
Factoring General Games using Propositional Automata

Evan Cox, Eric Schkufza, Ryan Madsen and Michael R. Genesereth
Stanford University, CA, USA

Abstract
In this paper we propose the design of a more ro-
bust General Game Player, able to successfully play
the class of synchronous independent games using
Propositional Automata, a framework for reasoning
about discrete, dynamic, multiagent systems, de-
veloped by the Stanford Logic Group. We prove
conditions under which a Propositional Automata
represents multiple, synchronous independent sub-
games, and in doing so, prove when a Proposi-
tional Automata can be separated, or factored into
multiple automata. A General Game Player able
to recognize such independences can computation-
ally save, by searching the smaller game trees rep-
resented by the independent factored automata for
solutions. Additionally we explore the concept of
independent substructures appearing within Propo-
sitional Automata given certain states, and prove
conditions under which a Propositional Automata
is contingently factorable into multiple Proposi-
tional Automata.

1 Introduction
General Game Playing (GGP) is the design of artificial in-
telligence agents that can successfully play games they has
never seen before. In contrast to one dimensional game play-
ing systems, such as Deep Blue [1] for chess and Chinook [4]
for checkers, General Game Players must be robust enough to
make intelligent decisions based on games given at runtime.
The challenge of General Game Playing is to build an agent
that performs intelligently over a wide variety of games.

While General Game Playing systems have proven suc-
cessful on large classes of games [5], they have not fared
well on games that consist of simultaneous independent sub-
games for several reasons. This paper is about building a
more robust General Game Player, able to successfully play
the class of games decomposable into multiple, simultaneous,
independent sub-games.

To make intelligent decisions, General Game Players need
to reason about the possible future state of a game resulting
from their actions. General Game Players tend to rely on two
classes of techniques for exploring game trees, variants of the

MiniMax algorithm endowed with heuristic evaluation func-
tions [2], and Monte Carlo simulation techniques [3]. Both
classes of techniques rely on searching the game tree exten-
sively, Minimax requires an exhaustive search of the game
tree, while Monte Carlo takes a more probabilistic, machine
learning approach for evaluating states. The problem in ap-
plying these techniques to multiple simultaneous independent
games is that the size of the game tree increases exponentially
with the size of each added game.

Take, for example, double tic tac toe, which is simply two
independent games of tic tac toe played simultaneously that
only ends if both independent games are in terminal states.
The game tree for a single gane of tic tac toe has n = 255, 168
fringe nodes. Consider the game tree for double tic tac toe.
For each terminal state in a single game of tic tac toe, there
are n terminal states in double tic tac toe, because there are
n possible terminal states the other tic tac toe game could be
in. As a consequence the game tree for double tic tac toe
is intractably large, containing n2 ≈ 65 billion fringe nodes.
Given the size of the fringe, any variant of Minimax or Monte
Carlo to will have a difficult time performing an effective
evaluation of a state with a limited time clock.

If the independence of the sub-games of tic tac toe are iden-
tified, and the sub-games are considered separately from each
other, then the game tree can be reduced to one of two trees
containing 2n = 510, 336 fringe nodes, four orders of magni-
tude reduction from the two games considered together. This
is intuitive because it is only necessary to search the state
space for each independent game, in order to find a solution
for their pairing. A General Game Player only needs to search
the game tree for each independent game of tic tac toe to find
the best action for that game. There is no need to consider the
other independent game of tic tac toe whose state has no bear-
ing on the decision making process. A General Game Player
able to solve single tic tac toe with t amount of play clock
per turn, would be able to solve m independent games of tic
tac toe if given play clock mt, if it were able to recognize the
independence of the games[6].

In general, for m independent games, each with total fringe
nodes f1 . . . fm, the game tree resulting from their pairing
will contain

∏m
i=1 fi fringe nodes (if that game of their pair-

ing is only terminal when all games are terminal). If the in-
dependence of each game is identified, the state space can be
reduced to

∑m
i=1 fi. The game tree for the pairing of two



independent games G1, G2 with branching factors b1, b2 has
at depth d, (b1b2)d nodes. If the independence of G1 and G2

are recognized, such a game tree can be reduced to one of two
trees, each containing bd

1 + bd
2 fringe nodes.

In this paper we propose the construction of a General
Game Player that can successfully play the class of simul-
taneous independent games, like double tic tac toe, by recog-
nizing independent sub-games using Propositional Automata.
Propositional Automata are a framework for discrete, dy-
namic, multi-agent systems, such as games, invented by the
Stanford Logic Group. The class of simultaneous indepen-
dent games are defined as those games in which each agent
takes an action in each independent game on each timestep.
The goal for an agent is to win every independent game. Al-
ternatively, we will refer to games in this class as conjoined.

First we formally define Propositional Automata. Then we
define what it means for a Propositional Automata to be fac-
torable into multiple independent sub-automata, and prove
conditions under which such a Propositional Automata is fac-
torable. We show that under appropriate conditions a General
Game Player able to detect such conditions will be able to
play the class of simultaneous independent games success-
fully, if it is able to play each game successfully. Finally we
consider conditions under which a game evolves into inde-
pendent simultaneous sub-games over time, and propose an
augmentation to a General Game Player that can recognize
such games.

2 Propositional Networks and Automata
In this section we introduce and formally define Propositional
Networks and Propositional Automata. A Propositional Net-
work (PN) is a directed bipartite graph consisting of nodes
representing propositions connected to either boolean gates,
or transitions. PNs serve as a natural graph representation
of Game Description Language (GDL), which expresses the
dynamics of a world in terms of the logical relationships of
between different propositions. PNs are useful because they
allow us to apply our intuitions about graphs to game repre-
sentations.

A proposition’s truth value is either a function of incoming
transition or set by an agent. The truth value of boolean gates
are a function of their inputs. Transitions are identity gates,
used to control the flow of information from one state to the
next. Propositions can be partitioned into three classes: base
propositions, whose truth values are a function of incoming
transitions; input propositions, whose truth values are set by
agents; and view propositions, whose truth values are a func-
tion of incoming boolean gates. The state of a PN is the truth
assignment of its base propositions. State update is performed
by setting base propositions to true if and only if their incom-
ing transition is true in the current state. Because transitions
serve as inputs to base propositions, they define the dynamics
of a PN [6].
Definition 2.1. A Propositional Network (PN) is a 4 tu-
ple 〈P,G, T, w〉, where P is a a finite set of propositions
dom(p) = {0, 1}, G is a finite set of boolean gates g :
{0, 1} ×{ 0, 1} %→ {0, 1} T is a set of transitions, which are

identity gates, t {0, 1} %→ {0, 1}, and a connectivity function
w : P %→ G ∪ T ∪ {∅};G %→ P × P ;T %→ P . Alterna-
tively w can be thought of as a binary relation on the domain
P ∪ T ∪G ∪ {P × P}, where pWq iff w(p) %→ q.

Figure 1: A simple Propositional Network representing the physics
of a game in which a player can press two buttons A and B, which
once pressed, remain in a pressed state. The state is defined by the
base propositions pressed A and, pressed B. Both pressed propo-
sitions are involved in positive feedback loops, ensuring that their
truth assignment in the next state will be true if their truth assign-
ment is true in the current one. The input propositions consist of the
press A and press B propositions.

A Propositional Automaton (PA) is a representation for dis-
crete dynamic multi-agent systems that consists of a physics,
represented as a PN, an initial state in the form of an truth
assignment of the base propositions, and a legality function
that restricts what actions an agent in the system can perform
given the current state.

Definition 2.2. A marking m is a truth assignment of a set
of propositions Q ⊆ P . A Propositional Automata is a triple
〈N, M0

B , l〉 where N is a propositional network, M0
B is an

intial truth assignment of the base propositions, and l is a



legality function mapping base truth assignments to finite sets
of input truth assignments l : mB %→ 2mI

For the purposes of GGP, we propose two augmentations to
a PA. First we augment our PA representation to include a set
of distinguished view propositions, Goal ⊆ NV , that when
true, represent the satisfaction of a goal for an agent. Sec-
ond, in GDL legality is expressed as a series of logical state-
ments. Consequently we reify the legality function into a PN
by adding propositions, boolean gates, and a distinguished
proposition, Legal such that m(Legal) %→ 1 if and only if
the truth assignment for the input propositions is legal given
the current state. In this paper we relax the assumption that
agents can only take one action per turn.
Definition 2.3. A General Game Playing Propositional Au-
tomaton (GGPA) is a 4-tuple. 〈N, M0

B , Legal, Goal〉. N is a
PN augmented by the reification of the legality function and
goal propositions, M0

B is an initial truth assignment of the
base propositions, Legal is a distinguished proposition, that
when true, represents a legal configuration of actions from
the agents for a given state, and Goal is a set of distinguished
view propositions that when true represent the satisfaction of
a goal for an agent.

3 Equivalence and Conjunctive Factorability
We first formally define what it means for a General Game
Playing Propositional Automaton (GGPA) to be conjunc-
tively factorable, and then prove conditions under which a
PA is conjunctively factorable. We begin by constructing an
appropriate vocabulary for formalizing the equivalence and
conjunction of PA. Using this vocabulary, we give a formal
definition of conjunctive factorability and prove conditions
under which a PA is conjunctively factorable. A General
Game Player that can successfully detect these conditions can
therefore detect independent conjoined sub-games, and ana-
lyze them independently using a preexisitng evaluation tech-
nique.

The conjoining of games is an intuitive concept. The con-
joining of n ≥ 2 independent games is the game where the
goal of each player is to win all n subgames. A game is con-
junctively factorable or decomposable when it is the con-
junction of n ≥ 2 independent sub-games. Truth-functional
relationships of propositions in a PN are represented by the
connectivity relation. A component p’s truth value in a PN,
except for input propositions, is determined by the compo-
nent(s) q from which an edge exists from q to p. Here we
can apply a graph intuition to a PN to yield an interesting re-
sult. Since edges represent truth functional dependency, if a
directed path exists from a proposition q to a proposition p
then the truth assignment of p depends on the truth assign-
ment of q.

Let W := W ∗, the transitive closure of the connectivity
function w represented as a binary relation W , such that pWq
iff w(p) %→ q

Definition 3.1. (Directed Path) A directed path exists from,
p ∈ P ∪G ∪ T to q ∈ P ∪G ∪ T iff pWq

Lemma 3.2. The marking (truth assignment) of a proposi-
tion p is a function of a transition or boolean gate q, such

that pWq. By induction, the truth assignment of p is a func-
tion of all propositions from which a directed path exists to p.
Since W is the transitive closure of W , pWr iff there exists a
directed path from p to r. Therefore, the marking of a propo-
sition p is a truth function of only the propositions from which
a directed path exists to p.

Using the notion of a directed path we can formalize what
it means for propositions to be truth-functionally independent
of each other. If there is not a directed path from a proposition
p to a proposition q then the truth assignment of q in any state
is irrelevant to the truth assignment of p.
Corollary 3.3. If there is no directed path from a proposition
p to a proposition q then then the truth value of q is not a
function of p.

Extending this notion to sets, we can formalize what it
means for a set of propositions to be truth-functionally inde-
pendent of another set of propositions. If two sets of proposi-
tions are independent of each other, then they can be reasoned
about independently of one another.
Definition 3.4. A ⊆ (P ∪G∪T ), B ⊆ (P ∪G∪T ) are dis-
connected iff there is no directed path from any proposition in
A to any proposition in B. C ⊆ (P ∪G ∪ T ), is independent
iff ¬(∃a∃b(a ∈ C ∧ b .∈ C ∧ bWa) An independent set , D is
action independent if D ∩NI = ∅.

The truth values of sets that are disconnected from one an-
other can be reasoned about independently of one another in
the current state of a PA. However, this might not be true for
reasoning continuously about the disconnected sets, as other
propositions outside of the two sets may be affect their truth
values. Independent sets (ISs) are connected sub-graphs in
a PN, where no outside components serve as inputs to any
members of the IS. The truth values of action independent
sets (AIS) are functionally independent of the truth assign-
ments of input propositions, whose analogue are actions of
agents. Their truth assignments are directly computable given
a number of base marking updates and the initial base mark-
ing.

Since no edges exist from the rest of a PN to an IS, the
markings of ISs of a PN can be fully simulated independently
of the remaining network. The lack of connection to a PN
means that the truth values of the propositions in an IS can be
determined regardless of the current or past states of the rest
of a PN. Because an IS represents an independent physics
within the larger network, an IS represents its own indepen-
dent PN.
Theorem 3.5. An IS of a PN, C, along with connectivity func-
tion wC = w with domain restricted to C, of a PN, N can be
represented as an isomorphic PN.

Proof. Construct a new PN, N ′ in the following way. For
every p in NP ∩ C insert a proposition p′ into N ′

P For ev-
ery g in NG ∩ C insert a proposition g′ into N ′

G. For ev-
ery proposition t ∈ NT ∩ C insert a proposition t′ into N ′

T .
For every mapping in wC insert a mapping into w′. Since
¬(∃a∃b(a ∈ C ′ ∧ b ∈ C ∧ w(b) = a), there will be no un-
defined mappings in w′. So for every p in NP ∩ C there is
a p′ such that if w(p) %→ q, w(p′) %→ q′. Hence, it follows



that N ′
P is isomorphic to NP ∩ C. Similarly NG ∩ C is iso-

morphic to N ′
G, and NT ∩C is isomorphic to N ′

T , and wC is
isomorphic to w′ by construction. Since there is an isomor-
phism between every part of C and N ′, it follows that there
is an isomorphism between C and N ′.

Detecting classes of games that represent independent si-
multaneous sub-games hinges upon this idea. A necessary
condition for conjunctive factorability is the representation of
multiple independent physics within the network itself. In
order to represent independent sub-games, there need to be
separate physics for each of those games. However, it is not
a sufficient condition. The Legal proposition itself may cause
the separate physics to become joined in determining what
actions are legal for a given physics represented as a PN. Con-
sider the conjoining of chess and checkers where a player is
only allowed to move their queen after they have captured two
pieces. While the physics of the two games are separable, the
state of checkers affects the legality of chess, and cannot be
considered separately.

We now define equivalence between PNs and PAs. Follow-
ing that we provide a definition for equivalence between a sin-
gle PA and multiple conjoined PA. The notion of equivalence
between PNs is straightforward. If there exists a mapping be-
tween states of two distinct games that respects the next state
operation, them the two games are equivalent. Accordingly
there must be a mapping between the set of facts that define
a state or NB , that respects next state or base marking update
operation in order for two PNs to be considered equivalent.
We extend the notion of homomorphism to PNs in order to
capture the intended requirements for equivalence.

Definition 3.6. A PN homomorphism is a function mapping
between two PNs N, M that respects base marking update
operation resulting from a base and input marking. h : N →
M , such that for all i ∈ 2mI , b ∈ 2mB , and an operator, ⊗,
denotes the updated base marking computed from a current
base marking and input marking , h(i⊗ b) = h(i)⊗ h(b).

Definition 3.7. PNs N1, N2 are equivalent if there is exists
a homomorphism between N1 and N2. A PN N is equivalent
to n independent PNs, Net1, Net2 . . . Netn if

⋃n
i=1 Neti is

equivalent to N. We denote N1, N2 as being equivalent by
N1 ≡ N2.

For two games to be considered equivalent they must not
only share the same physics, but must also have the equivalent
rules for when actions can be performed, and equivalent goal
states. The equivalence between PA captures the important
aspects of equivalence between games; games must have the
functionally same goals, physics, and restrictive legality in
order to be considered equivalent.

Definition 3.8. A homomorphism between PA is one that
respects the base marking update operation ⊕, the Legal
marking operation3, and goal marking operation ⊗. For all
i ∈ 2mI , b ∈ 2mB ,
h(i⊕ b) = h(i)⊕ h(b)
h(i3 b) = h(i)3 h(b)
h(i⊗ b) = h(i)⊗ h(b)

Definition 3.9. PA A1, A2 are equivalent if there is a homo-
morphism between A1 and A2, and h(M0

B1
) = h(M0

B2
).

We now define the conjoining of games, represented as PA.
For brevity we only consider the case in which there is exactly
one goal proposition, and one agent. The ideas are extendable
to multiple goals and multiple agents. Using the formal def-
initions of conjoined games and equivalence, we proceed to
show when a game, represented as a PA is conjunctively fac-
torable.
Definition 3.10. The conjunction of
n ≥ 2 PA, A1 . . . An is defined as
〈
⋃n

i=1 Ni,
⋃n

j=1 MB0
j
,
∧n

k=1 Legalk,
∧n

l=1 Goall〉.

The conjoining of PA is straightforward, the PN of the con-
joined games is the union of the physics of these sub-games,
the Legal proposition is the conjunction of all the Legal
propositions of each sub-game, Goal is satisfied iff the goal
for each sub-game is satisfied, and the initial state is the union
of each sub-game’s initial state.
Theorem 3.11. A PN N that consists of n ≥ 2 independent
sets N1, N2 . . . Nn is equivalent to the union of n independent
PNs.

Proof. For each independent set Ni, construct a new PN
N ′

i . By construction each Ni is isomorphic to N ′
i (By Pre-

vious Lemma). Therefore since ∪n
j=1N

′
j ≡ ∪n

k=1Ni, and
∪n

k=1Ni ≡ N , it follows that ∪n
j=1N

′
j ≡ N .

Lemma 3.12. IID is the largest action independent, set of a
PN N . The PN equivalent to IID is equivalent to the union
of n >= 1 PNs each isomorphic to IID.

Proof. Let N be a PN such that N = ∪n
i=1IIDi where each

IIDi ≡ IID. For each proposition p′ ∈ IIDi there is an
isomorphic proposition p ∈ IID. So for every proposition
p, there is a homomorphism between the singelton set {p},
and {p′|p′ ≡ p ∧ p′ ∈ N} Hence, there is a homomorphism
between m(p) and m(P ′), where P ′ is the set of all p′s.

Similarly the singelton set containing a boolean gate g ∈
IID is homomorphic to the set of isomorphic boolean gates
in N , and the singelton set containing a transition in t ∈
IID is homomorphic to the set of isomorphic transitions
N . Therefore there is an homomorphism between IID and
N , namely the one that maps each element in IID to the
set of isomorphically similar elements in each IIDi. Since
there N = ∪n

i=1IIDi, and there is a homomorphism between
∪n

i=1IIDi and IID, N ≡ IID

Action independent propositions are unique in that their
marking is unaffected by agents’ actions. Consequently, an
action independent base proposition will be isomorphic to
any other action independent base proposition whose truth
value is a function of a homomorphic structure, contingent
upon the same initial truth assignment. IID simply represents
the union of all action independent components of a PN.
Definition 3.13. A Legal proposition of a PA A
with n > 1 ISs N1 . . . Nn is legally partitionable,
if m(Legal) %→

∧n
i=1 w(w(Legal))i and for each



w(w(Legal))1 . . . w(w(Legal))n, there only exist di-
rected paths from w(w(Legal))i to at most one k < n Nk

and IID.
If the legality of actions from some independent sub-

network of a PN are dependent only on the state of that
network, or action-independent propositions then Legal is
legally partitonable. This is one of the conditions for conjunc-
tive factorability. If the legality of actions for some sub-game
is dependent in some way on the state of another sub-game,
then they cannot be considered independently of one another.
Synchronous indepedent games are legally partitionable, be-
cause the legality of moves for each independent game de-
pends only on the state of that game, with possibly some
shared, action independent state, such as a control counter.
Definition 3.14. For a Propositional Automaton A, Goal =
AGoal, with N = (

⋃n
i=1 Ni)∪IID, where each Ni is an IS, is

goal partitionable iff for Goal =
∧n

j=0 w(w(Goal))j ∈ Nj .

The property of Goal partitionability is analogous to Le-
gal Partitionability. The goal of an individual agent is par-
titionable if it can be represented as the conjunction of sub-
goals, and the truth value of each subgoals is determined by
an independent, distinct physics. A conjoined game, where
an agent’s goal is to satisfy the goal of every subgame, will
be goal partitionable.

Using this vocabulary we can now formalize what it means
for a PA to be conjunctively factorable.
Definition 3.15. A Propositional Automata
A〈N, M0

B , Legal, Goal〉 is conjunctively factorable if
there exists n > 1 PA A1〈N1, M0

B1
, Legal1, Goal1〉,

A2〈N2, M0
B2

, Legal2, Goal2〉 . . .
An〈Nn, M0

Bn
, Legaln, Goaln〉 such that (

∧n
i=1 Ai) ≡ A.

Theorem 3.16. A Propositional Automaton A that contains
n > 1 ISs, that is legally partitionable and goal partitionable
is conjunctively factorable into n Propositional Automata.

Proof. Construct n PA, A1, A2, . . . AN in the follow-
ing way. Let IID be the union of all AIS. Enu-
merate each IS of the PN AN = N , as N1 . . . Nn,
N = (

⋃n
i=1 Ni) ∪ IID. For each Ni construct a PN

N ′
1 = N1 ∪ IID,N ′

2 = N2 ∪ IID . . .N ′
n = Nn ∪ IID. Let

Ni be the PN of Ai. Let M0
Bi

, the function M0
B with domain

restricted to B′
i (the set of base propositions for N ′

i ) be the
base marking for Ai. Since Legal is conjunctively partition-
able, it follows that for each N ′

i , there is a w(w(Legal))i

to which directed paths only exist to N ′
i ∪ IID. Let each

w(w(Legal))i be the Legal proposition for Ai and any
additional components from which a directed path exists
from w(w(Legal))i be in N ′

i . Since Goal is conjunctively
partitionable, let w(w(Goal))i be Goal for Ai.
We will show that there is a homomorphism between∧n

j=1 Aj and A. We now show that the union of the
PNs of A1, A2, . . . An respect the base marking update
operation.

⋃n
i=1 N ′

i =
⋃n

j=1 Nj ∪
⋃n

k=1 IIDk. There is a
homomorphism between

⋃n
k=1 IIDk and IID. So there is

a homomorphism between
⋃n

i=1 N ′
i and (

⋃n
j=1 Nj) ∪ IID.

Since (
⋃n

j=1 Nj) ∪ IID) = N it follows that there is

a homomorphism between
⋃n

i=1 N ′
i , which is the PN of∧n

l=1 Al.
We showed that the union of the base markings of

A1, A2, . . . An are equivalent to the base marking of A.
Since ∪n

i=0N
′
i ≡ N , it follows that M0

B ≡
⋃n

j=0 ≡ M0
B′

j
by

construction.
We now show that m(Legal) =

∧n
i=1 Legali.

The marking of Legali of Ai is isomorphic to the
marking of w(w(Legal))i by construction. Since
m(

∧n
i=1 Legali) = m(

∧n
j=1 w(w(Legal))j , and

m(Legal) %→
∧n

k=1 w(w(Legal))j , it follows that there is a
homomorphism between m(Legal) and

∧n
j=1 Legalj .

We now show that m(Goal) =
∧n

i=1 Goali. The
marking of Goali of Ai is homomorphic to the
marking of w(w(Goal))i by construction. Since
m(

∧n
i=1 Legali) = m(

∧n
j=1 w(w(Goal))j), and

m(Goal) %→
∧n

k=1 w(w(Goal))j , it follows that
m(Goal) =

∧n
j=1 Goalj . Hence by construction, A is

equivalent to
∧n

i=1 Ai and is conjunctively factorable.

The result makes sense. Consider a game where a goal is
defined as a conjunction of propositions, each of which is ex-
clusively dependent on distinct independent physics. Further-
more suppose that the legality of a game is defined as the con-
junction of propositions that are dependent on these distinct
physics. Since both the goal and legal propositions are de-
composable in terms of the independent physics, the game it-
self decomposable in terms of the independent physics. Con-
sequently, goal partitionability, representing goal decompos-
ability and legal partitionability, representing legal decom-
posability, along with n > 1 IS, representing independent
physics are requirements a General Game Player can test in
order to determine decomposability a game.

When independent PA are identified, a General Game
Player can construct game trees for the independent sub-
games using the independent PAs, rather than the game tree
represented by the original PA. The sum of the state space
of the independent game trees is nontrivially smaller than the
state space represented by the original game tree, allowing
whatever evaluation function the General Game Player imple-
ments to be more successful, by providing it with an equiva-
lent, but significantly smaller state space to evaluate.

4 Contingent Conjunctive Factorability
We now consider the class of games, that over time may
become conjunctively factorable. For example, a game might
not initially be separable into independent games, but it may,
after entering a certain state, become representative of multi-
ple independent games. Consider the following game, called
joined tic tac toe. Two games of tic tac toe connected by a
single square that connects the two. The goal of the game
for a player is to get two lines, a row, column or diagonal
of that players mark, with at least two of the marks residing
in a specific tic tac toe domain. Diagonals through the
middle square do not count. Each turn the player in control
can place two marks, either one in each distinct tic tac toe
domain, or one mark in a tic tac toe domain, and one in the



center square. Suppose that the state of the game is as follows

Figure 2: Joined Tic Tac Toe

Once it is not possible for either player to achieve a
row utilizing the center square, the only possible solutions
lie in the domains of the tic tac toe games that are joined by
the center square. The states of the two tic tac toe games can
be considered independently to find the remaining optimal
moves for the duration of the game. Only the game trees
for each tic tac toe game, modulo the center square, need
to be searched to determine the remaining optimal moves.
Given the current state, the game can be factored into two
independent sub-games. However, from the initial state, this
game cannot be factored into independent games, because
the shared middle square intertwines the two domains as it is
relevant to the satisfaction of goals in both sub-games.

In general while this game is not conjunctively factorable,
it is conjunctively factorable, contingent upon entering a
state in which no row through the middle is possible for
either player. We define the game as being contingently
conjunctively factorable, since it reduces to independent
simultaneous sub-games, given that it enters a certain state.
The raw computational savings acquired from recognizing
contingent conjunctive factorability are less than those of
recognizing conjunctive factorability, because it requires
that the game enter into a specific state. However, the
relative computational savings are still the same, because the
number of accessible fringe nodes reduces to the sum of the
remaining accessible fringe nodes of the individual games,
rather than the product.
Definition 4.1. Two PA, A1, A2 are contingently equivalent,
if there is a homomorphism between A1 and A2 given any
base marking Mn

B or subsequent updated base marking.
Given a specific state, two PA are contingently equivalent if

for any subsequent state of either PA the base marking, legal
marking, and goal marking operations are all respected. Con-
sider two PA representing different state of tic tac toe, where
the next action will result in a draw. These PA will be contin-
gently equivalent. Contingent equivalency depends on what
facts currently hold in a game state. Using these intuition, we
now show how the graphical nature of a PA can be leveraged
to discover contingently equivalent PA.
Lemma 4.2. A proposition p is a latch if m(p) = 1 →
m′(p) = 1. If a proposition is a latch then m(p)k %→ 1 →
m(p)k+1 %→ 1, where m(p)k represents the marking of p af-
ter k base marking updates with legal input markings.

Proof. Consider a propositional latch p, m(p)k %→ 1, where
m(p)k is the marking of p after k base marking updates. We

prove by induction that for n ≥ 1, m(p)k+n %→ 1. Basis:
m(p)k+1 %→ 1. By assumption m(p)k %→ 1. Since p is a
positive latch, by Lemma X, m(p)k+1 %→ 1. Induction: IH,
m(p)k+n−1 %→ 1. Show that m(p)k+n %→ 1. Since, by as-
sumption p is a positive latch, and m(p)k+n−1 %→ 1 by the
Induction Hypothesis, by Lemma X, m(p)k+n %→ 1.
By induction we have proved that m(p)k %→ 1 →
m(p)k+n %→ 1.

Lemma 4.3. A base proposition p, with transition t, such that
w(p) = t is a latch if w(t) = p.

Proof. Suppose that m(p)k %→ 1. Since transitions are iden-
tity gates m(t)k %→ 1. Since the truth value of t in the
current state represents the truth value of p in the next state
m(p)k+1 %→ 1. By the previous lemma, it follows that p is a
latch.

Simply put, a latch is a proposition, that once it becomes
true, is always true. Latches are useful discoveries in PA,
because they allow the direct encoding of information. For
example, if a boolean gate g, m(g) = m(p) ∨m(q), and p is
a latch and p is true, for any following state, m(g) %→ 1. The
connection between p, q, and the g can be removed and the
g can be replaced as mapping to 1. Since this sort of mod-
ification only consists of taking advantage of a logical fact,
it follows that the base marking update for a propositional
automaton modified in this way, will be equivalent to the un-
modified version of the automaton. We present the following
formal modification of a PA, and prove that it is contingently
equivalent to its unmodified form.
Definition 4.4. For a PN N , with marking Mk

B , let p ∈ B be
a latch. Modify N in the following way. Let X be the set of
boolean gates such that for g ∈ X , w(g)1 = p or w(g)2 = p.
For every a ∈ P insert a′ into P ′. For every t ∈ T , insert
t′ into T ′. For every g ∈ Xc, insert g′ into G′. For every
g ∈ X , construct g′ in the following way. Let q = w(g)2.
m(g) %→ m(p) ∨m(q) m(g′) %→ 1. Remove the edge from q′

and p′ to g′.
m(g) %→ m(p) ∧ m(q) g′ %→ m(q′). Remove the edge from
p′ and g′.
m(g) %→ ¬m(p) m(g′) %→ 0.
If for v ∈ V , w(v) = g, w(v′) = g′.

Latch modfication represents the encoding of fixed infor-
mation into a PN. For example, once an input to an OR gate
will remain true, the marking of the OR gate will always
be true as well, because its truth value is a function of the
disjunction of its inputs. There are more latch modifications
than the one we provide here. However, we will only con-
sider positive latch modification. We prove that this form of
latch modification produces contingently equivalent PN and
take it to be representative of the class of latch modifications.

Lemma 4.5. A is contingently equivalent to A′ on Mk
B , if N ′

is latch modified with respect to p, and m(p)k %→ 1.



Figure 3: A fragment of a Propositional Network modified by Latch
Modification. Components of the PN that are true are represented by
as grey. Since transitions are identity gates, the Proposition labeled
Latch is a latch. The right hand side of the figure shows the fragment
before latch modification, and the contingently equivalent fragment
after latch modification. Note the broken connection between the
other view propositions and the OR gate

Proof. Consider a base marking Mk
B such that m(p)k %→ 1.

It follows that for n ≥ 1, m(p)k+n %→ 1. We will prove
that A and A′ are contingently equivalent upon M0

B = Mk
B .

Since, N and N ′ only differ on modified boolean gates in G
,G′ we will show that given that m(p)k %→ 1, that there is an
isomorphism between the marking of every g ∈ G and the
modified g′ ∈ G′, and consequently show that A and A′ are
contigently equivalent on Mk

B . Proof by cases.
(OR case) If g is of the form m(g)k %→ m(p)k ∨ m(q)k,

then m(g)k %→ 1, since m(p)k %→ 1. Since m(p)k+n %→ 1, it
follows that m(g)k+n %→ 1. Since, by construction, m(g′) %→
m(p′)k, it follows that m(g′)k %→ 1, and m(g′)k+n %→ 1.
Thus the markings of g and g′ are isomorphic, given Mk

B .
(AND case) If g is of the form gk %→ m(p)k ∧m(q), then

gk %→ m(q)k, since m(p)k %→ 1. Since m(p)k+n %→ 1,
it follows that m(g)k+n %→ m(q)k+n. Since, by construc-
tion, m(g′) %→ m(q′), it follows that m(g′)k %→ m(q′)k, and
m(g′)k+n %→ m(q′)k+n. Thus the markings of g and g′ are
isomorphic, given Mk

B .
(NEGATION case) If m(g) is of the form m(g)k %→

¬m(p)k. By construction g′ is not modified in this case.
Thus markings of g and g′ are isomorphic, given Mk

B .
Therefore the marking of each g is isomorphic to the mark-

ing of g′, given m(p)k %→ 1. Since this is the only difference
between the components, of N , and N ′, it follows that N ,
and N ′ are contingently equivalent given Mk

B .

Definition 4.6. A PA A is contingently conjunctively fac-
torable if A′ is contingently equivalent to A given Mk

B and
there exists n > 1 PA A′

1 . . . A′
n such that there is a homo-

morphism between
∧n

i=1 A′
i and A′.

Theorem 4.7. A Propositional Automaton A is contingently
conjunctively factorable if A′, latch modified with respect to
latches p1 . . . pm is legally partitionable, goal partitionable,
and consists of n > 1 independent sets.

Proof. Since A′ is assumed to be legally partitionable, goal

partitionable, and consists of n > 1 independent sets, it fol-
lows that there exists n PA A′

1 . . . A′
n such that there is a

homomorphism between
∧n

i=1 A′
i and A′ 3.16. Since A′ is

contingently equivalent to A given Mk
B such that m(p1) %→

1 . . . m(pm) %→ 1, and
∧n

i=1 A′
i is equivalent to A′ it fol-

lows that A is contingently conjunctively factorable given
Mk

B .

Reformulation of a PA via latch modification can result in
the discovery of contingently conjunctive factorablility. Thus,
if a game enters into a state where it is contingently conjunc-
tively factorable, the remaining state space search for a Gen-
eral Game Player is further reduced, allowing for more intel-
ligent decision making, when constrained by a time limit.

5 Conclusion
The class of games consisting of multiple, simultaneous, in-
dependent sub-games represent a challenge General Game
Players because of the multiplicative nature of the state space
growth with each independent sub-game. Discovery of the
independence of sub-games, however, reduces the game state
space to the sum of each independent game, rather than their
product. PA are useful because they make discovery of inde-
pendent, simultaneous sub-games straightforward, and even
make for convenient discovery of independent sub-games
over time. We recommend further exploration of the prop-
erties of PA, as they reveal interesting, computationally ad-
vantageous structure of games in a straightforward manner.

References
[1] M. Campbell, A.J. Hoane, and F. Hsu. Deep blue. Artifi-

cial Intelligence, 134(1-2):57–84, 2002.
[2] J. Clune. Heuristic evaluation functions for general game

playing. In Proceedings of the National Conference
on Artificial Intelligence, volume 22, page 1134. Menlo
Park, CA; Cambridge, MA; London; AAAI Press; MIT
Press; 1999, 2007.

[3] Hilmar Finnsson and Yngvi Björnsson. Simulation-based
approach to general game playing. In Dieter Fox and
Carla P. Gomes, editors, AAAI, pages 259–264. AAAI
Press, 2008.

[4] J. Schaeffer, R. Lake, P. Lu, and M. Bryant. Chinook:
The world man-machine checkers champion. AI Maga-
zine, 17(1):21–29, 1996.

[5] S. Schiffel and M. Thielscher. Fluxplayer: A success-
ful general game player. In PROCEEDINGS OF THE
NATIONAL CONFERENCE ON ARTIFICIAL INTELLI-
GENCE, volume 22, page 1191. Menlo Park, CA; Cam-
bridge, MA; London; AAAI Press; MIT Press; 1999,
2007.

[6] Eric Schkufza. Decomposition of games for efficient
reasoning. In Ian Miguel and Wheeler Ruml, editors,
SARA, volume 4612 of Lecture Notes in Computer Sci-
ence, pages 409–410. Springer, 2007.


