
Heuristic Evaluation Functions for General Game Playing

James Clune
Department of Computer Science

The University of California, Los Angeles
jclune@cs.ucla.edu

Abstract

A general game playing program plays games that it
has not previously encountered. A game manager pro-
gram sends the game playing programs a description of
a game’s rules and objectives in a well-defined game
description language. A central challenge in creating
effective general game playing programs is that of con-
structing heuristic evaluation functions from game de-
scriptions. This paper describes a method for construct-
ing evaluation functions that represent exact values of
simplified games. The simplified games are abstract
models that incorporate the most essential aspects of the
original game, namely payoff, control, and termination.
Results of applying this method to a sampling of games
suggest that heuristic evaluation functions based on our
method are both comprehensible and effective.

Introduction
The idea of general game playing is to create a program that
effectively plays games that it has not previously encoun-
tered. A game manager program sends the game playing
programs a description of a game in a well-defined game
description language. The description specifies the goal of
the game, the legal moves, the initial game state, and the
termination conditions. The game manager also sends in-
formation about what role the program will play (black or
white, naughts or crosses, etc), a start time (time allowed for
pre-game analysis), and a move time (time allowed per move
once game play begins). The game playing programs com-
pete by sending messages over a network indicating their
moves until the game is completed. The class of games cov-
ered is intentionally broad, including games of one or more
players with alternating or simultaneous moves, with arbi-
trary numeric payoffs. Our research focus is the automatic
construction of heuristic evaluation functions that enable a
general game-playing program to win games.

Game playing programs have been of interest to the AI
community since the field’s inception because they provide a
well-defined test-bed for theories of how computational pro-
cesses can produce intelligent behavior. Although impres-
sive achievements have been made in a number of games,

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a criticism of this work has been that the success of high-
performance game-playing programs has come at the ex-
pense of generality.

The idea of general game playing as a test-bed for AI is
presented in Barney Pell’s thesis (Pell 1993). Pell submits
general game playing as a way to preserve the elements that
have made game-playing research attractive to the AI com-
munity, while maintaining generality. He defines a class
of symmetric chess-like games and describes a system that
plays games within this class. The system creates heuris-
tics through the application of metagame-level analysis of
the class of games, applying concepts such as mobility, cen-
trality, and promotion, automatically specializing these con-
cepts for the particular games.

The version that is the focus of the present work is based
on the AAAI General Game Playing Competition, organized
by Michael Genesereth (Genesereth, Love, & Pell 2005)
and the Game Description Language, or GDL (Genesereth
& Love 2005). One of the challenges in automatically con-
structing heuristic evaluation functions for games from GDL
descriptions is the generality of the language. For exam-
ple, although the game of chess is describable in GDL (with
some minor caveats), GDL has no notion of a grid-like board
or pieces that move, capture, and promote. Instead, each
of these concepts are constructed in a game-specific way in
first-order logic. This approach forces program authors to
implement extremely general game-playing agents.

The first published work on generating heuristics for GDL
is (Kuhlmann, Dresner, & Stone 2006). They describe a
method of creating features from syntactic structures by rec-
ognizing and exploiting relational patterns such as successor
relations and board-like grids. They then perform distributed
search, where each machine uses a single heuristic based on
either the maximization or the minimization of one of the
detected features.

Another approach to constructing heuristic evaluation
functions for GDL is described in (Schiffel & Thielscher
2007). Their approach also recognizes structures such as
successor relations and grids in game descriptions. Beyond
structure recognition, they utilize fuzzy logic and techniques
for reasoning about actions to quantify the degree to which
a position satisfies the logical description of winning. They
also assess how close the game is to termination, seeking ter-
minal states when goals are reached and avoiding terminal

1134



states when goals are not yet attained.
The work presented here is part of an ongoing research

project which has produced general game playing programs
that have placed first and second in the First and Second
Annual AAAI General Game Playing Competitions, respec-
tively. Algorithms and results presented here reflect the cur-
rent state of the ongoing project.

The core ideas governing our present approach are the
following. One source of a heuristic evaluation function is
that of an exact solution to simplified version of the original
problem (Pearl 1984). Applying this notion to general game
playing, we abstract the game to its core aspects and com-
pute the exact value of the simplified game, where the value
of a game is interpreted as the minimax value as described in
(von Neumann & Morgenstern 1953). Because this simpli-
fied game preserves key characteristics of the original game,
we use the exact value of the simplified game as an approxi-
mation of the value of the original game. The core aspects of
the game that we model are the expected payoff, the control
(or relative mobility), and the expected game termination (or
game longevity). These core game aspects are modeled as
functions of game-state features. The features must be au-
tomatically selected, and the key idea guiding this selection
is stability, an intuitive concept for which we will provide
a more technical meaning. Our approach strives to evaluate
states based on only the most stable features.

Our approach shares some aspects with previous ap-
proaches. Like Kuhlmann, Dresner, & Stone, binary rela-
tions are extracted from the game description. Like Schiffel
& Thielscher, the approach incorporates a measure of degree
of goal attainment. Distinguishing aspects of the present
work include the simplified model of the game in terms of
payoff, control, and termination, and a particular notion of
stability as a key characteristic of relevant features.

The remainder of this paper is as follows. We explore
an example game, discussing both its representation in GDL
and the game’s analysis. We then present preliminary results
of automatically constructed heuristic evaluation functions
for a sampling of board games, and end with discussion.

Example: Cylinder Checkers
We illustrate GDL and a technique for constructing heuristic
evaluation functions with a checkers variant called cylinder
checkers. The game was introduced in the Second Annual
AAAI General Game Playing Competition. The primary
difference from traditional checkers is that the playing board
has a topology in which the sides wrap around to form a
cylinder. Also unlike traditional checkers, where the goal is
to make one’s opponent unable to move, the goal in cylinder
checkers is to maximize the piece count of one’s own pieces
and minimize the piece count of the opponent’s pieces. The
payoff values range from 0 to 100 and are proportional to the
difference in piece count. As in traditional checkers, jumps
are forced. The game ends when either player cannot move
or after fifty moves, whichever comes first.

GDL Representation
In GDL, states are represented by the set of facts (or flu-
ents) true in the given state. Rules are logical statements

composed of expressions consisting of fluents, logical con-
nectives, a distinguished set of GDL relations, and game-
specific relations. Here we briefly describe the GDL repre-
sentation of cylinder checkers, omitting the syntax.

The role relation lists the roles of the players in the game
(red and black). The init relation enumerates the set of flu-
ents true in the initial state of the game. These indicate the
initial board configuration and that red moves first.

The legal relation indicates the legal moves for each role
from a given state. The next and does relations are used
to describe resulting fluents in terms of existing fluents and
player’s actions. For example, one rule is that moving a
piece from cell (x, y) results in cell (x, y) being blank.

The terminal relation is used to indicate termination con-
ditions for the game, in this case after 50 moves or when a
player cannot move. The goal relation is used to indicate
payoffs for terminal states. A rule says that if black has no
pieces, then the payoffs are 100 for red and 0 for black.

Identifying Stable Features
When a human first learns the game of checkers, there
are some obvious metrics that appear relevant to assessing
states: the relative cardinalities of regular pieces of each
color and kings of each color. The more sophisticated player
may consider other factors as well, such as the number of
openings in the back row, degree of center control, or dis-
tance to promotion. We will use the term feature to refer to
a function from states to numbers that has some relevance
to assessing game states. A feature is not necessarily a full
evaluation function, but features are building-blocks from
which evaluation functions can be constructed.

Consider the cues that human checkers players exploit
when learning to evaluate positions. Pieces are represented
as physical objects, which have properties of persistence and
mobility that humans have extensive experience with. The
coloring of the pieces, the spatial representation of the board,
and the symmetry of the initial state each leverage strengths
of the human visual system. The GDL game description, al-
though isomorphic to the physical game, has none of these
properties, so feature identification is not so simple.

The approach taken here is to extract expressions that ap-
pear in the game description and impose interpretations on
these expressions to construct candidate features. There are
two aspects to this: identifying a set of potentially interest-
ing candidate expressions and imposing interpretations on
these expressions. To identify the set of candidate expres-
sions, the analyzer starts by simply scanning the game de-
scription to see what expressions appear. The theory behind
this seemingly naive approach is that a game that is suc-
cinctly described will necessarily be described in terms of its
most salient features. In the case of cylinder checkers, this
includes expressions representing red pieces, black pieces,
red kings, and black kings.

In addition to the expressions appearing directly in the
game description, the feature-generating routine has some
built-in rules for generating additional expressions. Chief
among these is a routine which performs domain analysis to
determine what constants can appear in what positions for
expressions involving variables. These constants are then

1135



substituted into expressions involving variables to generate
new, more specific candidate expressions. When the domain
of a particular variable has only a few constants, they are
each substituted into the expression. In cylinder checkers,
variables corresponding to pieces are found to permit sym-
bols for red pieces, black pieces, red kings, and black kings.
When the domain has more constants, then additional struc-
ture is sought to determine if some of the constant values
are distinct from the rest. In cylinder checkers, the first and
last rows are found to be distinct from the rest because the
first and last rows have a single adjacent row, while the other
rows have two adjacent rows.

When the expressions are identified, the set of candidate
features is generated by imposing various interpretations of
these expressions. The analyzer has three primary interpre-
tations, each defining a different type of feature.

We call the first interpretation the solution cardinality in-
terpretation. The idea is that we take the given expression,
and find the number of distinct solutions to this expression
there are in the given state. In the case of the expression
(cell ?x ?y black king), the number of solutions corresponds
to the number of black kings on the board.

The second interpretation is the symbol distance interpre-
tation. Binary relations among symbols in GDL are game-
specific relations with arity two. For example, the cylinder
checkers description utilizes a game-specific next rank rela-
tion to establish ordering of rows. We construct a graph of
game-specific symbols appearing in the description, where
each constant symbol is a vertex in the graph. Edges are
placed between vertices that appear together in the context
of a binary relation in the game description. For example,
rank3 and rank4 have an edge between them due to the rule
(next rank rank3 rank4). Once this graph is constructed, the
symbol distance between two symbols is the shortest path
between the two symbols along this graph.

To impose the symbol distance interpretation on an ex-
pression such as (cell ?x rank8 red piece), we first identify
constants within the expression that are in the domain of a
binary relation. In this case, the only such constant is rank8,
which appears in the next rank relation. We substitute a vari-
able for this symbol, obtaining an abstract expression (cell
?x ?y red piece). We find all the solutions to the abstract
expression. For each solution, we find the distance to our
original expression based on the binding of the newly in-
troduced variable. For example, if the solutions are (cell a
rank2 red piece) and (cell f rank5 red piece), then the dis-
tances are 6 and 3, respectively, because according to the
next rank rules, the distance from rank2 to rank8 is 6 and
from rank5 to rank8 is 3. Finally, the overall symbol dis-
tance is the sum of the distances for the individual solutions
to the abstract expression. In this example, the value would
be 3 and could represent the distance to king promotion.

The third interpretation is the partial solution interpreta-
tion. This interpretation only applies to compound expres-
sions involving multiple conjuncts or disjuncts. For exam-
ple, in Connect-4, the rule for winning involves a conjunc-
tion of four pieces of the same color in a row. The partial
solution interpretation of the conjunction results in a num-
ber that is proportional to the fraction of conjuncts satis-

Table 1: Abstract Model Parameters
Parameter Meaning
P : Ω→ [0, 100] Approximates payoff function.
C : Ω→ [−1, 1] Degree of control player has.
T : Ω→ [0, 1] Probability that state is terminal.
SP : (1,∞) Stability of P.
SC : (1,∞) Stability of C.

fied (0.75 for three in a row). This is similar to Schiffel &
Thielscher’s degree of goal attainment.

For each candidate expression, we create corresponding
features by applying each of the possible interpretations to
the expression. Finally, some additional features are gen-
erated by observing and exploiting symmetry in the game
description. Utilizing the domain information extracted ear-
lier, we can observe that red piece and black piece appear
in the same number of relations the same number of times
and that each have an initial cardinality of twelve. From this,
we can hypothesize that the solution cardinality interpreta-
tions of (cell ?x ?y red piece) and (cell ?x ?y black piece)
are symmetric to each other and introduce a relative feature
for the difference between the two. In this case, the feature
represents the material piece advantage of red over black.

Once we have generated a set of candidate features, we
need some way of determining which features are most
likely to be relevant to state evaluation. The intuition behind
our criteria will be that quantities which wildly oscillate do
not provide as good a basis for assessing the value of a state
as quantities that vary only incrementally. We quantify this
idea by introducing a measure called the stability.

To compute the stability of a feature, we first generate
a set of sample states in the game through random explo-
ration of the game tree. We compute the value of the fea-
ture for each sample state. Next, we compute the variance
of the feature’s values over the sample states. This is the
total variance. Two pairs of states are adjacent if one is
the immediate successor of the other in some path through
the game tree. We calculate another quantity which we will
call the adjacent variance by summing the squares of the
difference in feature values for adjacent sample states and
dividing by the number of adjacent state pairs. We define
the stability quotient to be the ratio of the overall variance to
the adjacent variance. We also refer to the stability quotient
as simply the stability. If the feature wildly oscillates from
state to state, the stability will be low (≈ 1), whereas if the
feature value changes only incrementally, the stability will
be significantly greater than one.

Abstract Model
The abstract model reduces the game to five parameters: P
(payoff), C (control), T (termination), SP (payoff stability),
and SC (control stability). The ranges and intuitive mean-
ings of the various game parameters are summarized in Ta-
ble 1, where Ω denotes the set of legal game states.

The intention of the payoff value is to provide a function
from states to numbers that evaluates to the role’s payoff val-
ues for the terminal states and is approximately continuous

1136



over the topology of the game tree. To construct this, we
start with our list of stable features. We eliminate some fea-
tures through a dependency analysis of the rules in the game
description. We exclude features based on expressions in-
volving relations that do not influence goal expressions.

Next, we categorize the remaining stable features by their
correlation to the payoff function. The correlation is either
positive, negative, or not correlated. To determine the corre-
lation, we construct a pair of pseudo-states that are identical
except that one has the expression associated with the fea-
ture and the other does not. We compute the payoff value of
the pseudo-states based on the game’s payoff rules as if the
pseudo-states were terminal states. If the payoff values are
the same, the feature is considered uncorrelated with pay-
off. If the payoff is higher on the state with the higher fea-
ture value, then the correlation is positive and if the pay-
off is lower on the state with the higher feature value, then
the correlation is negative. Of the features having non-zero
correlation, we exclude absolute features that are subsumed
by relative features. In the case of cylinder checkers, the
features correlated with payoff are the red piece count, the
black piece count, and the difference in piece counts, so the
difference in piece counts is retained. When there are mul-
tiple features that are correlated with payoff and not sub-
sumed by other features, the features are weighted according
to their stability, with the coefficient being positive for pos-
itively correlated features and negative for negatively corre-
lated features. Finally, the overall coefficient and offset are
set such that the values of the resulting payoff function for
all the sample states falls in the range of [0, 100].

The control function is intended to quantify differences in
the number of moves available to each role. Let the moves
available to role k at state ω ∈ Ω be denoted mk(ω). We
define the control at state ω to be:

mred(ω)−mblack(ω)
maxω′∈Ω(mred(ω′) + mblack(ω′))

(1)

Positive numbers indicate red has more moves, negative
numbers indicate black has more moves. In games with
more than two roles, mblack is replaced with the sum of the
number of moves of the adversaries. The denominator can-
not be measured directly because the state space is too large,
so we approximate by taking the maximum quantity over the
sample states.

To compute the control function, we begin with the stable
features. We eliminate features associated with expressions
that do not influence legal expressions, as these features do
not impact the moves available to the various roles. We re-
move absolute features subsumed by relative features. In
cylinder checkers, we end up with two features: the num-
ber of red pieces minus the number of black pieces and the
number of red kings minus the number of black kings. To
quantify the relative contribution of these features, we take
a statistical approach. We generate a collection of sample
states by simulating game play with random moves. We per-
form least squares regression with the control as the depen-
dent variable and the features as the independent variables
to find the best fit for control values in terms of the features.

The third function that we use in constructing our heuris-
tic evaluation function is termination. It is used to deter-
mine the relative importance of the payoff and control func-
tions, the intuition being that in the opening it may make
sense to attempt to gain more control of the game’s tra-
jectory, but that in the endgame focusing on the payoff is
paramount. Treating termination as probabilistic is perhaps
counter-intuitive, given that the termination of each state is
in fact deterministic. The probabilistic treatment enables us
to abstract over a region of states with similarly valued stable
features. The termination function is computed statistically
by least squares regression, with the target values 1 for ter-
minal states and 0 for non-terminal states.

Heuristic Evaluation Function
To determine how to combine the payoff, control, and ter-
mination into an overall heuristic evaluation function, we
consider the game as a compound lottery. With probability
T , the game terminates and red is awarded payoff P . With
probability 1 − T , the game continues and has an outcome
determined by a second lottery. The second lottery has two
possible outcomes. The first outcome, with probability SC

is a payoff to red of 100 ∗ C. The second outcome, with
probability SP = 1−SC is a payoff to red of P . The values
P, C, and T are the values of the payoff, control, and termi-
nation functions evaluated at the given state. The values SP

and SC are the payoff stability and control stability, respec-
tively, computed as the stability of functions P and C just as
the stability of the primitive features were computed in the
previous section.

The result of running the analyzer on cylinder checkers
for red for 10 minutes is as follows. Although the analy-
sis program prints the features in terms of GDL syntax, we
present the features here in their English translations for im-
proved readability.
Payoff = 50 + 10 (# total red - # total black)
Control =

0.087 (# red kings - # black kings)
+0.042 (# red pieces - # black pieces)

Terminal = -0.002 (# steps before we reach step 50) + 0.083
Payoff Stability = 0.341, Control Stability = 0.659
Given the values for the parameters in Table 1, the ex-

pected outcome v of the lottery follows directly according
to probability calculus:

v = T ∗P +(1−T )((50+50 ∗C) ∗SC +SP ∗P ) (2)

A key parameter influencing both the quality of the results
and the computational cost of the analysis is the number of
sample states generated. More samples generally result in
better results at the expense of longer analysis time. It is dif-
ficult to predict how long the model construction will take
for a given number of samples for a given game, so the an-
alyzer implements an anytime algorithm that produces bet-
ter quality game models given more time. The anytime al-
gorithm simply starts with a small number of sample states
(25), and computes the model. It then doubles the number of
sample states and recomputes the model. It repeats this until
there is no analysis time remaining, at which point it returns
the most recently completed model.

1137



To utilize these functions to play games, we perform an
iterative-deepening minimax search with well-known en-
hancements (alpha-beta pruning, transposition tables, and
aspiration windows). When evaluating nodes at the fron-
tier, terminal nodes are valued according to their actual
payoff values as determined by the game description. To
evaluate non-terminal nodes, we first compute values for
U, T,C, SU , SC by evaluating the functions constructed in
the analysis phase. We plug the resulting values into Equa-
tion 2. These values are propagated according to the mini-
max algorithm and are used as the basis for move selection.

Preliminary Results
The operations for automatically constructing heuristic eval-
uation functions as described in the previous section have
been implemented in OCaml. This section reports results
so far in running the heuristics constructor on a sampling
of games. The results were obtained by running our single-
threaded program on a MacBook Pro with a 2.16 GHz Intel
Core Duo. Game descriptions for each of the games were
provided by the Stanford General Game Playing group. Dif-
ferent analysis times were used on the various games be-
cause larger games take longer for the analysis to converge
to a consistent evaluation function.

Racetrack Corridor
Racetrack corridor was introduced in the championship
match of the First Annual General Game Playing Compe-
tition. It was inspired by the game of Quorridor, which
involves moving a piece across a board and placing walls
to impede the opponent’s progress. Racetrack corridor is
played on 3 x 5 grids as shown in Figure 1.

Figure 1: Racetrack Corridor (initial position)

Each player controls a piece that starts at the top of one of
the grids and must race lengthwise to the other side. In each
move, a player may choose to move a piece forward or side-
ways or may place a horizontal wall that blocks the middle
and one side blocks one side of the opponent’s track. Moves
are made simultaneously. Each player begins the game with
four walls. The game ends when either player reaches the
bottom or after 20 moves, whichever comes first. Though
the board looks small, the initial branching factor is one-
hundred because each player simultaneously chooses from
10 legal moves.

The following results were obtained for white in 10
minutes of analysis:
Payoff = 50 + 10 (black goal distance - white goal distance)
Control =

0.091 (# walls on right side: white lane - black lane)

+0.090 (# walls on left side: white lane - black lane)
+0.006 (# pieces in top row: white - black)

Terminal = 0.014 (# steps into the game) -0.088
Payoff Stability = 0.729, Control Stability = 0.271

The payoff function values proximity to the goal, an in-
tuitively obvious heuristic in this game. The likelihood of
termination increases with each step of the game. The con-
trol function is non-intuitive, but its lower stability dictates
that it will be weighed less heavily than the payoff function.

Othello
An interesting challenge in constructing heuristic evaluation
functions for Othello is that the intuitive strategy of greedily
maximizing one’s disks throughout the game results in poor
performance. Machine learning techniques have been ef-
fectively utilized to construct heuristic evaluation functions
for Othello, such as in (Buro 2002). However, these tech-
niques have relied on self-play on the order of hundreds of
thousands of games. Thirty minutes of analysis on Othello
produced the following result:
Payoff =

3.361 (lower right corner: # white - # black)
+2.015 (upper right corner: # white - # black)
+1.379 (upper edge: # white - # black)
+1.221 (lower left corner: # white - # black)
+1.114 (lower edge: # white - # black)
+0.789 (upper left corner: # white - # black)
+0.646 (right edge: # white - # black)
+0.592 (left edge: # white - # black)
+50.000
No stable features were found to be predictive of con-

trol, so the heuristic evaluation function reduces to the pay-
off function. The payoff function is piece differential, but
consists of only the four corners and four edges. We are en-
couraged to note that the naive approach of maximizing the
number of total pieces throughout the game is not advocated
by the above evaluation function.

Chess
Chess is a challenging game with a long history of AI work,
most of which has utilized highly tuned heuristic evaluation
functions formulated by chess experts. The GDL game de-
scription for chess holds fairly closely to the official game
rules, including special moves such as castling and en pas-
sant. It does not, however, contain the rules for a draw after
repeating a state three times. Instead, it calls a game a draw
if no checkmate or stalemate is reached after 200 moves.

Two hours of analysis yielded the following result:
Control =

0.097 (# white queens - # black queens)
+0.092 (# white rooks - # black rooks)
+0.042 (# white bishops - # black bishops)
+0.039 (# white knights - # black knights)
+0.022 (# empty squares: rank 1 - rank 8)
+0.004 (# white pawns - # black pawns)
It did not find any stable features correlated with pay-

off, which is unsurprising given the conditions for check-
mate. The heuristic evaluation function reduces to the con-

1138



trol function, which is dominated by a valuation of material.
Among material features, it valued queens highest, followed
by rooks, then bishops, then knights, then pawns. This rel-
ative ordering is consistent with the classical valuation of
chess pieces (9 for queens, 5 for rooks, 3 for bishops, 3 for
knights, and 1 for pawns). The non-material feature indi-
cates an advantage in clearing one’s first rank. This appears
to be due to the increased mobility achieved by moving the
major pieces out from behind the row of pawns.

Chinese Checkers
Chinese Checkers is a multi-player game played with mar-
bles on a star-shaped board. The program analyzed a GDL
description of a small version of Chinese Checkers for six
players, each of which controls three marbles on a star-
shaped board. Ten minutes of analysis for red yielded:
Payoff =

1.201 (fraction of red marbles in goal)
-3.000 (total distance red marbles need to travel)
+80.0
No stable features were found to correlate with control, so

the evaluation function is strictly the payoff function. In this
six-player game, the analyzer was unable to deduce relative
features, so only features relevant to the player’s own goals
appear. The function primarily values minimizing distance
to the goal and secondarily attempts to maximize the fraction
of marbles actually in the goal.

Empirical Trials
We performed empirical trials to test the effectiveness of
the heuristics based on the above models. We pitted two
versions of our player against each other that were identi-
cal except for the heuristic evaluation functions. One ver-
sion used the evaluation functions described above, and the
other used a simple heuristic that we call early payoff. The
early payoff heuristic simply computes what the game de-
scription indicates the payoff of the given state would be if
that state were terminal. The quality of this heuristic varies
from fairly good for cylinder checkers to admittedly poor
for chess. All games were run multiple times, switching
roles between each game and averaging the payoffs for the
mean score. In the case of Chinese Checkers, games were
run with three players using the model-based heuristics and
three players using the early payoff heuristic.

The results are shown in Table 2. The model-based
heuristics outperformed the early payoff heuristic in ev-
ery case. The closest margins were in Chinese Checkers,
which is a little difficult to interpret because it is a six-player
game, and cylinder checkers, where the early payoff heuris-
tic works quite well. This is evidence that the heuristic eval-
uation functions are indeed effective.

Discussion
A core idea in the approach to heuristics for general game
playing outlined here is the abstraction of a specific game to
a simple model that provides a quantitative summary of three
aspects: payoff, control, and termination. An enabling tech-
nique is the introduction of stability as a quantitative method
of distilling the features most relevant to this summary.

Table 2: Mean Scores from Empirical Trials
Game Model-Based Early Payoff
Cylinder Checkers 59 41
Racetrack Corridor 100 10
Othello 75 25
Chess 100 0
Chinese Checkers 42 30

The concept of stability is deceptively simple, but its sig-
nificance is demonstrated by the specificity with which it
identifies relevant features. For example, both chess and
Othello are played on an 8x8 board described by succes-
sor relations. Stability considerations enable the analyzer to
ascertain the importance of corners in Othello while reject-
ing them as features in chess. Conversely, stability concerns
lead the analyzer to reject overall material as a heuristic in
Othello, while adopting it in chess and cylinder checkers.

The results so far suggest that the techniques described
here construct heuristic evaluation functions that are both
comprehensible and effective.

Acknowledgments
We thank Rich Korf for insightful advice throughout the
project. Thanks also to Alex Dow, Alex Fukunaga, and Eric
Huang for comments on an earlier version of this paper.

References
Buro, M. 2002. The evolution of strong Othello programs.
In IWEC, 81–88.
Genesereth, M., and Love, N. 2005. General game playing:
Game description language specification. Technical report,
Computer Science Department, Stanford University, Stan-
ford, CA, USA. http://games.stanford.edu/gdl spec.pdf.
Genesereth, M.; Love, N.; and Pell, B. 2005. General game
playing: Overview of the AAAI competition. AI Magazine
26(2).
Kuhlmann, G.; Dresner, K.; and Stone, P. 2006. Auto-
matic Heuristic Construction in a Complete General Game
Player. In Proceedings of the Twenty-First National Con-
ference on Artificial Intelligence, Boston, Massachusetts,
1457–62.
Pearl, J. 1984. Heuristics: Intelligent Search Strategies
for Computer Problem Solving. Reading, Massachusetts:
Addison-Wesley.
Pell, B. D. 1993. Strategy Generation and Evaluation
for Meta-Game Playing. Ph.D. Dissertation, University of
Cambridge.
Schiffel, S., and Thielscher, M. 2007. Automatic Con-
struction of a Heuristic Search Function for General Game
Playing. In Seventh IJCAI International Workshop on Non-
montonic Reasoning, Action and Change (NRAC07).
von Neumann, J., and Morgenstern, O. 1953. Theory of
Games and Economic Behavior. Princeton: Princeton Uni-
versity Press.

1139


