’ search tree5.

This has to be compared with the complexity of direct search, which is O((b1+· · ·+
bn)(d1+···+dn)). If the breadth of the reachable and unreachable parts of the search
trees are approximately equal (all b̄i ≈ bi), then the time complexity of concept

5Strictly speaking, these “unreachable” parts are not guaranteed to terminate. They are, however,
limited by the shallowest solution in the reachable parts of the subgame, so the limits d̄1, . . . , d̄n

exist.
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decomposition search is not significantly worse than that of direct search, as then

O(bd11 ∗ b̄d̄11 + · · ·+ bdn
n ∗ b̄d̄n

n ) (complexity of conc. dec. search)

= O(b
(d1+d̄1)
1 + · · ·+ b(dn+d̄n)

n )

≤ O(b
max(d1,...,dn)
1 + · · ·+ bmax(d1,...,dn)

n )

≤ O(n ∗max(b1, . . . , bn)max(d1,...,dn))

= O(max(b1, . . . , bn)max(d1,...,dn)) since n small constant factor

≤ O((b1 + · · ·+ bn)max(d1,...,dn))

≤ O((b1 + · · ·+ bn)(d1+···+dn)) (complexity of direct search).

If, however, some b̄i � bi, time complexity of concept decomposition search can be
arbitrarily worse than that of direct search. This could only be avoided by reducing
the class of admissible games such that the terminality of a partial state can be
determined locally.

Global search was not included in above calculation, since its complexity is only
polynomial and is dominated by the complexity of local search. Still, it should be
mentioned that global search may waste some computation time in the cases where
a solution for a set of shorter local plans is already known. When computing an
answer for a similar set, where one or more of these plans are extended at the end,
it makes no use of the information gained in shallower searches; in effect, this means
that some upper parts of the search tree can be searched several times. However,
this does not matter for overall complexity, because search trees get exponentially
bigger with increasing search depth, and because global search has only polynomial
runtime complexity. Still, this leaves room for further optimization and could be
alleviated by caching some of the results, effectively trading space for time.

Space Complexity
The space complexity of the algorithm is even more problematic; in games where

1. each terminal node of the game tree has a different situation concept evaluation

2. each intermediary node of the game tree has a different terminal concept eval-
uation,

each path from the root to a leaf node of the search tree constitutes a local plan with
a unique plan signature; therefore, the whole search tree has to be kept in memory,
resulting in the same space complexity as time complexity, O(bd11 ∗b̄d̄11 +· · ·+bdn

n ∗b̄d̄n
n ).

Note that condition 1 means that there are no predicates used in the goal descrip-
tion that group fluents from the same subgame together and could be detected as
concept terms. Thus, concept decomposition search only pays off when there are
“real” concept terms in the game description, resulting in the number of distinct
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situation concept evaluations being much smaller than the number of states in the
search space.

5.3.2 Solution Quality

As was already shown above, when the algorithm is applicable (i.e., the upper part
of the goal/terminal call tree is ground and non-recursive), an optimal solution is
found.
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6 Discussion

This chapter will cover a discussion and comparison of the presented methods, along
with ideas for future work.

6.1 Subgame Detection Algorithm

Subgames are defined here at the level of fluent and action functions. A much finer
granularity could be achieved by propositionalizing all fluents and actions. This
would in turn allow a decomposition into more subgames, even for games that the
current algorithm cannot decompose. The drawback of that approach, however, is
a much higher computational complexity.

A possible compromise would be to partially propositionalize fluent and action
functions, e.g. by instantiating only a subset of the parameters.

Another possible optimization would be to regard not only completely independent
subgames, but also those cases where only one subgame is non-dependent on the
other. If the edges in figure 3.1b on page 15 are interpreted as directed arcs, it can
be seen that it would be possible to split the subgame “maze” into two subgames,
one of which contains the nodes move and cell, and the other one containing grab,
drop and gold. This would in turn allow the implementation of more sophisticated
search algorithms that exploit more symmetries in the game, as is done in partial-
order planning.

6.2 Greedy Decomposition Search

Greedy decomposition search, while not optimal, still has its merits. Due to the
local evaluation of the goal and terminal predicates (which is also the reason for
the non-optimality), any standard tree search algorithm can quickly be adapted for
search of subgames. It is easy to include optimizations like e.g. transposition tables
(caches). The algorithm also has a good space and time complexity.

It could be worthwhile to develop a procedure that checks if the goal concepts are
strictly ordered. This would enable to decide if a given game is in the class of games
for which greedy decomposition search is optimal.
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6.3 Concept Decomposition Search

6.3 Concept Decomposition Search

The goal of the development of concept decomposition search was to deliver an op-
timal and correct algorithm for composite games which is applicable to the broadest
possible class of games, to create a basis for further optimizations and specializa-
tions.

Unfortunately, it turned out that in order to guarantee a correct solution in all
cases, it is necessary to include so many local plans in the search that the space
complexity of the algorithm makes it unpracticable for some games.

To reduce the complexity, more specialized versions of concept decomposition
search should be developed that only apply to certain types of composite games.
For example, all games that have appeared in the AAAI competition so far had a
terminal description that was a simple disjunction of local terminal concepts. In such
a case, the value of the terminal predicate can be checked locally, which eliminates
the need for a terminal concept evaluation sequence.

Another drawback of the impossibility to check locally if a partial state is terminal
–apart from complexity– is that it requires a search on the space of plans, not on
the space of states. This complicates integration of search enhancements that were
developed for state space search.

So far, concept decomposition search is only applicable to games with ground
goal and terminal concepts. Similar to the subgame detection algorithm, concept
term decomposition search could profit from a partial propositionalization of certain
predicates, in this case the goal and terminal concepts.

6.4 Future Research Topics

The form of independence in games that was presented here is only one out of many.
Examples of other forms of independence, the first three of which have already been
featured in the AAAI competition, include

1. sequential independence – games where some subgames are played before oth-
ers;

2. parallel independence – games where each action makes a move in all indepen-
dent subgames;

3. combinatorial games – two-player turn-taking zero-sum decomposable games;
and

4. non-combinatorial multi-player games – decomposable games that have more
than two players, feature simultaneous moves or do not have zero-sum awards.
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Chapter 6 Discussion

All of these classes of games represent another possible future research topic.
Especially solving games from class 3 is very well understood in the context of com-
binatorial game theory (Conway, 1976), but like with classical games, it is usually
assumed that the rules of the game are known in advance. To our knowledge there
exists no automatic method of decomposition for combinatorial games.

6.5 Conclusion

In a broader context, the decomposition of logical domain descriptions could be
useful for agent control. In the real world, there are often many separate tasks that
are only loosely coupled. A deeper understanding of its domain description could
enable an agent to reason about the world more efficiently by applying a “divide and
conquer” approach.

General game playing is not merely about games. The idea behind it is that
computers should be able to adapt dynamically to new circumstances. This is a
foundational precondition for truly autonomous agents. In this light, general game
playing can be seen as another step toward “true” Artificial Intelligence.

40



Appendix A Source Code of “incredible”

This is the GDL source code of the game“incredible”. It was created by the Stanford
Logic Group and is available from http://games.stanford.edu/.

1 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
2 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
3

4 ( role robot )
5

6 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
7

8 ( in i t ( c e l l w) )
9 ( in i t ( go ld y ) )

10

11 ( in i t ( s tep c1 ) )
12

13 ( in i t ( c l e a r b ) )
14 ( in i t ( c l e a r c ) )
15 ( in i t ( c l e a r f ) )
16

17 ( in i t ( on c a ) )
18 ( in i t ( on e d ) )
19 ( in i t ( on f e ) )
20

21 ( in i t ( t a b l e a ) )
22 ( in i t ( t a b l e b ) )
23 ( in i t ( t a b l e d ) )
24

25 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
26

27 (<= (next ( c e l l ?y ) )
28 (does robot move)
29 ( true ( c e l l ?x ) )
30 ( ad jacent ?x ?y ) )
31

32 (<= (next ( c e l l ?x ) )
33 (does robot grab )
34 ( true ( c e l l ?x ) ) )
35

36 (<= (next ( c e l l ?x ) )
37 (does robot drop )
38 ( true ( c e l l ?x ) ) )
39

40 (<= (next ( c e l l ?x ) )
41 ( true ( c e l l ?x ) )
42 (does robot ( s ?u ?v ) ) )
43

44 (<= (next ( c e l l ?x ) )
45 ( true ( c e l l ?x ) )
46 (does robot (u ?u ?v ) ) )
47

48 (<= (next ( go ld ?x ) )
49 (does robot move)
50 ( true ( go ld ?x ) ) )
51

52 (<= (next ( go ld i ) )
53 (does robot grab )
54 ( true ( c e l l ?x ) )
55 ( true ( go ld ?x ) ) )
56

57 (<= (next ( go ld i ) )
58 (does robot grab )
59 ( true ( go ld i ) ) )
60

61 (<= (next ( go ld ?y ) )
62 (does robot grab )
63 ( true ( c e l l ?x ) )
64 ( true ( go ld ?y ) )
65 ( distinct ?x ?y ) )
66

67 (<= (next ( go ld ?x ) )
68 (does robot drop )
69 ( true ( c e l l ?x ) )
70 ( true ( go ld i ) ) )
71

72 (<= (next ( go ld ?x ) )
73 (does robot drop )
74 ( true ( go ld ?x ) )
75 ( distinct ?x i ) )
76

77 (<= (next ( go ld ?x ) )
78 ( true ( go ld ?x ) )
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79 (does robot ( s ?u ?v ) ) )
80

81 (<= (next ( go ld ?x ) )
82 ( true ( go ld ?x ) )
83 (does robot (u ?u ?v ) ) )
84

85 (<= (next ( s tep ?y ) )
86 ( true ( s tep ?x ) )
87 ( succ ?x ?y ) )
88

89 (<= (next ( on ?x ?y ) )
90 (does robot ( s ?x ?y ) ) )
91

92 (<= (next ( on ?x ?y ) )
93 (does robot ( s ?u ?v ) )
94 ( true ( on ?x ?y ) ) )
95

96 (<= (next ( on ?x ?y ) )
97 (does robot (u ?u ?v ) )
98 ( true ( on ?x ?y ) )
99 ( distinct ?u ?x ) )

100

101 (<= (next ( on ?x ?y ) )
102 ( true ( on ?x ?y ) )
103 (does robot move ) )
104

105 (<= (next ( on ?x ?y ) )
106 ( true ( on ?x ?y ) )
107 (does robot grab ) )
108

109 (<= (next ( on ?x ?y ) )
110 ( true ( on ?x ?y ) )
111 (does robot drop ) )
112

113 (<= (next ( t a b l e ?x ) )
114 (does robot ( s ?u ?v ) )
115 ( true ( t a b l e ?x ) )
116 ( distinct ?u ?x ) )
117

118 (<= (next ( t a b l e ?x ) )
119 (does robot (u ?x ?y ) ) )
120

121 (<= (next ( t a b l e ?x ) )
122 (does robot (u ?u ?v ) )
123 ( true ( t a b l e ?x ) ) )
124

125 (<= (next ( t a b l e ?x ) )
126 ( true ( t a b l e ?x ) )
127 (does robot move ) )
128

129 (<= (next ( t a b l e ?x ) )
130 ( true ( t a b l e ?x ) )
131 (does robot grab ) )
132

133 (<= (next ( t a b l e ?x ) )
134 ( true ( t a b l e ?x ) )
135 (does robot drop ) )
136

137 (<= (next ( c l e a r ?y ) )
138 (does robot ( s ?u ?v ) )
139 ( true ( c l e a r ?y ) )
140 ( distinct ?v ?y ) )
141

142 (<= (next ( c l e a r ?y ) )
143 (does robot (u ?x ?y ) ) )
144

145 (<= (next ( c l e a r ?x ) )
146 (does robot (u ?u ?v ) )
147 ( true ( c l e a r ?x ) ) )
148

149 (<= (next ( c l e a r ?x ) )
150 ( true ( c l e a r ?x ) )
151 (does robot move ) )
152

153 (<= (next ( c l e a r ?x ) )
154 ( true ( c l e a r ?x ) )
155 (does robot grab ) )
156

157 (<= (next ( c l e a r ?x ) )
158 ( true ( c l e a r ?x ) )
159 (does robot drop ) )
160

161 (<= (next ( s tep ?y ) )
162 ( true ( s tep ?x ) )
163 ( succ ?x ?y ) )
164

165 ( ad jacent w x )
166 ( ad jacent x y )
167 ( ad jacent y z )
168 ( ad jacent z w)
169

170 ( succ c1 c2 )
171 ( succ c2 c3 )
172 ( succ c3 c4 )
173 ( succ c4 c5 )
174 ( succ c5 c6 )
175 ( succ c6 c7 )
176 ( succ c7 c8 )
177 ( succ c8 c9 )
178 ( succ c9 c10 )
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179 ( succ c10 c11 )
180 ( succ c11 c12 )
181 ( succ c12 c13 )
182 ( succ c13 c14 )
183 ( succ c14 c15 )
184 ( succ c15 c16 )
185 ( succ c16 c17 )
186 ( succ c17 c18 )
187 ( succ c18 c19 )
188 ( succ c19 c20 )
189

190 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
191

192 (<= ( legal robot move ) )
193

194 (<= ( legal robot grab )
195 ( true ( c e l l ?x ) )
196 ( true ( go ld ?x ) ) )
197

198 (<= ( legal robot drop )
199 ( true ( go ld i ) ) )
200

201 (<= ( legal robot ( s ?x ?y ) )
202 ( true ( c l e a r ?x ) )
203 ( true ( t a b l e ?x ) )
204 ( true ( c l e a r ?y ) )
205 ( distinct ?x ?y ) )
206

207 (<= ( legal robot (u ?x ?y ) )
208 ( true ( c l e a r ?x ) )
209 ( true ( on ?x ?y ) ) )
210 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
211

212 (<= ( completed bdftower )
213 ( true ( on d f ) )
214 ( true ( on b d ) ) )
215

216 (<= ( completed caetower )
217 ( true ( on a e ) )
218 ( true ( on c a ) ) )
219

220 (<= ( goal robot 100)
221 ( true ( go ld w) )
222 ( completed bdftower )
223 ( completed caetower ) )
224

225 (<= ( goal robot 75)
226 ( true ( go ld w) )
227 (not ( completed bdftower ) )
228 ( completed caetower ) )
229

230 (<= ( goal robot 70)
231 ( true ( go ld w) )
232 ( completed bdftower )
233 (not ( completed caetower ) ) )
234

235 (<= ( goal robot 55)
236 ( completed bdftower )
237 ( completed caetower )
238 (not ( true ( go ld w) ) ) )
239

240 (<= ( goal robot 45)
241 ( true ( go ld w) )
242 (not ( completed bdftower ) )
243 (not ( completed caetower ) ) )
244

245 (<= ( goal robot 30)
246 ( completed caetower )
247 (not ( completed bdftower ) )
248 (not ( true ( go ld w) ) ) )
249

250 (<= ( goal robot 25)
251 ( completed bdftower )
252 (not ( completed caetower ) )
253 (not ( true ( go ld w) ) ) )
254

255 (<= ( goal robot 0)
256 ( true ( s tep c20 ) )
257 (not ( completed caetower ) )
258 (not ( completed bdftower ) )
259 (not ( true ( go ld w) ) ) )
260

261 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
262

263 (<= terminal
264 ( true ( s tep c20 ) ) )
265

266 (<= terminal
267 ( true ( go ld w) ) )
268

269 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
270 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
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Appendix B Dynamic Programming
Implementation of
CombinePlans

Algorithm B.1 on the next page sketches out how to implement the function Com-
binePlans using a dynamic programming technique, thereby avoiding the factorial
complexity of the näıve approach (refer to section 5.1.4 on page 27).

Two short remarks on notation:

• initial sit denotes the start node of the search algorithm; for sake of brevity,
this is not listed among the function arguments

• ValueOf returns the goal value of a situation sit, if sit is terminal; otherwise,
a heuristic value is returned
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Algorithm B.1 CombinePlans

1: global variable map visited : N× . . .× N︸ ︷︷ ︸
n times

→ {true, false}; initially empty

2: function CombinePlans(plan set)
3: return CombinePlansRec(plan set, [0, 0, . . . , 0], initial sit)
4: end function

5: function CombinePlansRec({plan1, . . . , plann}, pos, sit)
6: let pos = [p1, . . . , pn]
7: let plan1 = [action1

1, action
1
2, . . . , action

1
m1

]
8: let plan2 = [action2

1, action
2
2, . . . , action

2
m2

]

9:
...

10: let plann = [actionn1 , action
n
2 , . . . , action

n
mn

]
11: if map visited[pos] = true then
12: return fail
13: else if pos = [m1,m2, . . . ,mn] then
14: return 〈ValueOf(sit), ∅〉
15: end if
16: for i = 1, . . . , n do
17: if pi < mi then
18: new sit← Do(actionipi+1, sit)
19: new pos← [p1, . . . , pi−1, pi + 1, pi+1, . . . , pn]
20: res← CombinePlansRec({plan1, . . . , plann}, new pos, new sit)
21: if res = 〈value, 〉 then
22: return 〈value, actionipi+1〉
23: end if
24: end if
25: end for
26: map visited[pos]← true
27: return fail
28: end function
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