
General Game Playing
Incomplete Search

Michael Genesereth
Computer Science Department

Stanford University

Small Games

Large Games

Game Variety

X
O

X

Complete Game Graph Search

X O X

O X
O

X O X

O

X O X

O X
OX

X O X

O X
O X

X O X

O X
O
X

X O X

O X

X O X

O
X

X O X

O
X

X O X

O
X

X O X

O X

Incomplete Search
X O X

O

X O X

O X

X O X

O
X

X O X

O
X

X O X

O
X

X O X

O X

Evaluation of Non-Terminal States

How do we evaluate non-terminal states?

X O X

O

X O X

O X

X O X

O
X

X O X

O
X

X O X

O
X

X O X

O X

Choice of Depth

To what depth should we search?

X O X

O

X O X

O X

X O X

O
X

X O X

O
X

X O X

O
X

X O X

O X

Variable Depth Search

Should we search different branches to different depths?

X O X

O

X O X

O X

X O X

O
X

X O X

O
X

X O X

O
X

X O X

O X

Persistence

Can we preserve results across moves?

X O X

O

X O X

O X

X O X

O
X

X O X

O
X

X O X

O
X

X O X

O X

Evaluation Functions
How do we evaluate non-terminal states?

Chess examples:
 Piece count
 Board control

Comments
 Not necessarily successful
 Game-specific but this is general game playing

Evaluation Functions

Mobility is a measure of the number of things a player
can do. Focus is a measure of the narrowness of the
search space. It is the opposite of mobility.

Basis - number of actions in a state or number of states
reachable from that state. Horizon - current state or n
moves away.

Sometimes it is good to focus to cut down on search
space. Often better to restrict opponents’ moves while
keeping one’s own options open.

Heuristic #1 - Mobility / Focus

Mobility is a measure of the number of things a player
can do. Focus is a measure of the narrowness of the
search space. It is the opposite of mobility.

Basis - number of actions in a state or number of states
reachable from that state. Horizon - current state or n
moves away.

Sometimes it is good to focus to cut down on search
space. Often better to restrict opponents’ moves while
keeping one’s own options open.

Heuristic #1 - Mobility / Focus

function mobility (state)
 {var actions = findlegals(state,library);
 var feasibles = findactions(library);
 return (actions.length/feasibles.length * 100)}

function focus (state)
 {var actions = findlegals(state,library);
 var feasibles = findactions(library);
 return (100 - actions.length/feasibles.length * 100)}

Implementation

GGP-06 Final - Cylinder Checkers

Assume value of 0 for non-terminal states.

 value(state) = goal(role,state) if terminal(state)
 value(state) = 0 otherwise

Heuristic #2 - Pessimism

Example

50 0 0 80

0 0 0 0 100100 100 100

Grey - estimates of rewards in non-terminal states - here 0.
Black - rewards in terminal states.

Heuristic #3 - Intermediate Values

Assume reward for non-terminal states.

value(state) = goal(role,state)

Good on monotonic games (where utility accumulates as
the game progresses), e.g. alquerque.

Not so good on nonmonotonic games. Susceptible to
"false summits".

50 70 70 80

0 0 0 0 100 100 100 100

Example

Blue - rewards in non-terminal states.
Black - rewards in terminal states.

Definition

f(s) = w1× f1(s) + … + wn × fn(s)

Examples:
 Final State Value when known
 Mobility / Focus
 Intermediate State Values
 Other

Some players estimate weights by experimentation
during the start clock. More on this in a few weeks.

Weighted Linear Combinations

Definition

f(s) = w1× f1(s) + … + wn × fn(s)

Examples:
 Mobility / Focus
 Intermediate State Values
 Other

Some players estimate weights by experimentation
during the start clock. More on this in a few weeks.

Weighted Linear Combinations

Depth-Limited Search
To what depth should we search?

Depth-Limited Search
X O X

O

X O X

O X

X O X

O
X

X O X

O
X

X O X

O
X

X O X

O X

Depth

Minimax:

function minimax (state)
 {if (findterminalp(state,library))
 {return findreward(role,state,library)*1};
 var active = findcontrol(state,library);
 if (active===role) {return maximize(state)};
 return minimize(state)}

Depth-Limited Minimax

function minimaxdepth (state,depth)
 {if (findterminalp(state,library))
 {return findreward(role,state,library)*1};
 if (depth<=0) {return evalfun(state,library)};
 var active = findcontrol(state,library);
 if (active===role) {return maxscore(state,depth-1)};
 return minscore(state,depth-1)}

Depth-Limited Minimax

function maxscore (state,depth)
 {var actions = findlegals(state,library);
 if (actions.length===0) {return 0};
 var score = 0;
 for (var i=0; i<actions.length; i++)
 {var newstate = simulate(actions[i],state,library);
 var newscore = minimaxdepth(newstate,depth);
 if (newscore===100) {return 100};
 if (newscore>score) {score = newscore}};
 return score}

function minscore (state,depth)
 {var actions = findlegals(state,library);
 if (actions.length===0) {return 0};
 var score = 100;
 for (var i=0; i<actions.length; i++)
 {var newstate = simulate(actions[i],state,library);
 var newscore = minimaxdepth(role,newstate,depth);
 if (newscore===0) {return 0};
 if (newscore<score) {score = newscore}};
 return score}

maxscore and minscore

Legal and random players are degenerate depth-limited
search with depth 0.

Onestep and Twostep are degenerate depth-limited search
with depths 1 and 2.

In general, we would like to allow greater depths.

Remarks

Problem

To what depth should we search?

X O X

O

X O X

O X

X O X

O
X

X O X

O
X

X O X

O
X

X O X

O X

0 0 0 0

100 100 100 100 0 0 0 0 0 0 0 0 100 100 100 100

Problem - Insufficient Depth

10 20 30 40 50 60 70 80 0 0 0 0

Problem - Excessive Depth

100

Iterative Deepening
To what depth should we search?

Use depth-limited search to explore entire tree to level 1
Use depth-limited search to explore entire tree to level 2
Use depth-limited search to explore entire tree to level 3
And so forth

Continue till time runs out
Choose action that gives maximal value

Iterative Deepening

Level 1

Level 2

Level 3

100

function playminimaxid ()
 {var best = findlegalx(state,library);
 for (var depth=1; depth<10; depth++)
 {var action = minimaxdepth(state,depth);
 best = action};
 return best}

At what depth do we stop?

Naive Implementation

function playminimaxid ()
 {var deadline = Date.now()+(playclock-1)*1000;
 var best = findlegalx(state,library);
 for (var depth=1; depth<10; depth++)
 {var action = playminimaxidinner(state,depth,deadline);
 if (action===false) {return best};
 best = action};
 return best}

Implementation

function playminimaxidinner (state,depth,deadline)
 {var actions = shuffle(findlegals(state,library));
 var best = actions[0];
 var score = 0;
 for (var i=0; i<actions.length; i++)
 {var newstate = simulate(actions[i],state,library);
 var newscore = minimaxid(newstate,depth,deadline);
 if (newscore===false) {return false};
 if (newscore===100) {return actions[i]};
 if (newscore>score) {best = actions[i]; score=newscore}};
 return best}

Implementation

function minimaxid (state,depth,deadline)
 {if (findterminalp(state,library))
 {return findreward(role,state,library)*1};
 if (depth<=0) {return evalfun(state,library)*1};
 if (Date.now()>deadline) {return false};
 if (findcontrol(state,library)===role)
 {return maxscoreid(state,depth,deadline)};
 return minscoreid(state,depth,deadline)}

Implementation

function maxscore (state,depth,deadline)
 {var actions = findlegals(state,library);
 if (actions.length===0) {return 0};
 var score = 0;
 for (var i=0; i<actions.length; i++)
 {var newstate = simulate(actions[i],state,library);
 var newscore = minimaxid(newstate,depth,deadline);
 if (newscore===false) {return false};
 if (newscore===100) {return 100};
 if (newscore>score) {score = newscore}};
 return score}

function minscore (state,depth,deadline)
 {var actions = findlegals(state,library);
 if (actions.length===0) {return 0};
 var score = 100;
 for (var i=0; i<actions.length; i++)
 {var newstate = simulate(actions[i],state,library);
 var newscore = minimaxid(newstate,depth,deadline);
 if (newscore===false) {return false};
 if (newscore===0) {return 0};
 if (newscore<score) {score = newscore}};
 return score}

maxscore and minscore

Advantages
 requires storage linear in depth
 still finds shortest path to an optimal solution

Disadvantages (?)
 Repeated work
 but
 Cost only a constant factor more than depth-first search

 Why? Tree is growing exponentially, so fringe of tree
 and size of tree above fringe are approximately same

Advantages and Disadvantages

https://en.wikipedia.org/wiki/
Iterative_deepening_depth-first_search

More Information

https://en.wikipedia.org/wiki/Iterative_deepening_depth-first_search
https://en.wikipedia.org/wiki/Iterative_deepening_depth-first_search

Monte Carlo Search

Sample a few branches of the game tree and use results
to estimate values.

 (1) Optionally explore game graph to some level.

 (2) Beyond this, explore to end of game from fringe nodes,
 making random choices for moves of all players.

 (3) Assign expected utilities to fringe states by
 summing utilities and dividing by number of trials.

Basic Idea

43

Example

44

100 0 0 0 0 100 100 0 0 0 0 0 100 0 100 100

Example

45

25 50 0 75

100 0 0 0 0 100 100 0 0 0 0 0 100 0 100 100

Example

function mcs (state,level)
 {if (findterminalp(state,library))
 {return findreward(role,state,library)*1};
 if (level>levels) {return montecarlo(state)};
 var active = findcontrol(state,library);
 if (active===role) {return maxscore(state,level+1)};
 return minscore(state,level+1)}

mcs

function maxscore (state,level)
 {var actions = findlegals(state,library);
 if (actions.length===0) {return 0};
 var score = 0;
 for (var i=0; i<actions.length; i++)
 {var newstate = simulate(actions[i],state,library);
 var newscore = mcs(newstate,level);
 if (newscore===100) {return 100};
 if (newscore>score) {score = newscore}};
 return score}

function minscore (state,level)
 {var actions = findlegals(state,library);
 if (actions.length===0) {return 0};
 var score = 100;
 for (var i=0; i<actions.length; i++)
 {var newstate = simulate(actions[i],state,library);
 var newscore = mcs(role,newstate,level);
 if (newscore===0) {return 0};
 if (newscore<score) {score = newscore}};
 return score}

maxscore and minscore

function montecarlo (state)
 {var total = 0;
 for (var i=0; i<count; i++)
 {total = total + depthcharge(state)};
 return total/count}

function depthcharge (state)
 {if (findterminalp(state,ruleset))
 {return findreward(role,state,ruleset)}*1;
 var actions = findlegals(state,library);
 if (actions.length===0) {return 0};
 var best = randomindex(actions.length);
 var newstate = simulate(actions[best],state,library);
 return depthcharge(newstate)}

Implementation

49

Problems
 Optimistic - opponent might not respect probabilities
 Does not utilize game structure in any useful way

Problems and Features

50

Problems
 Optimistic - opponent might not respect probabilities
 Does not utilize game structure in any useful way

Benefits
 Fast because no branching in depth charges
 Small space because nothing stored in probes
 Provides guidance when other heuristics fail

Problems and Features

Issues

Incomplete Search
X O X

O

X O X

O X

X O X

O
X

X O X

O
X

X O X

O
X

X O X

O X

Evaluation of Non-Terminal States

How do we evaluate non-terminal states?

X O X

O

X O X

O X

X O X

O
X

X O X

O
X

X O X

O
X

X O X

O X

Choice of Depth

To what depth should we search?

X O X

O

X O X

O X

X O X

O
X

X O X

O
X

X O X

O
X

X O X

O X

Variable Depth Search

Can we search different branches to different depths?

X O X

O

X O X

O X

X O X

O
X

X O X

O
X

X O X

O
X

X O X

O X

Persistence

Can we preserve tree across moves or phases of ID?

X O X

O

X O X

O X

X O X

O
X

X O X

O
X

X O X

O
X

X O X

O X

/42

/42

