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Preface

General game players are computer systems able to play strategy games based solely on formal
game descriptions supplied at "runtime". (In other words, they don't know the rules until the game
starts.) Unlike specialized game players, such as Deep Blue, general game players cannot rely on
algorithms designed in advance for specific games; they must discover such algorithms
themselves. General game playing expertise depends on intelligence on the part of the game player
and not just intelligence of the programmer of the game player.

GGP is an interesting application in its own right. It is intellectually engaging and more than a
little fun. But it is much more than that. It provides a theoretical framework for modeling discrete
dynamic systems and for defining rationality in a way that takes into account problem
representation and complexities like incompleteness of information and resource bounds. It has
practical applications in areas where these features are important, e.g. in business and law. More
fundamentally, it raises questions about the nature of intelligence and serves as a laboratory in
which to evaluate competing approaches to artificial intelligence.

This book is an elementary introduction to General Game Playing (GGP). (1) It presents the theory
of General Game Playing and leading GGP technologies. (2) It shows how to create GGP
programs capable of competing against other programs and humans. (3) And it offers a glimpse of
some of the real world applications of General Game Playing.

Although the book is elementary, it does assume some basic background. (1) First of all, readers
should be familiar with Symbolic Logic. Game descriptions are written in the language of
Symbolic Logic, and it helps to be able to read and write such descriptions. (2) Second, readers
should be familiar the concepts of computer programming. At the very least, they should be able
to read and understand program fragments written in modern programming languages. We use
Javascript in all of our examples. Javascript is fairly simple. If readers are familiar with languages
like Java and C, they should be able to read Javascript without any further training.

Before getting started, we want to acknowledge the contributions of various people. First of all,
there are the various students who over the years helped to craft the course - notably Nathaniel
Love, David Haley, Eric Schkufza, Evan Cox, Alex Landau, Peter Pham, Mirela Spasova, and
Bertrand Decoster. Special mention goes to Sam Schreiber for maintaining the GGP configurable
player and the Java code base used by many students. He is also the creator and maintainer or
ggp.org, a website for all things GGP.

And thanks as well to the students who over the years have had to endure early versions of this
material, in many cases helping to get it right by suffering through experiments that were not
always successful. It is a testament to the intelligence of these students that they seem to have
learned the material despite multiple bumbling mistakes on our part. Their patience and
constructive comments were invaluable in helping us to understand what works and what does not.



C H A P T E R  1

Introduction

1.1 Introduction

Games of strategy, such as chess, couple intellectual activity with competition. We can exercise
and improve our intellectual skills by playing such games. The competition adds excitement and
allows us to compare our skills to those of others. The same motivation accounts for interest in
Computer Game Playing as a testbed for Artificial Intelligence. Programs that think better should
be able to win more games, and so we can use competitions as an evaluation technique for
intelligent systems.

Unfortunately, building programs to play specific games has limited value in AI. (1) To begin
with, specialized game players are very narrow. They can be good at one game but not another.
Deep Blue may have beaten the world Chess champion, but it has no clue how to play checkers.
(2) A second problem with specialized game playing systems is that they do only part of the work.
Most of the interesting analysis and design is done in advance by their programmers. The systems
themselves might as well be tele-operated.

All is not lost. The idea of game playing can be used to good effect to inspire and evaluate good
work in Artificial Intelligence, but it requires moving more of the design work to the computer
itself. This can be done by focussing attention on General Game Playing.

General game players are systems able to accept descriptions of arbitrary games at runtime and
able to use such descriptions to play those games effectively without human intervention. In other
words, they do not know the rules until the games start.

Unlike specialized game players, such as Deep Blue, general game players cannot rely on
algorithms designed in advance for specific games. General game playing expertise must depend
on intelligence on the part of the game player and not just intelligence of the programmer of the
game player. In order to perform well, general game players must incorporate results from various
disciplines, such as knowledge representation, reasoning, and rational decision making; and these
capabilities have to work together in a synergistic fashion.

Moreover, unlike specialized game players, general game players must be able to play different
kinds of games. They should be able to play simple games (like Tic Tac Toe) and complex games
(like Chess), games in static or dynamic worlds, games with complete and partial information,
games with varying numbers of players, with simultaneous or alternating play, with or without
communication among the players, and so forth.

1.2 Games

Despite the variety of games treated in General Game Playing, all games share a common abstract
structure. Each game takes place in an environment with finitely many states, with one



distinguished initial state and one or more terminal states. In addition, each game has a fixed,
finite number of players; each player has finitely many possible actions in any game state, and
each state has an associated goal value for each player. The dynamic model for general games is
synchronous update: all players move on all steps (although some moves could be "no-ops"), and
the environment updates only in response to the moves taken by the players.

Given this common structure, we can think of a game as a state graph, like the one shown here. In
this case, we have a game with one player, with eight states (named s1, ... , s8), with one initial
state (s1), with two terminal states (s4 and s8). The numbers associated with each state indicate the
values of those states. The arcs in this graph capture the transition function for the game. For
example, if the game is in state s1 and the player does action a, the game will move to state s2. If
the player does action b, the game will move to state s5.

Figure 1.1 - State Graph for a single-player game

In the case of multiple players with simultaneous moves, the arcs become multi-arcs, with one arc
for each combination of the players' actions. Here is an example of a simultaneous move game
with two players. If in state s1 both players perform action a, we follow the arc labelled a / a. If the
first player does b and the second player does a, we follow the b / a arc. We also have different
goals for the different players. For example, in state s4, player 1 gets 100 points whereas player 2
get 0 points; and, in state s8, the situation is reversed.

Figure 1.2 - State Graph for a two-player game

This conceptualization of games is an alternative to the traditional extensive normal form



definition of games in game theory. While extensive normal form is more appropriate for certain
types of analysis, the state-based representation has advantages in General Game Playing.

In extensive normal form, a game is modeled as a game tree. In a game tree, each node is linked to
successors by arcs corresponding to the actions legal in the corresponding game state. While
different nodes often correspond to different states, it is possible for different nodes to correspond
to the same game state. (This happens when different sequences of actions lead to the same state.)

In state-based representation, a game is modeled as a graph in which nodes are in 1-1
correspondence with states. Moreover, all players' moves are synchronous. (With extensions,
extensive normal form can also represent simultaneous move games but with some added cost of
complexity.) Additionally, state-based representation makes it possible to describe games more
compactly, and it makes it easier for players to play games efficiently.

1.3 Game Description

Since all of the games that we are considering are finite, it is possible, in principle, to describe
such games in the form of state graphs. Unfortunately, such explicit representations are not
practical in all cases. Even though the numbers of states and actions are finite, these sets can be
extremely large; and the corresponding graphs can be larger still. For example, in chess, there are
thousands of possible moves and more than 1030 states.

In the vast majority of games, states and actions have composite structure that allows us to define
a large number of states and actions in terms of a smaller number of more fundamental entities. In
Chess, for example, states are not monolithic; they can be conceptualized in terms of pieces,
squares, rows and columns and diagonals, and so forth.

By exploiting this structure, it is possible to encode games in a form that is more compact than
direct representation. Game Description Language (GDL) supports this by relying on a
conceptualization of game states as databases and by relying on logic to define the notions of
legality and so forth.

As an example of GDL, let us look at the rules for the game of Tic-Tac-Toe. Note that this
example is intended as a brief glimpse at GDL, not a rigorous introduction to the language. Full
details of the language are given in the next chapter.

We begin with an enumeration of roles. There are two players - white and black.

 
role(white)
role(black)

 

Next, we characterize the initial state. In this case, all cells are blank.

 

init(cell(1,1,b))
init(cell(1,2,b))
init(cell(1,3,b))
init(cell(2,1,b))
init(cell(2,2,b))
init(cell(2,3,b))
init(cell(3,1,b))
init(cell(3,2,b))
init(cell(3,3,b))

 



init(control(white))

Next, we define legality. A player may mark a cell if that cell is blank and it has control.
Otherwise, so long as there is a blank cell, the only legal action is noop, i.e. non-action. In GDL,
symbols that begin with capital letters are variables, while symbols that begin with lower case
letters are constants. The :- operator is read as "if" - the expression to its left is true if the
expressions that follow it are true.

 

legal(W,mark(X,Y)) :-
  true(cell(X,Y,b)) &
  true(control(W))

legal(white,noop) :-
  true(cell(X,Y,b)) &
  true(control(black))

legal(black,noop) :-
  true(cell(X,Y,b)) &
  true(control(white))

 

Next, we look at the update rules for the game. A cell is marked with an x or an o if the
corresponding player marks that cell. If a cell contains a mark, it retains that mark on the
subsequent state. If a cell is blank and is not marked on that move, then it remains blank. Finally,
control alternates on each play.

 

next(cell(M,N,X)) :-
  does(white,mark(M,N)) &
  true(cell(M,N,b))

next(cell(M,N,O)) :-
  does(black,mark(M,N)) &
  true(cell(M,N,b))

next(cell(M,N,W)) :-
  true(cell(M,N,W)) &
  distinct(W,b)

next(cell(M,N,b)) :-
  does(W,mark(J,K)) &
  true(cell(M,N,W)) &
  distinct(M,J)

next(cell(M,N,b)) :-
  does(W,mark(J,K)) &
  true(cell(M,N,W)) &
  distinct(N,K)

next(control(white)) :-
  true(control(black))

next(control(black)) :-
  true(control(white))

 

Goals. White gets a score of 100 points if there is a line of x's, and otherwise it gets 0 points. Black
gets a score of 100 points if there is a line of o's and otherwise it gets 0 points. The line relation is



defined below.

 

goal(white,100) :- line(x)
goal(white,0) :- ~line(x)

goal(black,100) :- line(o)
goal(black,0) :- ~line(o)

 

Supporting concepts. A line is a row of marks of the same type or a column or a diagonal. A row
of marks mean thats there three marks all with the same first coordinate. The column and diagonal
relations are defined analogously.

 

line(X) :- row(M,X)
line(X) :- column(M,X)
line(X) :- diagonal(X)

row(M,X) :-
  true(cell(M,1,X)) &
  true(cell(M,2,X)) &
  true(cell(M,3,X))

column(M,X) :-
  true(cell(1,N,X)) &
  true(cell(2,N,X)) &
  true(cell(3,N,X))

diagonal(X) :-
  true(cell(1,1,X)) &
  true(cell(2,2,X)) &
  true(cell(3,3,X))

diagonal(X) :-
  true(cell(1,3,X)) &
  true(cell(2,2,X)) &
  true(cell(3,1,X))

 

Termination. A game terminates whenever there is a line of marks of the same type or if the game
is no longer open, i.e. there are no blank cells.

 

terminal :- line(x)
terminal :- line(o)
terminal :- ~open

open :- true(cell(M,N,b))

 

Note that, under the full information assumption, any of these relations can be assumed to be false
if it is not provably true. Thus, we have complete definitions for the relations legal, next, goal,
and terminal in terms of true and does. The true relation starts out identical to init and on
each step is changed to correspond to the extension of the next relation on that step.

Although GDL is designed for use in defining complete information games, it can be extended to
partial information games relatively easily. Unfortunately, the resulting descriptions are more
verbose and more expensive to process.



1.4 Game Management

Game Management is the process of administering a game in a general game playing setting. More
properly, it should be called match management, as the issue is how to manage individual matches
of games, not the games themselves. However, everyone seems to use the phrase Game
Management, and so we are stuck with it.

The process of running a game goes as follows. Upon receiving a request to run a match, the
Game Manager's first sends a start message to each player to initiate the match. Once game play
begins, it sends play messages to each player to get their plays and simulates the results. This part
of the process repeats until the game is over. The Manager then sends stop messages to each
player.

The start message lists the name of the match, the role the player is to assume (e.g. white or
black in chess), a formal description of the associated game (in GDL), and the start clock and play
clock associated with the match. The start clock determines how much time remains before play
begins. The play clock determines how much time each player has to make each move once play
begins.

Upon receiving a start message, each player sets up its data structures and does whatever
analysis it deems desirable in the time available. It then replies to the Game Manager that it is
ready for play.

Having sent the start message, the game manager waits for replies from the players. Once it has
received these replies OR once the start clock is exhausted, the Game Manager commences play.

On each step, the Game Manager sends a play message to each player. The message includes
information about the actions of all players on the preceding step. (On the first step, the argument
is nil.)

On receiving a play message, players spend their time trying to decide their moves. They must
reply within the amount of time specified by the match's play clock.

The Game Manager waits for replies from the players. If a player does not respond before the play
clock is exhausted, the Game manager selects an arbitrary legal move. In any case, once all players
reply or the play clock is exhausted, the Game manager takes the specified moves or the legal
moves it has determined for the players and determines the next game state. It then evaluates the
termination condition to see if the game is over. If the game is not over, the game manager sends
the moves of the players to all players and the process repeats.

Once a game is determined to be over, the Game Manager sends a stop message to each player
with information about the last moves made by all players. The stop message allows players to
clean up any data structures for the match. The information about previous plays is supplied so
that players with learning components can profit from their experience.

Having stopped all players, the Game manager then computes the rewards for each player, stores
this information together with the play history in its database, and ceases operation.

1.5 Game Playing

Having a formal description of a game is one thing; being able to use that description to play the



game effectively is something else. In this section, we examine some of the problems of building
general game players and discuss strategies for dealing with these difficulties.

Let us start with automated reasoning. Since game descriptions are written in logic, it is obviously
necessary for a game player to do some degree of automated reasoning.

There are various choices here. (1) A game player can use the game description interpretively
throughout a game. (2) It can map the description to a different representation and use that
interpretively. (3) It can use the description to devise a specialized program to play the game. This
is effectively automatic programming.

The good news is that there are powerful reasoners for Logic freely available. The bad news is that
such reasoners do not, in and of themselves, solve the real problems of general game playing,
which are the same whatever representation for the game rules is used, viz. dealing with
indeterminacy and resource bounds.

The simplest sort of game is one in which there is just one player and the number of states and
actions is not too large. For such cases, traditional AI planning techniques are ideal. Depending on
the shape of the search space, the player can search either forward or backward to find a sequence
of actions / plays that convert the initial state into an acceptable goal state. Unfortunately, not all
games are so simple.

To begin with, there is the indeterminacy that arises in games with multiple players. Recall that the
succeeding state at each point in a game depends on the actions of all players, and remember that
no player knows the actions of the other players in advance. Of course, in some cases, it is
possible for a player to find sequences of actions guaranteed to achieve a goal state. However, this
is quite rare. More often, it is necessary to create conditional plans in which a player's future
actions are determined by its earlier actions and those of the other players. For such cases, more
complex planning techniques are necessary.

Unfortunately, even this is not always sufficient. In some cases, there may be no guaranteed plan
at all, not even a conditional plan. Tic-Tac-Toe is a game of this sort. Although it can be won,
there is no guaranteed way to win in general. It is not really clear what to do in such situations.
The key to winning is to move and hope that the moves of the other players put the game into a
state from which a guaranteed win is possible. However, this strategy leaves open the question of
which moves to make prior to arrival at such a state. One can fall back on probabilistic reasoning.
However, this is not wholly satisfactory since there is no justifiable way of selecting a probability
distribution for the actions of the other players. Another approach, of primary use in directly
competitive games, is to make moves that create more search for the other players so that there is a
chance that time limitations will cause those players to err.

Another complexity is the existence of resource bounds. In Tic-Tac-Toe, there are approximately
5000 distinct states. This is large but manageable. In Chess there are more than 1030 states. A state
space of this size, being finite, is fully searchable in principle but not in practice. Moreover, the
time limit on moves in most games means that players must select actions without knowing for
sure whether they are any good.

In such cases, the usual approach is to conduct partial search of some sort, examining the game
tree to a certain depth, evaluating the possible outcomes at that point, and choosing actions
accordingly. Of course, this approach relies on the availability of an evaluation function for non-
terminal states that is roughly monotonic in the actual probability of achieving a goal. While, for



specific games, such as chess, programmers are able to build in evaluation functions in advance,
this is not possible for general game playing, since the structure of the game is not known in
advance. Rather, the game player must analyze the game itself in order to find a useful evaluation
function.

Another approach to dealing with size is abstraction. In some cases, it is possible to reformulate a
state graph into a more abstract state graph with the property that any solution to the abstract
problem has a solution when refined to the full state graph. In such cases, it may be possible to
find a guaranteed solution or a good evaluation function for the full graph. Various researchers
have proposed techniques along these lines, but more work is needed.

1.6 Discussion

While general game playing is a topic with inherent interest, work in this area has practical value
as well. The underlying technology can be used in a variety of other application areas, such as
business process management and computational law. In fact, many games used in competitions
are drawn from such areas.

General Game Playing is a setting within which AI is the essential technology. It certainly
concentrates attention on the notion of specification-based systems (declarative systems, self-
aware systems, and, by extension, reconfigurable systems, self-organizing systems, and so forth).
Building systems of this sort dates from the early years of AI.

It was in 1958 that John McCarthy invented the concept of the "advice taker". The idea was
simple. He wanted a machine that he could program by description. He would describe the
intended environment and the desired goal, and the machine would use that information in
determining its behavior. There would be no programming in the traditional sense. McCarthy
presented his concept in a paper that has become a classic in the field of AI.

The main advantage we expect the advice taker to have is that its behavior will be
improvable merely by making statements to it, telling it about its environment and
what is wanted from it. To make these statements will require little, if any, knowledge
of the program or the previous knowledge of the advice taker.

An ambitious goal! But that was a time of high hopes and grand ambitions. The idea caught the
imaginations of numerous subsequent researchers -- notably Bob Kowalski, the high priest of logic
programming, and Ed Feigenbaum, the inventor of knowledge engineering. In a paper written in
1974, Feigenbaum gave his most forceful statement of McCarthy's ideal.

The potential use of computers by people to accomplish tasks can be "one-
dimensionalized" into a spectrum representing the nature of the instruction that must
be given the computer to do its job. Call it the what-to-how spectrum. At one extreme
of the spectrum, the user supplies his intelligence to instruct the machine with
precision exactly how to do his job step-by-step. ... At the other end of the spectrum is
the user with his real problem. ... He aspires to communicate what he wants done ...
without having to lay out in detail all necessary subgoals for adequate performance.

Some have argued that the way to achieve intelligent behavior is through specialization. That may
work so long as the assumptions one makes in building such systems are true. For general
intelligence, however, general intellectual capabilities are needed, and such systems shoud be
capable of performing well in a wide variety of tasks. To paraphrase the words of Robert Heinlein.



A human being should be able to change a diaper, plan an invasion, butcher a hog,
conn a ship, design a building, write a sonnet, balance accounts, build a wall, set a
bone, comfort the dying, take orders, give orders, cooperate, act alone, solve
equations, analyze a new problem, pitch manure, program a computer, cook a tasty
meal, fight efficiently, die gallantly. Specialization is for insects.

It is our belief that general game playing offers an interesting application area within which
general AI can be investigated.

Problems

Problem 1.1: Consider the following games. (Information about the games can be found on
Wikipedia.)

Rubik's Cube
Minesweeper
Diplomacy
World of Warcraft
Bughouse Chess

 

Go Fish
Rock Paper Scissors
Speed (card game)
Chess
Stratego

For each of the following combinations of features, select a game from this list that manifests
those features. (The classifications are not perfect in all cases.)

Players Information Moves Communication
Single Complete N/A N/A
Single Partial N/A N/A

Multiple Complete Simultaneous Yes
Multiple Complete Simultaneous No
Multiple Complete Alternating Yes
Multiple Complete Alternating No
Multiple Partial Simultaneous Yes
Multiple Partial Simultaneous No
Multiple Partial Alternating Yes
Multiple Partial Alternating No

Problem 1.2: Connect to Gamemaster at http://gamemaster.stanford.edu using your favorite
browser. Click the Games link and look at some of the games recorded there. Play a match of one
of the games. The point of the exercise is to become familiar with the practice of learning and
playing new games.

file:///ggp/problems/problem_01_01.html
http://en.wikipedia.org/wiki/Rubik
http://en.wikipedia.org/wiki/Minesweeper_(video_game)
http://en.wikipedia.org/wiki/Diplomacy_(game)
http://en.wikipedia.org/wiki/World_of_Warcraft
http://en.wikipedia.org/wiki/Bughouse_chess
http://en.wikipedia.org/wiki/Go_Fish
http://en.wikipedia.org/wiki/Rock-paper-scissors
http://en.wikipedia.org/wiki/Speed_(card_game)
http://en.wikipedia.org/wiki/Chess
http://en.wikipedia.org/wiki/Stratego
file:///ggp/problems/problem_01_02.html


C H A P T E R  2

Game Description

2.1 Introduction

The most significant characteristic of General Game Playing is that players do not know the rules
of games before those games begin. Game rules are communicated at runtime, and the players
must be able to read and understand the descriptions they are given in order to play legally and
effectively.

In general game playing, information about games is typically communicated to players in a
formal language called Game Description Language, or GDL. This chapter is an introduction to
GDL and the issues that arise in using it to describe games.

We start the chapter with a review of Logic Programs. After this, we introduce the game model
underlying GDL; we define the language; we look at a sample game description; and we look at
the use of this description in simulating a match of the game. We then talk about additional
features of games that ensure that they are interesting. Finally, we summarize the prefix syntax for
GDL used in most GGP competitions.

2.2 Logic Programs

GDL is a logic programming language. It is similar to other logic programming languages, such as
Prolog; but there are some important differences. (1) The semantics of GDL is purely declarative
(there are no procedural constructs like assert, retract, and cut). (2) GDL has restrictions that
assure that all questions of logical entailment are decidable. (3) There are some reserved words
(described below), which tailor the language to the task of defining games.

Logic Programs are built up from four disjoint classes of symbols, viz. object constants, function
constants, relation constants, and variables. In what follows, we write such symbols as strings of
letters, digits, and a few non-alphanumeric characters (e.g. "_"). Constants must begin with a
lower case letter or digit. Examples include a, b, 123, comp225, and barack_obama. Variables must
begin with an upper case letter. Examples include X, Y, Z, Age14, and so forth.

A term is either an object constant, a variable, or a functional term, i.e. an expression consisting of
a function constant and n simpler terms. In what follows, we write functional terms in traditional
mathematical notation - the function constant followed by its arguments enclosed in parentheses
and separated by commas. For example, if f is a function constant, if a is an object constant, and if
Y is a variable, then f(a,Y) is a term. Functional terms can be nested within other functional
terms. For example, if f(a,Y) is a functional term, then so is f(f(a,Y),Y).

An atom is an expression formed from a relation constant and n terms. As with functional terms,
we write atoms in traditional mathematical notation - the relation constant followed by its
arguments enclosed in parentheses and separated by commas. For example, if r is a relation



constant, if f is a function constant, if a is an object constant, and if Y is a variable, then r(a,Y) is
a term and so is r(a,f(a,Y)). Although functional terms can be used within functional and within
atoms, the reverse is not true - atoms cannot be nested inside of other atoms or inside of functional
terms.

A literal is either an atom or a negation of an atom. A simple atom is called a positive literal, The
negation of an atom is called a negative literal. In what follows, we write negative literals using
the negation sign ~. For example, if p(a,b) is an atom, then ~p(a,b) denotes the negation of this
atom.

A rule is an expression consisting of a distinguished atom, called the head, and a conjunction of
zero or more literals, called the body. The literals in the body are called subgoals. In what follows,
we write rules as in the example shown below. Here, q(X,Y) is the head, p(X,Y) & ~r(Y) is the
body; and p(X,Y) and ~r(Y) are subgoals.

    q(X,Y) :- p(X,Y) & ~r(Y)

A logic program is a finite set of atoms and rules of this form. In order to simplify our definitions
and analysis, we occasionally talk about infinite sets of rules. While these sets are useful, they are
not themselves logic programs.

A rule in a logic program is safe if and only if every variable that appears in the head or in any
negative literal in the body also appears in at least one positive literal in the body. A logic program
is safe if and only if every rule in the program is safe.

The dependency graph for a logic program is a directed graph in which the nodes are the relations
in the program and in which there is an arc from one node to another if and only if the former node
appears in the body of a rule in which the latter node appears in the head. A program is recursive
if and only if there is a cycle in the dependency graph.

A negation in a logic program is said to be stratified if and only if there is no recursive cycle in the
dependency graph involving a negation. A logic program is stratified with respect to negation if
and only if there are no unstratified negations.

The recursion in a set of rules is said to be stratified if and only if every variable in every subgoal
relation (including the recursive relation) occurs in a subgoal involving a relation at a lower
stratum, i.e. either it is not recursive or its recursive cycle does not include the relation in the head
of the rule in which it occurs as a subgoal.

In GDL, we concentrate exclusively on logic programs that are both safe and stratified with
respect to negation and recursion. While it is possible to extend the results here to programs that
are not safe and stratified, such extensions are beyond the scope of this work.

The Herbrand universe for a logic program is the set of all terms that can be formed from the
constants in the program's schema. Said another way, it is the set of all objects constants and all
functional terms of the form f(t1,...,tn), where f is an n-ary function constant and t1, ... , tn are
elements of the Herbrand universe.

The Herbrand base for a logic program is the set of all atoms that can be formed from the
constants in the program's schema. Said another way, it is the set of all sentences of the form
r(t1,...,tn), where r is an n-ary relation constant and t1, ... , tn are elements of the Herbrand
universe.



A dataset for a logic program is an arbitrary subset of the Herbrand base for the program. A model
of a logic program is a dataset that satisfies the program (as defined below).

An instance of a rule in a logic program is a rule in which all variables have been consistently
replaced by terms from the program's Herbrand universe. Consistent replacement means that, if
one occurrence of a variable is replaced by a given term, then all occurrences of that variable are
replaced by the same term.

A dataset D satisfies a logic program P if and only if D satisfies every ground instance of every
sentence in P. The notion of satisfaction is defined recursively. An interpretation D satisfies a
ground atom p if and only if p is in D. D satisfies a negative ground literal ~p if and only if p is not
in D. D satisfies a ground rule p :- p1 & ... & pn if and only if D satisfies p whenever it satisfies
p1, ... , pn.

In general, a logic program can have more than one model, which means that there can be more
than one way to satisfy the rules in the program. In order to eliminate ambiguity, we adopt the
minimal model approach to logic program semantics, i.e. we define the meaning of a safe and
stratified logic program to be its minimal model.

A model D of a logic program P is minimal if and only if no proper subset of D is a model for P.
A logic program that does not contain any negations has one and only one minimal model. A logic
program with negation may have more than one minimal model; however, if the program is
stratified, then once again there is only one minimal model. In general, models can be infinitely
large. However, if the program has stratified recursion, then it is guaranteed to be finite.

Computing the minimal model for a logic program is conceptually easy. We initialize our dataset
to the ground atoms in the program. We then look at the rules in the program. If there is an
instance of the rule whose body is satisfied by the atoms in our dataset, then we add the
corresponding instance of the head to the dataset. This process continues until it reaches a fixpoint,
i.e. there are no additional ground atoms added by any rule. It can be shown that this process
computes the unique minimal model for every logic program so long as it is safe and stratified
with respect to negation and recursion.

As an example, consider the following logic program. We have a few facts about about the parent
relation; wee have a rule defining the grandparent relation in terms of parent; and we have two
rules defining ancestors in terms of parents.

    parent(art,bob)
    parent(art,bud)
    parent(bob,cal)
    parent(bob,coe)
    parent(cal,dan)

    grandparent(X,Z) :- parent(X,Y) & parent(Y,Z)

    ancestor(X,Y) :- parent(X,Y)
    ancestor(X,Z) :- ancestor(X,Y) & ancestor(Y,Z)

We start the computation by initializing our dataset to the five facts about parent.

    parent(art,bob)
    parent(art,bud)



    parent(bob,cal)
    parent(bob,coe)
    parent(cal,dan)

Looking at the grandparent rule and matching its subgoals to the data in our dataset in all possible
ways, we see that we can add the following data.

    grandparent(art,cal)
    grandparent(art,coe)
    grandparent(bob,dan)

Looking at the ancestor rule and matching its subgoals to the data in our dataset in all possible
ways, we get the following data.

    ancestor(art,bob)
    ancestor(art,bud)
    ancestor(bob,cal)
    ancestor(bob,coe)
    ancestor(cal,dan)

With these additions, we can derive the following additional data.

    ancestor(art,cal)
    ancestor(art,coe)
    ancestor(bob,dan)

However, we are not done. Using the ancestor rule again, we can derive the following additional
datum.

    ancestor(art,dan)

At this point, none of the rules when applied to this collection of data produces any results that are
not already in the set, and so the process terminates. The resulting collection of 17 facts is the
minimal model.

Logic programs as just defined are closed in that they fix the meaning of all relations in the
program. In open logic programs, some of the relations (the inputs) are undefined, and other
relations (the outputs) are defined in terms of these. The same program can be used with different
input relations, yielding different output relations in each case.

Formally, an open program is a logic program together with a partition of the relation constants
into two types - base relations (also called input relations) and view relations (also called output
relations). View relations can appear anywhere in the program, but base relations can appear only
in the subgoals of rules, not in their heads.

The input base for an open logic program is the set of all atoms that can be formed from the base
relations of the program and the entities in the program's domain. An input model is an arbitrary
subset of its input base.

The output base for an open logic program is the set of all atoms that can be formed from the view
relations of the program and the entities in the program's domain. An output model is an arbitrary
subset of its output base.

Given an open logic program P and an input model D, we define the overall model corresponding



to D to be the minimal model of P ∪ D. The output model corresponding to D is the intersection
of the overall model with the program's output base; in other words, it consists of those sentences
in the overall model that mention the output relations.

Finally, we define the meaning of an open logic program to be a function that maps each input
model for the program into the corresponding output model.

2.3 Game Model

The GDL model of games starts with entities and relations. Entities represent objects presumed or
hypothesized to exist in the game. Relations represent properties of those objects or relationships
among them.

In our examples here, we refer to entities and relations using strings of letters, digits, and a few
non-alphanumeric characters (e.g. "_"). For reasons described below, we prohibit strings
beginning with upper case letters; all other combinations are acceptable. Examples include x, o,
123, and white_king.

The set of all entities that can be used in a game is called the domain of the game. The set of all
relations in a game is called the signature of the game. In GDL, domains and signatures are
always finite (albeit in some cases very, very large).

The arity of a relation is the number of objects involved in any instance of that relation. Arity is an
inherent property of a relation and never changes.

A game schema consists of a domain, a signature, and an assignment of arities for each of the
relations in the signature.

Given a game schema, we define a proposition to be a structure consisting of an n-ary relation
from the signature and n objects from the domain. In what follows, we write propositions using
traditional mathematical notation. For example, if r is a binary relation and a and b are entities,
then r(a,b) is a proposition.

The propositional base for a game is the set of all propositions that can be formed from the
relations and the entities in the game's schema. For a schema with entities a and b and relations p
and q where p has arity 1 and q has arity 2, the propositional base is {p(a), p(b), q(a,a), q(a,b),
q(b,a), q(b,b)}.

In GDL, propositions are usually partitioned into disjoint classes, viz. base propositions and
effectory propositions (more commonly called actions). Base propositions represent conditions
that are true in the state of a game, and effectory propositions represent actions performed by game
players. (Later, in order to deal with partial information, we add sensory propositions (or percepts)
to this partition. For now, we ignore percepts.)

Before proceeding, let's look at these concepts in the context of a specific game, viz. Tic Tac Toe.
As entities, we include white and black (the roles of the game), 1, 2, 3 (indices of rows and
columns on the Tic Tac Toe board), and x, o, b (meaning blank).

We use the ternary relation cell together with a row index and a column index and a mark to
designate the proposition that the cell in the specified row and column contains the specified mark.
For example, the datum cell(2,3,o) asserts that there is an o in the cell in row 2 and column 3.



We use the unary relation control to say whose turn it is to mark a cell. For example, the
proposition control(white) asserts that it is white's turn. The propositional base for this model is
shown below.

In Tic Tac Toe, there only two types of actions a player can perform - it can mark a cell or it can
do nothing (which is what a player does when it is not his turn to mark a cell). The binary relation
mark together with a row m and a column n designates the action of placing a mark in row m and
column n. The mark placed there depends on who does the action. The 0-ary relation noop refers
to the act of doing nothing. The action base for this model is shown below. In this case, both roles
have the same possible actions.

A state of a game is an arbitrary subset of the system's base propositions. The propositions in a
state are assumed to be true whenever the game in is that state, and all others are assumed to be
false. For example, we can describe the Tic Tac Toe state shown below on the left with the set of
propositions shown on the right.

cell(1,1,x)
cell(1,2,b)
cell(1,3,b)
cell(2,1,b)
cell(2,2,o)
cell(2,3,b)
cell(3,1,b)
cell(3,2,b)
cell(3,3,b)
control(white)

On each time step, each role in a game has one or more legal actions it can perform. The actions
on the left below are the legal moves for white in the state shown above. In this state, black has
only one legal action, viz. noop, as shown on the right.

A move in a game corresponds to a list of actions, one for each role. As a move is performed,
some base propositions become true and others become false, leading to a new set of true
propositions and, consequently, a new state and possibly a new set of legal actions.

For every state and every move in a game, there is a unique next state For example, starting in the
state shown below on the left, if the players perform the actions shown on the arrow, the game will
move to the state shown on the right.

cell(1,1,x)
cell(1,2,b)
cell(1,3,b)
cell(2,1,b)
cell(2,2,o)
cell(2,3,b)
cell(3,1,b)
cell(3,2,b)
cell(3,3,b)
control(white)

mark(3,3)

⇒
noop

cell(1,1,x)
cell(1,2,b)
cell(1,3,b)
cell(2,1,b)
cell(2,2,o)
cell(2,3,b)
cell(3,1,b)
cell(3,2,b)
cell(3,3,x)
control(black)

Every game is assumed to have a unique initial state and one or more terminal states. Every state
is also assumed to have a value for each player - the number of points the player gets if the game
terminates in that state. For example, the state on the right above is worth 100 points to white and
0 points to black.



A game starts in the initial state. The players select and execute legal actions in that state. The
game then moves on to the next state (based on the players' actions). This process repeats until the
game enters a terminal state, at which point the game stops and the players are awarded the
number of points associated with the terminal state.

2.4 Game Description Language

In GDL, we fix the meanings of some words in the language for all games (the game-independent
vocabulary) while at the same time allowing game authors to use their own words for individual
games (the game-specific vocabulary).

There are 101 game-independent object constants in GDL, viz. the base ten representations of the
integers from 0 to 100, inclusive, i.e. 0, 1, 2, ... , 100. These are included for use as utility values
for game states, with 0 being low and 100 being high. GDL has no game-independent function
constants. However, there are ten game-independent relation constants, viz. the ones shown below.

role(a) means that a is a role in the game.
action(a) means that a is an action in the game.
base(p) means that p is a base proposition in the game.
init(p) means that the proposition p is true in the initial state.
true(p) means that the proposition p is true in the current state.
does(r,a) means that role r performs action a in the current state.
next(p) means that the proposition p is true in the next state.
legal(r,a) means it is legal for role r to play action a in the current state.
goal(r,n) means that player the current state has utility n for player r.
terminal means that the current state is a terminal state.

A GDL description is an open logic program with the following input and output relations. (1) A
GDL game description must give complete definitions for role, base, input, init. (2) It must
define legal and goal and terminal in terms of an input true relation. (3) It must define next in
terms of input true and does relations. Since does and true are treated as inputs, there must not
be any rules with either of these relations in the head.

We can describe these concepts abstractly. However, experience has shown that most people learn
their meaning more easily through examples. In the next section, we look at a definition of one
particular game, viz. Tic Tac Toe.

2.5 Game Description Example

We begin with an enumeration of roles. In this case, there are just two roles, here called x and o

    role(white)
    role(black)

We can characterize the propositions of the game as shown below.

    base(cell(M,N,x)) :- index(M) & index(N)
    base(cell(M,N,o)) :- index(M) & index(N)
    base(cell(M,N,b)) :- index(M) & index(N)

    base(control(white))
    base(control(black))



We can characterize the feasible actions for each role in similar fashion.

    input(R,mark(M,N)) :- role(R) & index(M) & index(N)
    input(R, noop) :- role(R)

    index(1)
    index(2)
    index(3)

Next, we characterize the initial state by writing all relevant propositions that are true in the initial
state. In this case, all cells are blank; and the x player has control.

    init(cell(1,1,b))
    init(cell(1,2,b))
    init(cell(1,3,b))
    init(cell(2,1,b))
    init(cell(2,2,b))
    init(cell(2,3,b))
    init(cell(3,1,b))
    init(cell(3,2,b))
    init(cell(3,3,b))
    init(control(white))

Next, we define legality. A player may mark a cell if that cell is blank and it has control.
Otherwise, the only legal action is noop.

    legal(W,mark(X,Y)) :-
      true(cell(X,Y,b)) &
      true(control(W))

    legal(white,noop) :-
      true(control(black))

    legal(black,noop) :-
      true(control(white))

Next, we look at the update rules for the game. A cell is marked with an x or an o if the
appropriate player marks that cell. If a cell contains a mark, it retains that mark on the subsequent
state. If a cell is blank and is not marked on that step, then it remains blank. Finally, control
alternates on each play.

    next(cell(M,N,x)) :-
      does(white,mark(M,N)) &
      true(cell(M,N,b))

    next(cell(M,N,o)) :-
      does(black,mark(M,N)) &
      true(cell(M,N,b))

    next(cell(M,N,W)) :-
      true(cell(M,N,W)) &
      distinct(W,b)

    next(cell(M,N,b)) :-
      does(W,mark(J,K))
      true(cell(M,N,W)) &
      distinct(M,J)



    next(cell(M,N,b)) :-
      does(W,mark(J,K))
      true(cell(M,N,W)) &
      distinct(N,K)

    next(control(white)) :-
      true(control(black))

    next(control(black)) :-
      true(control(white))

Goals. The white player gets 100 points if there is a line of x marks and no line of o marks. If there
are no lines of either sort, white gets 50 points. If there is a line of o marks and no line of x marks,
then white gets 0 points. The rewards for black are analogous. The line relation is defined below.

    goal(white,100) :- line(x) & ~line(o)
    goal(white,50) :- ~line(x) & ~line(o)
    goal(white,0) :- ~line(x) & line(o)

    goal(black,100) :- ~line(x) & line(o)
    goal(black,50) :- ~line(x) & ~line(o)
    goal(black,0) :- line(x) & ~line(o)

Supporting concepts. A line is a row of marks of the same type or a column or a diagonal. A row
of marks mean thats there three marks all with the same first coordinate. The column and diagonal
relations are defined analogously.

    line(X) :- row(M,X)
    line(X) :- column(M,X)
    line(X) :- diagonal(X)

    row(M,X) :-
      true(cell(M,1,X)) &
      true(cell(M,2,X)) &
      true(cell(M,3,X))

    column(M,X) :-
      true(cell(1,N,X)) &
      true(cell(2,N,X)) &
      true(cell(3,N,X))

    diagonal(X) :-
      true(cell(1,1,X)) &
      true(cell(2,2,X)) &
      true(cell(3,3,X)) &

    diagonal(X) :-
      true(cell(1,3,X)) &
      true(cell(2,2,X)) &
      true(cell(3,1,X)) &

Termination. A game terminates whenever either player has a line of marks of the appropriate type
or if the board is not open, i.e. there are no cells containing blanks.

    terminal :- line(W)
    terminal :- ~open

    open :- true(cell(M,N,b))



2.5 Game Simulation Example

As an exercise in logic programming and GDL, let's look at the outputs of the ruleset defined in
the preceding section at various points during an instance of the game.

To start, we can use the ruleset to compute the roles of the game. This is simple in the case of Tic
Tac Toe, as they are contained explicitly in the ruleset.

    role(x)
    role(o)

Similarly, we can compute the possible propositions. Remember that this gives a list of all such
propositions; only a subset will be true in any particular state.

    base(cell(1,1,x))    base(cell(1,1,o))    base(cell(1,1,b))
    base(cell(1,2,x))    base(cell(1,2,o))    base(cell(1,2,b))
    base(cell(1,3,x))    base(cell(1,3,o))    base(cell(1,3,b))
    base(cell(2,1,x))    base(cell(2,1,o))    base(cell(2,1,b))
    base(cell(2,2,x))    base(cell(2,2,o))    base(cell(2,2,b))
    base(cell(2,3,x))    base(cell(2,3,o))    base(cell(2,3,b))
    base(cell(3,1,x))    base(cell(3,1,o))    base(cell(3,1,b))
    base(cell(3,2,x))    base(cell(3,2,o))    base(cell(3,2,b))
    base(cell(3,3,x))    base(cell(3,3,o))    base(cell(3,3,b))
    base(control(white))
    base(control(black))

We can also compute the relevant actions of the game. The extension of the input relation in this
case consists of the twenty sentences shown below.

    input(white,mark(1,1))
    input(white,mark(1,2))
    input(white,mark(1,3))
    input(white,mark(2,1))
    input(white,mark(2,2))
    input(white,mark(2,3))
    input(white,mark(3,1))
    input(white,mark(3,2))
    input(white,mark(3,3))
    input(white,noop)

    input(black,mark(1,1))
    input(black,mark(1,2))
    input(black,mark(1,3))
    input(black,mark(2,1))
    input(black,mark(2,2))
    input(black,mark(2,3))
    input(black,mark(3,1))
    input(black,mark(3,2))
    input(black,mark(3,3))
    input(black,noop)

The first step in playing or simulating a game is to compute the initial state. We can do this by
computing the init relation. As with roles, this is easy in this case, since the initial conditions are
explicitly listed in the program.

    init(cell(1,1,b))
    init(cell(1,2,b))



    init(cell(1,3,b))
    init(cell(2,1,b))
    init(cell(2,2,b))
    init(cell(2,3,b))
    init(cell(3,1,b))
    init(cell(3,2,b))
    init(cell(3,3,b))
    init(control(white))

Once we have these conditions, we can turn them into a state description for the first step by
asserting that each initial condition is true.

    true(cell(1,1,b))
    true(cell(1,2,b))
    true(cell(1,3,b))
    true(cell(2,1,b))
    true(cell(2,2,b))
    true(cell(2,3,b))
    true(cell(3,1,b))
    true(cell(3,2,b))
    true(cell(3,3,b))
    true(control(white))

Taking this input data and the logic program, we can check whether the state is terminal. In this
case, it is not.

We can also compute the goal values of the state; but, since the state is non-terminal, there is not
much point in doing that; but the description does give us the following values.

    goal(white,50)
    goal(black,50)

More interestingly, using this state description and the logic program, we can compute legal
actions in this state. See below. The x player has nine possible actions (all marking actions), and
the o player has just one (noop).

    legal(white,mark(1,1))
    legal(white,mark(1,2))
    legal(white,mark(1,3))
    legal(white,mark(2,1))
    legal(white,mark(2,2))
    legal(white,mark(2,3))
    legal(white,mark(3,1))
    legal(white,mark(3,2))
    legal(white,mark(3,3))
    legal(black,noop)

Let's suppose that the x player chooses the first legal action and the o player chooses its sole legal
action. This gives us the following dataset for does.

    does(white,mark(1,1))
    does(black,noop)

Now, combing this dataset with the state description above and the logic program, we can
compute what must be true in the next state.

    next(cell(1,1,x))



    next(cell(1,2,b))
    next(cell(1,3,b))
    next(cell(2,1,b))
    next(cell(2,2,b))
    next(cell(2,3,b))
    next(cell(3,1,b))
    next(cell(3,2,b))
    next(cell(3,3,b))
    next(control(black))

To produce a description for the resulting state, we substitute true for next in each of these
sentences and repeat the process. This continues until we encounter a state that is terminal, at
which point we can compute the goals of the players in a similar manner.

2.6 Game Requirements

The definitions in section 2.2 constrain GDL to game descriptions from which it is possible to
compute the legal actions of all players for each state and from which it is possible to compute the
next state for each state from the actions of all players. However, there are additional constraints
that limit the scope of GDL to avoid problematic games.

Termination. A game description in GDL terminates if all infinite sequences of legal moves from
the initial state of the game reach a terminal state after a finite number of steps.

Playability. A game description in GDL is playable if and only if every role has at least one legal
move in every non-terminal state reachable from the initial state.

Winnability. A game description in GDL is strongly winnable if and only if, for some role, there is
a sequence of individual individual actions of that role that leads to a terminal state of the game
where that role's goal value is maximal no matter what the other players do. A game description in
GDL is weakly winnable if and only if, for every role, there is a sequence of joint actions of all
roles that leads to a terminal state where that role's goal value is maximal.

Well-formedness. A game description in GDL is well-formed if it terminates and is both playable
and weakly winnable.

In general game playing, all well-formed single player games should be strongly winnable.
Clearly, it is possible to generate game descriptions in GDL which are not well-formed. Checking
game descriptions to see if they are well-formed can certainly be done in general by using brute-
force methods (exploring the entire game tree); and, for some games, faster algorithms may exist.
Game descriptions used in GGP competitions are always well-formed. However, in this book, we
occasionally look at games that are not well-formed for reasons of simplicity or pedagogy.

2.7 Prefix GDL

The version of GDL presented here uses traditional infix syntax. However, this is not the only
version of the language. There is also a version that uses prefix syntax.

Although some general game playing environments support Infix GDL, it is not universal. On the
other hand, all current systems support Prefix GDL. Fortunately, there is a direct relationship
between the two syntaxes, and it is easy to convert between them. There are just a few issues to
worry about.



The first issue is the spelling of constants and variables. Prefix GDL is case-independent, so we
cannot use capital letters to distinguish the two. Constants are spelled the same in both versions;
but, in prefix GDL, we distinguish variables by beginning with the character '?'. Thus, the constant
a is the same in both languages while the variable X in Infix GDL is spelled ?x or ?X in Prefix
GDL.

The second issue in mapping between the formats is syntax of expressions. In Prefix GDL, all
expressions are lists of components separated by spaces and enclosed in parentheses. Also, logical
operators are spelled out. The following tables illustrates the mapping.

Infix GDL Prefix GDL
p(a,Y) (p a ?y)

~p(a,Y) (not (p a ?y))

p(a,Y) & p(Y,c) (and (p a ?y) (p ?y c))

q(Y) :- p(a,Y) & p(Y,c) (<= (q ?y) (and (p a ?y) (p ?y c)))

q(Y) :- p(a,Y) & p(Y,c) (<= (q ?y) (p a ?y) (p ?y c))

Finally, just to be clear on this, in Prefix GDL white space (spaces, tabs, carriage returns, line
feeds, and so forth) can appear anywhere other than in the middle of constants, variables, and
operator names. Thus, there can be multiple spaces between the components of an expression;
there can be spaces after the open parenthesis of an expression and before the operator or relation
constant or function constant; and there can be spaces after the last component of an expression
and the closing parenthesis.

Problems

Problem 2.1: Consider the game description shown below.

  role(white)
  role(black)

  base(p)
  base(q)
  base(r)
  base(s)

  action(a)
  action(b)
  action(c)
  action(d)

  init(s)

  legal(white,a)
  legal(white,b)
  legal(white,c)
  legal(black,d)

 

  next(p) :- does(white,a) & ~true(p)
  next(p) :- ~does(white,a) & true(p)
  next(q) :- does(white,b) & true(p)
  next(q) :- does(white,c) & true(r)
  next(q) :- ~does(white,b) & ~does(white,c) & true(q)
  next(r) :- does(white,c) & true(q)
  next(r) :- ~does(white,c) & true(r)

  goal(white,100) :- terminal
  goal(white,0) :- ~terminal
  goal(black,100) :- terminal
  goal(black,0) :- ~terminal

  terminal :- true(p) & true(q) & true(r)

file:///ggp/problems/problem_02_01.html


C H A P T E R  3

Game Management

3.1 Introduction

This chapter is an overview of game management. More properly, it should be called match
management, as the issue is how to manage individual matches of games, not the games
themselves. We start with an overview of the General Game Playing ecosystem and the central
role of the Game Manager. We then discuss the General Game Playing communication protocol.
Finally, we see how it is used in a sample game.

3.2 Game Management

A diagram of a typical general game playing ecosystem is shown below. At the center of the
ecosystem is the game manager. The game manager maintains a database of game descriptions and
match records, and it maintains some temporary state for matches while they are running. The
game manager communicates with game players. It also provides a user interface for users who
want to schedule matches, and it provides graphics for spectators watching matches in progress.

3.3 Game Communication Language

Communication between the Game Manager and game players takes place through HTTP
connections. The communication model assumes that each player is running on an Internet-
connected host listening on a particular port. HTTP messages sent to players have the standard
HTTP header, with content type text/acl.



In the current GGP communication language, there are five types of messages used for
communication between the Game Manager and game players.

(1) An info message is used to confirm that a player is up and running. The general form is shown
below.

(info)

Upon receipt of an info message, a player is expected to return available if it is ready to receive
messages. Otherwise, it should return busy. It may also return arbitrary information about itself as
a sequence of pairs of type and value, e.g. ((name egghead) (status available)).

(2) A start message is used to initialize an instance of a game. The general form of a start
message is shown below. The message begins with the keyword start, and this is followed by
five arguments, viz. a match identifier (a sequence of alphanumeric characters beginning with a
lower case letter), a role for the player to play (chosen from the roles mentioned in the game
description), a list of game rules (written as sentences in KIF), a start clock (in seconds), and a
play clock (also in seconds).

(start id role description startclock playclock)

Upon receipt of a start message, a player should prepare itself to play the match. Once it is done,
it should reply ready to tell the Game Manager that it is ready to begin the match. The GGP
protocol requires that the player reply before startclock seconds have elapsed. If the Game
Manager has not received a reply by this time, it will proceed on the assumption that the player is
ready.

(3) A play message is used to request a move from a player. The general form of the play
message is shown below. It includes an identifier for the match and a record of the moves of all
players on the preceding step. The order of the moves in the record is the same as the order of
roles in the game description. On the first request, where there is no preceding move, the move
field is nil.

(play id move)

Upon receipt of a play message, a player uses the move information to update its state as
necessary. It then computes its next move and returns that as answer. The GGP protocol requires
that the player reply before playclock seconds have elapsed. If the Game Manager has not
received a reply by this time, it substitutes an arbitrary legal move.

(4) A stop message is used to tell a player that a match has reached completion. The general form
of the stop message is shown below.

(stop id move)

Upon receipt of a stop message, a player can clean up after playing the match. The move is sent
along in case the player wants to know the action that terminated the game. After finishing up, the
player should return done.

(5) An abort message is used to tell a player that a match is terminating abnormally. It differs
from a stop message in that the match need not be in a terminal state.



(abort id)

Upon receipt of an abort message, a player can eliminate any data structures and return to a ready
state. Once it is finished, it should return done.

3.4 Game Play

The process of running a match goes as follows. Upon receiving a request to run a match, the
Game Manager first sends a start message to each player to initiate the match. Once game play
begins, the manager sends play messages to each player to get their plays; and it then simulates
the results. This part of the process repeats until the game is over. The Manager then sends a stop
message to each player.

Here is a sample of messages for a quick game of Tic Tac Toe. The game manager initiates the
match by sending a start message to all of the players, each with a different role. The players
then respond with ready. They can respond immediately or they can wait until the start clock is
exhausted before responding.

Game Manager to Player x: (start m23 x ((role x) (role o) ... ) 10 10)
Game Manager to Player y: (start m23 y ((role x) (role o) ... ) 10 10)

 Player x to Game Manager: ready
 Player y to Game Manager: ready

Play begins after all of the players have responded or after the start clock has expired, whichever
comes first. The manager initiates play by sending a play message to all of the players. Since this
is the first move and there are no previous moves, the move argument in the play message is nil.
In this case, the first player responds with the action (mark 1 1), one of its nine legal actions; and
the second player responds with noop, its only legal action.

Game Manager to Player x: (play m23 nil)
Game Manager to Player y: (play m23 nil)

 Player x to Game Manager: (mark 1 1)
 Player y to Game Manager: noop

The Game manager checks that these actions are legal, simulates their effects, updates the state of
the game, and then sends play messages to the players to solicit their next actions. The second
argument in the play message this time is a list of the actions received in response to the
preceding play message. On this step, the first player responds with noop, its only legal action;
and the second player responds with (mark 1 2). This is a legal move, but it is not a wise move,
as the game is now strongly winnable by first player.

Game Manager to Player x: (play m23 ((mark 1 1) noop))
Game Manager to Player y: (play m23 ((mark 1 1) noop))

 Player x to Game Manager: noop
 Player y to Game Manager: (mark 1 2)

Again, the Game Manager checks legality, simulates the move, updates its state, and sends a play
message requesting the playersÕ next actions. The first player takes advantage of the situation and



plays (mark 2 2) while the second player does noop.

Game Manager to Player x: (play m23 (noop (mark 1 2)))
Game Manager to Player y: (play m23 (noop (mark 1 2)))

 Player x to Game Manager: (mark 2 2)
 Player y to Game Manager: noop

There is not much the second player can do in this situation to save itself. Instead of staving off the
immediate loss, it plays (mark 1 3), while the first player does noop.

Game Manager to Player x: (play m23 ((mark 2 2) noop)
Game Manager to Player y: (play m23 ((mark 2 2) noop)

 Player x to Game Manager: noop
 Player y to Game Manager: (mark 1 3)

The Game manager again simulates, updates, and requests a move. In this case, the first player
goes in for the kill, playing (mark 3 3).

Game Manager to Player x: (play m23 (noop (mark 1 3))
Game Manager to Player y: (play m23 (noop (mark 1 3))

 Player x to Game Manager: (mark 3 3)
 Player y to Game Manager: noop

With this move, the game is over. As usual, in such cases, the Manager lets the players know by
sending a suitable stop message. It then stores the results in its database for future reference and
terminates.

Game Manager to Player x: (stop ((mark 3 3) noop))
Game Manager to Player y: (stop ((mark 3 3) noop))

 Player x to Game Manager: done
 Player y to Game Manager: done

Note that the Game Manager sends slightly different start messages to the different players.
Everything is the same except for the role that each player is asked to play. In all other cases, the
same messages are sent to all players. In advanced versions of the General Game Playing protocol,
this symmetry is broken. The Game Manager can send different game descriptions to different
players. And it can tell different players different information in the play and stop messages.

Problems

Problem 3.1: Consider the game of Tic Tac Toe given in the preceding chapter. Assume that a
Game Manager has sent start messages to the players of a match with name m23 and with the
rules from the preceding chapter as game description; and assume that the players have just replied
that they are ready to play. Which of the following is the correct message for the Manager to send
to the players next?

(b) play(m23)

file:///ggp/problems/problem_03_01.html


(c) play(m23,nil)
(d) play(m23,noop)
(e) play(m23,[mark(1,1),noop])

Problem 3.2: Consider the game of Tic Tac Toe given in the preceding chapter. Assume that the
game is in the state shown on the left below, and assume that the manager has just received the
action (mark 2 2) from the first player and the action noop from the second player. Which of the
messages shown on the right is the correct message to send to the first player?

X O
play(m23)

play(m23,mark(2,2))

play(m23,noop)

play(m23,[mark(2,2),noop])

Problem 3.3: Consider the game of Tic Tac Toe given in the preceding chapter. Assume that the
game is in the state shown on the left below, and assume that the manager has just received the
action mark(2,2) from the first player and the action noop from the second player. Which of the
messages shown on the right is a correct message to send to the first player.

X O

X O

play(m23)

play(m23,mark(2,2))

play(m23,noop)

play(m23,[mark(2,2),noop])

play(m23,[mark(3,3),noop])

stop(m23,[mark(2,2),noop])

abort(m23)

file:///ggp/problems/problem_03_02.html
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C H A P T E R  4

Game Playing

4.1 Introduction

The simplest sort of general game player is one that explores the game tree implicit in a game
description. In this chapter, we talk about some infrastructure that frames the problem more
precisely. We then consider a couple of search-free uses of this infrastructure, viz. legal players
and random players. In Chapters 5-8, we look at complete search techniques (which are
appropriate for small game trees) as well as incomplete search techniques (which are necessary for
very large game trees). In Chapters 9-12, we examine some game playing techniques based on
properties of states. Finally, in chapters 13-16, we show ways that game descriptions can be used
to deduce general properties of games without explicitly enumerating states or properties.

4.2 Infrastructure

A game player is typically implemented as a web service. The service receives messages from a
Game Manager and replies appropriately. Building a player means writing event handlers for the
different types of messages in the GGP communication protocol.

To make things concrete, let us assume that we have at our disposal a code base that (1) includes a
listener to call these event handlers on receipt of messages from a Game Manager and (2) includes
subroutines for processing game descriptions and match data. Our job in building a player is to use
the available subroutines to implement event handlers for the various GGP messages.

Once running, the listener enters a loop listening for messages from a Game Manager. Upon
receipt of a message, the listener calls the appropriate handler. When the handler is finished, the
listener sends the returned value to the Game Manager. The handlers called by the listener are
listed below.

info()

start(id,role,description,startclock,playclock)

play(id,move)

stop(id,move)

abort(id)

In order to facilitate the implementation of these message handlers, we assume that our code base
contains definitions for the subroutines described below. There are subroutines for computing
most of the components of a match.

findroles(description) - returns a sequence of roles.



findpropositions(description) - returns a sequence of propositions.

findactions(role,description) - returns a sequence of actions for a specified role.

findinits(description) - returns a sequence of all propositions that are true in the initial state.

findlegalx(role,state,description) - returns the first action that is legal for the specified role in
the specified state.

findlegals(role,state,description) - returns a sequence of all actions that are legal for the
specified role in the specified state.

findnexts(move,state,description) - returns a sequence of all propositions that are true in the
state that results from performing the specified action in the specified state.

findreward(role,state,description) - returns the goal value for the specified role in the specified
state.

findterminalp(state,description) - returns a boolean indicating whether the specified state is
terminal.

That's it. As mentioned above, our job is to use these subroutines to write the handlers called by
the listener. In the remainder of this chapter, we look at a couple of simple approaches to doing
this.

4.3 Creating a Legal Player

A legal player is the simplest form of game player. In each state, a legal player selects an action
based solely on its legality, without consideration of the consequences. Typically, the choice of
action is consistent - it selects the same action every time it finds itself in the same state. (In this
way, a legal player differs from a random player, which selects different legal actions on different
occasions.)

Legal play is not a particularly good general game playing strategy. However, it is a worthwhile
exercise to build a legal player (and a random player) just to get familiar with the concepts
described above and to have a basis of comparison for more intelligent players.

Using the basic subroutines provided in the GGP starter pack, building a legal player is very
simple. We start by setting up some global variables to maintain information while a match is in
progress. (Properly, we should create a data structure for each match; and we should attach these
values to this data structure. However, we are striving for simplicity of implementation in these
notes. This does not mean that you should do the same.)

 
var game;
var role;
var state;

Next, we define a handler for each type of message. The info handler simply returns ready.

 function info ()
 {return 'ready'}



The start event handler assigns values to game and role based on the incoming start message;
it initializes state; and it then returns ready, as required by the GGP protocol.

 

function start (id,player,description,sc,pc)
 {game = description;
  role = player;
  state = null;
  return 'ready'}

The play event handler takes a match identifier and a move as arguments. It first uses the
simulate subroutine to compute the current state. If the move is nil, then this is the initial state,
and the player uses findinits to compute the state based on the initial conditions supplied in the
game description. Otherwise, it uses findnexts to compute the state resulting from the preceding
state and the actions supplied in the move. Once our player has the latest state, it uses findlegalx
to compute a legal move.

 

function play (id,move)
 {state = simulate(move,state,game);
  return findlegalx(role,state,game)}

function simulate (move,state,game)
 {if (move.length == 0) {return findinits(game)}
     else {return findnexts(move,state,game)}}

The stop event handler for our legal player does nothing. It ignores the inputs and simply returns
done as required by the GGP protocol.

 function stop (id,move)
  {return 'done'}

Like the stop message handler, the abort message handler for our player also does nothing. It
simply returns done.

 function abort (id)
  {return 'done'}

Just to be clear on how this works, let's work through a short Tic Tac Toe match. When a player is
initialized, it sets up data structures to hold the game description, the role, and the state. These are
initially empty.

Let's assume that our player receives a start message from a Game Manager of the sort shown
below. The match identifier is m23. Our player is asked to be the x player. There are the usual
axioms of Tic Tac Toe. The start clock and play clock are both 10 seconds.

start(m23, white, [role(white),role(black),...], 10, 10)

On receipt of this message, our listener calls the start handler. This sets the global variables
accordingly. The returned value ready is then sent back to the Game Manager.

Once the Game Manager is ready, it sends a suitable play message to all players. See below. Here
we have a request for each player to choose an action for match m23. The argument nil signifies
that this is the first step of the match.

play(m23,nil)



On receipt of this message, our listener invokes the play handler with the arguments passed to it
by the Game Manager. Since the move is nil, our player computes the current state by calling
findinits on the game description. This results in the dataset shown below.

true(cell(1,1,b))
true(cell(1,2,b))
true(cell(1,3,b))
true(cell(2,1,b))
true(cell(2,2,b))
true(cell(2,3,b))
true(cell(3,1,b))
true(cell(3,2,b))
true(cell(3,3,b))
true(control(white))
  

Using this state, together with the role and game description associated with this match, our player
then computes the first legal move, i.e. mark(1,1) and returns that as answer.

The Game manager checks that the actions of all players are legal, simulates their effects and
updates the state of the game, and then sends play messages to the players to solicit their next
actions. In this case, our player would receive the message shown below.

play(m23,[mark(1,1),noop])

Again, our player invokes its play handler with the arguments passed to it by the Game Manager.
This time, the move is not nil, and so our player uses findnexts to compute the next state. This
results in the dataset shown below.

true(cell(1,1,x))
true(cell(1,2,b))
true(cell(1,3,b))
true(cell(2,1,b))
true(cell(2,2,b))
true(cell(2,3,b))
true(cell(3,1,b))
true(cell(3,2,b))
true(cell(3,3,b))
true(control(black))
  

Using this state, our player then computes the first legal move, its only legal move, viz. noop, and
returns that as answer.

This process then repeats until the end of the game, at which point our player receives a message
like the one shown below.

stop(m23,[mark(3,3),noop])

While some players are able to make use of the information in a stop message, our legal player
simply ignores this information and returns done, terminating its activity on this match.

4.4 Creating a Random Player

A random player is similar to a legal player in that it selects an action for a state based solely on



its legality, without consideration of the consequences. A random player differs from a legal
player in that it does not simply take the first legal move it finds but rather selects randomly from
among the legal actions available in the state, usually choosing a different move on different
occasions.

The implementation of a random player is almost identical to the implementation of a legal player.
The only difference is in the play handler. In selecting an action, our player first computes all
legal moves in the given state and then randomly selects from among these choices (using the
randomelement subroutine). One way of writing the code for the play handler is shown below.

 
function play (id,move)
 {state = simulate(move,state,game);
  var actions=findlegals(role,state,game);
  return randomelement(actions)}

Random players are no smarter than legal players. However, they often appear more interesting
because they are unpredictable. Also, they sometimes avoid traps that befall consistent players like
legal, which can sometimes maneuver themselves into a corner and be unable to escape. They are
also used as standards to show that general game players or specific methods perform better than
chance.

A random player consumes slightly more compute time than a legal player, since it must compute
all legal moves rather than just one. For most games, this is not a problem; but for games with a
large number of possible actions, the difference can be noticeable.



(a) How many roles are there?
(b) How many propositions are there?
(c) How many feasible actions are there?
(d) How many actions are legal for white in the initial state?
(e) How many propositions are true in the initial state?
(f) How many are true in the state that results from white performing action a and black

performing action d in the initial state?
(g) What is the minimum number of steps this game can take to terminate?

Problem 2.2: More questions about the game in Problem 2.1.

(a) Does the game always terminate?
(b) Is the game playable?
(c) Is the game strongly winnable for white?
(d) Is the game weakly winnable for white?
(e) Is the game strongly winnable for black?
(f) Is the game strongly winnable for black?

Problem 2.3: For each of the following pairs of expressions, say whether the expression on the
second line is a faithful translation of the expression on the first line into Prefix GDL.

(a) r(a,b) :- p(a) & q(b)
(<= (r a b) (and (p a) (q b)))

 
(b) r(a,b) :- p(a) & q(b)

(<= (r a b) (p a) (q b))

 
(c) r(x,y) :- p(x) & q(y)

(<= (r ?x ?y) (p ?x) (q ?y))

 
(d) r(X,Y) :- p(X) & q(Y)

(<= (r ?x ?y) (p ?x) (q ?y))

file:///ggp/problems/problem_02_02.html
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C H A P T E R  5

Small Single Player Games

5.1 Introduction

We start our tour of general game playing by looking at single player games. In the game-playing
community, these are often called puzzles rather than games; and the process of solving such
puzzles is often called problem-solving rather than game-playing.

Puzzles are simpler than multiple-player games because everything is under the control of the
single player. The world is static, except when the player acts; and changes to the world are
determined entirely by the current state and the actions of the player.

In this chapter, as in most of this book, we assume that the player has complete information about
the game. We assume that it knows the initial state; it knows all of its legal actions in every state;
it knows the effects of its actions in every state; for every state, it knows its reward; and, for every
state, it knows whether or not it is terminal.

In this chapter, we also assume the games are small, i.e. they are small enough so that there is
sufficient time for the player to search the entire game tree. This guarantees that the player can
find optimal actions to perform. That said, as we shall see, it is sometimes possible to find optimal
actions even without searching the entire game tree.

Despite these strong assumptions (just one player, complete information, and the availability of
adequate time to search the game tree), the study of single player games is a good place to start our
look at general game playing. First of all, many real world problems can be cast as single player
games with these same restrictions. More importantly for us, as we shall see, the techniques we
examine later can be viewed as more elaborate versions of the basic techniques introduced here.

We begin this chapter with an example of a single-player game that we use throughout the chapter.
We then look at two different approaches to single-player game playing.

5.2 8-Puzzle

The 8-puzzle is a sliding tile puzzle. The game board is a 3x3 square with numbered tiles in all but
one of the cells. See the example shown below.

1 3

4 2 5

7 8 6



The state of the game is modified by sliding numbered tiles into the empty space from adjacent
cells, thus moving the empty space to a new location. There are four possible moves - moving the
empty space up, down, left, or right. Obviously, not all moves are possible in all states. The states
shown on the left and right below illustrate the possible moves from the state shown in the center.

4 1 3

2 5

7 8 6

down
⇐

1 3

4 2 5

7 8 6

right
⇒

1 3

4 2 5

7 8 6

The ultimate object of the game is to place the tiles in order and position the empty square in the
lower right cell. See below.

1 2 3

4 5 6

7 8

The game terminates after 8 moves or when all of the tiles are in the right positions, whichever
comes first. Partial credit is given for states that approximate the ultimate goal, with 10 points
being allocated for each numbered tile in the correct position and 20 points being allocated for
having the empty tile in the correct position. For example, the initial state shown above, the one in
the middle, is worth 40 points; and the goal state is worth 100 points.

5.3 Compulsive Deliberation

Compulsive Deliberation is a particularly simple approach to game playing. On each step, the
player examines the then-current game tree to determine its best move for that step; and it makes
this move. It repeats this process on the next step and so forth until the end of the game.

In pure compulsive deliberation, each step of the computation is independent of every other step.
No data computed during any step is accessible on subsequent steps. The player treats each step as
if it were a new game. This is obviously wasteful, but it does not hurt so long as there is enough
time to do the repeated calculations. We start with this method because it is simple to understand
and at the same time serves as a template for the more sophisticated, less wasteful methods to
come.

The following procedure is a simple implementation of compulsive deliberation. On receipt of a
play message, the player simulates the specified move as usual. It then computes all of its legal
actions in this new state and iterates through these actions comparing the value of each to the best
value found so far. If it ever finds an action that guarantees a reward of 100, it stops and returns
that action. Otherwise, it retains the highest value and action and returns the corresponding action
when it is done.

function play (id,move)
 {state = simulate(move,state,game);
  return bestmove(role,state)}



 

function bestmove (role, state)
 {state = simulate(move,state,game);
  var actions = findlegals(role,state,game);
  var action = actions[0];
  var score = 0;
  for (var i=0; i<actions.length; i++)
      {var result = value(role,findnexts(seq(actions[i]),state,game));
       if (result>score) {score = result; action = actions[i]}};
  return action}

Recall that every game has a unique reward for each player in each state. The reward is a perfect
measure of utility for terminal states. Unfortunately, in general, the rewards for non-terminal states
do not always correlate with the rewards for terminal states; and so they are not necessarily useful
in defining the values of non-terminal states.

State utility is a measure of utility that is relevant for both terminal states and non-terminal states.
By definition, the utility of a state for a player is defined as being the best reward the player can
guarantee for itself by any sequence of legal moves starting in the given state.

One way to determine the utility of a state is by computing all sequences of legal actions that lead
from the given state to a terminal state and taking the maximum reward for the terminal state
resulting from each such sequence.

The following procedure computes the same value in a slightly simpler manner. The procedure
takes a player and a state as arguments and returns the corresponding utility as value. The
procedure computes the value via a recursive exploration of the game tree. If the state supplied as
argument is terminal, the output is just the player's reward for that state. Otherwise, the output is
the maximum of the utilities of the states resulting from executing any of the player's legal actions
in the given state.

 

function value (role,state)
 {if (findterminalp(state,game))
     {return findreward(role,state,game)};
  var actions = findlegals(role,state,game);
  var score = 0;
  for (var i=0; i<actions.length; i++)
      {var result = value(role,simulate(seq(actions[i]),state,game));
       if (result>score) {score = result}};
  return score}

Since all games in GGP competitions terminate, this procedure always halts; and it is easy to see
that it produces the utility for the specified role in the specified state.

5.4 Sequential Planning

Compulsive deliberation is wasteful in that computations are repeated unnecessarily. Once a
player is able to find a path to a terminal state with maximal reward, it should not have to repeat
that computation on every step. Sequential planning is the antithesis of compulsive deliberation in
which no work is repeated. Once a sequential planner finds a good path, it simply saves the
sequence of actions along that path and then executes the actions step by step until the game is
done without any further deliberation.

A sequential plan for a single player game is any sequence of feasible actions. A sequential plan is



legal if and only if every action in the sequence is legal in the state in which that action is
performed. A plan is complete if and only if it leads from the initial state of the game to a terminal
state. A plan is minimal if and only if none of the intermediate states is terminal.

Consider the 8-puzzle game described above. The sequential plans shown below are all legal,
complete, and minimal. The actions in the sequences shown are all legal. Each leads from the
initial state to a terminal state. And none of the intermediate states produced during the execution
is terminal.

[right,down,right,down]

[right,down,left,right,right,down]

[right,down,left,right,left,right,right,down]

Note that this definition does not require that the sequence of actions produces the best possible
result. This allows us to compare good plans and bad plans. We say that one sequential plan is
better than another if and only if the reward associated with the first plan is greater than the
reward associated with the second plan; and we define a sequential plan to be optimal if and only
if there is no better sequential plan.

The table below shows that rewards associated with the plans shown above. Clearly, the second
plan is better than the first, and the last three plans are optimal.

[right,left,right,left,right,left,right,left] 40
[right,right,left,right,left,right,left,right] 50
[right,down,right,down] 100
[right,down,left,right,right,down] 100
[right,down,left,right,left,right,right,down] 100

Sequential planning is the process of finding sequential plans. A sequential planner is said to be
admissible if and only if it returns an optimal sequential plan.

A sequential planning player is one that produces an optimal sequential plan and then executes the
steps of that plan during game play. The planning is usually done during the start-up period of the
game, but it can also be done during regular game play. It is also possible to mix sequential
planning with other techniques. For example, in the case of large games, a player might play
randomly during the initial part of a game and then switch to sequential planning once the game
tree becomes small enough. Of course, in this last case, the player's ability to succeed depends on
the strategy used before sequential planning commences.

Definitions for the basic methods for pure sequential planning are shown below. The start method
invokes a procedure, called bestplan, to produce a sequential plan and stores this plan for later
use. On each play of the game, the player performs the corresponding action in the plan. The stop
and abort methods are the same as for the other players we have seen thus far.

 

function start (id,role,rules,start,play)
 {game = rules;
  var result = bestplan(role,findinits(game));
  plan = result[1];
  return 'ready'}

function play (id,move)



 {return plan[step]}

A depth-first search is conceptually the simplest approach to sequential planning. The procedure
takes a player and a state as arguments and returns the corresponding utility and plan as value. The
procedure takes the form of a recursive exploration of the game tree. If the state supplied as
argument is terminal, the output is just the player's reward for that state and the empty plan.
Otherwise, the output is the maximum of the utilities of the states resulting from executing any of
the player's legal actions in the given state and the corresponding plan.

 

function bestplan (role,state)
 {if (terminalp(state)) {return seq(findreward(role,state,game),seq())};
  var actions = findlegals(role,state,game);
  var result = bestplan(role,findnexts(seq(actions[0]),state,game));
  var score = result[0];
  var plan = result[1];
  plan[plan.length] = actions[0];
  for (var i=1; i<actions.length; i++)
      {var result = bestplan(role,findnexts(actions[i],state,game));
       if (result[0]>score}
          {score = result[0];
           plan = result[1];
           plan[plan.length] = actions[i]};
  return seq(score,plan)}

Note that this procedure may not produce the shortest plan. However, it is guaranteed to produce
an optimal plan as defined above.

Problems

Problem 5.1: What is the reward associated with each of the 8-Puzzle states shown below?

(a)

1 2

3 4 5

6 7 8

 (b)

1 2 3

4 5

6 7 8

 (c)

1 3

4 2 5

7 8 6

 (d)

1 2 3

4 5 6

7 8

Problem 5.2: Consider the 8-puzzle with the initial state shown below, and assume that there are
exactly two steps left in the game, i.e. the game ends after exactly two additional actions.

1 2 3

4 5 6

7 8

(a) What is the player's reward in this state?
(b) What is the utility of this state?
(c) How many nodes are in the game tree?
(d) How many distinct states are in the game tree?
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(e) What is the maximum number of nodes examined by compulsive deliberation?

Problem 5.3: Consider the 8-puzzle introduced in the notes. The initial state of the game is shown
below on the left, and the ideal arrangement is shown on the right.

1 3

4 2 5

7 8 6

1 2 3

4 5 6

7 8

Recall that there are 4 feasible actions - up, down, left, right - and any of these actions is legal so
long as the empty tile remains within the 3x3 grid. The reward for a state is the sum of rewards for
each tile, with 10 points being awarded for each numbered tile in its ideal position and 20 points
being awarded if the empty cell is in its proper position.

(b) Which of the following sequential plans are legal?
 [right,right,down,down]

 [right,right,right,down]

 [right,down,right,down,left,up,right,down]

 [right,down,right,left,right,left,right,down]

(c) Which of the following sequential plans are complete?
 [right,right,down,down]

 [right,down,right,left,right,left,right,left]

 [right,down,right,left,right,left,right,down]

 [right,down,right,down,left,up,right,down]

(d) Which of the following sequential plans are minimal?
 [right,right,down,down]

 [right,down,right,left,right,left,right,left]

 [right,down,right,left,right,left,right,down]

 [right,down,right,down,left,up,right,down]

(a) Which of the following sequential plans are optimal?
 [right,down,right,down]

 [right,down,right,left,right,left,right,left]

 [right,down,right,left,right,left,right,down]
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C H A P T E R  6

Small Multiple Player Games

6.1 Introduction

Having dealt with small single-player games, we turn now to small multiple-player games. In most
cases, the other players are general game playing programs or humans. However, in some cases, the
other players represent uncertainty in the game itself. For example, it is common to model some
card games by representing a randomly shuffled deck of cards as an additional player in the game,
one that deals or reveals cards as the game progresses.

Multiple-player games are more complicated than single-player games because the state resulting
from a player's actions can depend on the actions of the other players. No player can directly
control the actions of other players; and so, in making its choices, a player must consider all
possible actions of the other players.

Before proceeding, it is worth emphasizing that games need not be fixed sum. In a fixed sum game,
the total number of points is fixed. (When this number is zero, such games are usually said to be
zero-sum.) In order for one player to get more points, some other player must lose points. For this
reason, fixed sum games are necessarily competitive. In general game playing, there is no such
restriction. Some games are competitive; but others are cooperative - it may be that the only way
for one player to get a higher reward is to help the other players get higher rewards as well.

While it is possible, in some multiple-player games, to find sequential plans that produce maximal
rewards, this is rarely the case. In order to achieve an optimal reward, it is frequently necessary for
a player to conditionalize its actions on the state of the game. This is a situation where compulsive
deliberation works well.

In this chapter, as in the preceding chapter, we look at settings in which there is sufficient time for
players to search the game tree entirely. That said, as in single-player games, it is sometimes
possible to find optimal actions even without searching the entire game tree.

We begin this chapter with a procedure called Minimax, and we then consider a more efficient
variation called Bounded Minimax. We then turn to an even more efficient procedure called Alpha-
Beta Search, which produces the same results but eliminates some of the needless computation of
minimax.

6.2 Minimax

In general game playing, a player may choose to make assumptions about the actions of the other
players. For example, a player might want to assume that the other players are behaving rationally.
By eliminating irrational actions on the part of the other players, a player can decrease the number
of possibilities, it needs to consider.

Unfortunately, in general game playing, as currently constituted, no player knows the identity of



the other players. The other players might be irrational or they might behave the same as the player
itself. Since there is no information about the other players, many general game players take a
pessimistic approach - they assume that the other players will perform the worst possible actions.
This pessimistic approach is the basis for a game-playing technique called Minimax.

In the case of a one-step game, Minimax chooses an action such that the value of the resulting state
for any opponent action is greater than or equal to the value of the resulting state for any other
action. In the case of a multiple-step game, Minimax goes to the end of the game and backs up
values.

We can think about Minimax as search of a bipartite tree consisting of alternating max nodes and
min nodes. See the example shown below. The max nodes (shown in beige) represent the choices of
the player while the min nodes (shown in grey) represent the choices of the other players.

Max Node →

Min Node →

Figure 6.1 - A minimax tree 

Note that, although we have separated the choices of the player and its opponents, this does not
mean that play alternates between the opponents or that the opponents know the player's action.
The player and its opponents make their choices simultaneously, without knowledge of each other's
choices.

The value of a max node for a player is either the utility of that state if it is terminal or the
maximum of all values for the min nodes that result from its legal actions. The value of a min node
is the minimum value that results from any legal opponent action.

The following game tree illustrates this. The nodes at the bottom of the tree are terminal states, and
the values are the player's goal values for those states. The values shown in the other nodes are
computed according to the rules just stated. For example, the value of the minnode at the lower left
is 1 because that is the minimum of the the values of its maxnodes below it, viz. 1 and 2. The value
of the minnode next to that minnode is 3 because that is the value of the two maxnodes below it,
viz. 3 and 4. The value of the maxnode above these two minnodes is 3 because that is the maximum
of the values of the two minnodes. And so forth.



3

3 3

3 7 7 3

1 3 5 7 7 5 3 1

1 2 3 4 5 6 7 8 8 7 6 5 4 3 2 1

Figure 6.2 - A minimax tree with values 

The following procedure is a simple implementation of a player that uses minimax to evaluate
states. The implementation is similar to that of the compulsive deliberation player introduced in the
preceding chapter. The start handler merely records relevant information in the player's global
variables. The play handler simulates the previous move to obtain the current state and then finds
the best action for it to perform in that state. In this case, it uses the bestmove subroutine to obtain
this action.

 

function start (id,player,desc,sc,pc)
 {description = desc;
  role = player;
  state = null;
  return 'ready'}

function play (id,move)
 {state = simulate(move,state,game);
  return bestmove(role,state)}

The main difference between the bestmove subroutine for single-player games and the bestmove
for multiple-player games is the way scores are computed. Rather than comparing subsequent
states, it compares min nodes as described above.

 

function bestmove (role,state)
 {var actions = findlegals(role,state,game);
  var action = actions[0];
  var score = 0;
  var move = seq();
  for (var i=0; i<actions.length; i++)
      {var result = minscore(role,actions[i],state);
       if (result==100) {return actions[i]};
       if (result>score) {score = result; action = actions[i]}};
  return action}

The minscore subroutine takes a role, an action of that role, and a state as arguments and produces



the minimum values for the given role associated with the given action for any of the opponent's
legal actions in the given state. (The findopponent subroutine here uses the game description to
compute the other player in a two-player game.)

 

function minscore (role,action,state)
 {var opponent = findopponent(role,game);
  var actions = findlegals(opponent,state,game);
  var score = 100;
  for (var i=0; i<actions.length; i++)
      {var move = [['does',role,action],['does',opponent,actions[i]]];
       var newstate = findnexts(move,state,game);
       var result = maxscore(role,newstate);
       if (result

The maxscore subroutine, which is called by minscore, takes a role and a state as arguments. It
conducts a recursive exploration of the game tree below the given state. If the state is terminal, the
output is just the role's reward for that state. Otherwise, the output is the maximum of the utilities
of the min nodes associated with the player's legal actions in the given state.

 

function maxscore (role,state)
 {if (findterminalp(state,game)) {return findreward(role,state,game)};
  var actions = findlegals(role,state,game);
  var score = 0;
  for (var i=0; i<actions.length; i++)
      {var result = minscore(role,actions[i],state);
       if (result>score) {score = result}};
  return score}

6.3 Bounded Minimax Search

One disadvantage of the Minimax procedure described in the preceding section is that it examines
the entire game tree in all cases. While this is sometimes necessary, there are cases where it is
possible to get the same result without examining the entire game tree. For example, if in
processing a state the maxscore subroutine finds an action that produces 100 points, it does not
need to look at any additional actions since it cannot do better; and if the minscore subroutine finds
an action that produces 0 points, it does not need to look at any additional actions since it cannot
get the score any lower.

Bounded Minimax is just the Minimax procedure just discussed. Rather than processing all actions
on every node, it checks first for these bounds; and, if they occur on any node, it terminates its
examination and returns the corresponding value.

As an example of this, consider the game tree shown below. The nodes with values are those
examined by Bounded Minimax. The other nodes are not examined at all and do not need to be
examined.

100

100



100 100

0 100 50 100

0 100 100 100 50 100 100

It is easy to adapt the basic Minimax code to do Bounded Minimax. All we need to do is to put
conditionals in the inner loops of maxscore and minscore, as shown below.

 

function minscore (role,action,state)
 {var opponent = findopponent(role,game);
  var actions = findlegals(opponent,state,game);
  var score = 100;
  for (var i=0; i<actions.length; i++)
      {var move = [['does',role,action],['does',opponent,actions[i]]];
       var newstate = findnexts(move,state,game);
       var result = maxscore(role,newstate);
       if (result==0) {return 0};
       if (resultscore) {score = result}};
  return score}

Note that 100 and 0 are not the only values that can be used here. For example, if a player is in a
satisficing game, where it needs to get a certain minimum score, then it can use that threshold
rather than 100. If a player simply wants to win a fixed sum game, then it can use 51 as the
threshold, knowing that if it gets this amount it has won the game.

6.4 Alpha-Beta Search

While Bounded Minimax helps avoid some wasted work, we can do even better. Consider the game
tree shown below.

11

11 3

11 15 3 7

11 9 15 13 3 1 7 5



12 11 10 9 16 15 14 13 4 3 2 1 8 7 6 5

In this case, unlike the examples seen earlier, there are many terminal values that are not 0 or 100.
In determining its maximum score for the top node of this tree, a Minimax player, even a Bounded
Minimax player, would examine the entire tree. However, not all of this work is necessary.

Alpha-Beta Search is a variation on Bounded Minimax that eliminates such wasted work by
computing bounds dynamically and passing them along as parameters. One bound, called alpha, is
the best score the player has seen thus far. The other bound, called beta, is the worst score the
player has seen. In examining new nodes, alpha-beta search uses these bounds to decide whether to
look at further nodes.

If the partial result at a min node is less than alpha, then there is no point in examining other
descendants of that node since it could only decrease this value and the player would not take that
choice given that it has a higher value elsewhere.

Analogously, if the partial result at a max node is greater than beta, then there is no point in
considering other options since they can only increase the score and the player's opponents would
not allow that since they know they can keep the value to no more than beta.

The following is an implementation of maxscore and minscore for an alpha-beta player.

 

function maxscore (role, state, alpha, beta)
  {if (findterminalp(state)) {return findreward(role,state,game)};
   for (var action in findlegals(role,state,game))
       {alpha = max(alpha,minscore(role,action,state,alpha,beta));
        if (alpha>=beta) then {return beta}};
   return alpha}

function minscore (role, action, state,alpha,beta)
  {for (move in findmoves(role,action,state))
       {beta = min(beta,maxscore(role,next(move,state),alpha,beta));
        if (beta<=alpha) then {return alpha}};
   return beta}

Now let's apply the maxscore procedure to the tree shown above with initial value 0 and 100 for
alpha and beta. In the tree below, we have written in values produced by the alpha-beta procedure
in this case, and we have left the other nodes blank.

11

11 3

11 15 3



11 11 15 3 1

12 11 10 16 15 4 3 2 1

In this particular case, the improvement of Alpha-Beta over Minimax is modest. However, in
general, Alpha-Beta Search can save a significant amount of work over full Minimax. In the best
case, given a tree with branching factor b and depth d, Alpha-Beta Search needs to examine at most
O(bd/2) nodes to find the maximum score instead of O(bd). This means that an Alpha-Beta player
can look ahead twice as far as a Minimax player in the same amount of time. Looked at another
way, the effective branching factor of a game in this case is sqrt(b) instead of b. It would be the
equivalent of searching a tree with just 5 moves instead 25 moves.

Problems

Problem 6.1: Fill in the minimax values for the non-terminal nodes in the following game tree. Max
nodes are initially beige; min nodes are grey.

1 2 3 4 5 6 7 8 8 7 6 5 4 3 2 1

Problem 6.2: Assign the utility values 1, 2, ..., 16 to the 16 terminal nodes in the following game
tree so that (1) no two terminal nodes have the same value and (2) the minimax value of the top
node is 8.
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Problem 6.3: Fill in the alpha-beta values for the non-terminal nodes in the following game tree.
Put an X in any node that alpha-beta does not examine.

4 3 2 1 8 7 6 5 12 11 10 9 16 15 14 13
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C H A P T E R  7

Heuristic Search

7.1 Introduction

In the last two chapters, we looked at approaches to playing small games, i.e. games for which
there is sufficient time for a complete search of the game tree. Unfortunately, most games are not
so small, and complete search is usually impractical. In this chapter, we look at a variety of
techniques for incomplete search. We begin with Depth-Limited Search, then Fixed-Depth
Heuristic Search, and finally Variable-Depth Heuristic Search. In the next chapter, we examine
probabilistic methods for dealing with incomplete search.

7.2 Depth-Limited Search

The simplest way of dealing with games for which there is insufficient time to search the entire
game tree is to limit the search in some way. In Depth-Limited Search, the player explores the
game tree to a given depth. A legal player is a special case of Depth-Limited Search where the
depth is effectively zero.

The implementation of Depth-Limited Search is a simple variation of the implementation of the
minimax player described in the preceding chapter. See below. One difference is the addition of a
level parameter to maxscore and minscore. This parameter is incremented on each recursive call in
minscore. If the player reaches the depth-limit at a non-terminal state, it simply returns 0, a
conservative lower bound on its utility.

 

function maxscore (role,state,level)
 {if (findterminalp(state,game)) {return findreward(role,state,game)};
  if (level>=limit) {return 0};
  var actions = findlegals(role,state,game);
  var move = seq();
  var score = 0;
  for (var i=0; i<actions.length; i++)
      {var result = minscore(role,actions[i],state,level);
       if (result==100) {return 100};
       if (result>score) {score = result}};
  return score}

function minscore (role,action,state,level)
 {var actions = findlegals(roles[rn],state,game);
  var score = 100;
  for (var i=0; i<actions.length; i++)
      {move[rn] = actions[i];
       var result = maxscore(role,newstate,level+1);
       if (result==0) {return 0};
       if (result<score) {score = result}};
  return score}

The most obvious problem with Depth-Limited Search is that the conservative estimate of utility



for non-terminal states is not very informative. In the worst case, none of the states at a given depth
may be terminal, in which case the search provides no discriminatory value. We discuss some ways
of dealing with this problem in the next sections and the next chapter.

Another problem with Depth-Limited Search is that a player may not be able to determine a
suitable depth-limit in advance. Too low and the player will not search as much as it could. Too
high and the search may not terminate in time.

One solution to this problem is to use breadth-first search rather than depth-first search. The
downside of this is the amount of space that this consumes on very large trees, in many cases
exceeding the storage limits of the computer.

An alternative solution to this problem is to use an iterative deepening approach to game tree
exploration, exploring the game tree repeatedly at increasing depths until time runs out. As usual
with iterative deepening, this is wasteful in that portions of the tree may be explored multiple times.
However, as usual with iterative deepening, this waste is usually bounded by a small constant
factor.

7.3 Fixed-Depth Heuristic Search

One way of dealing with the conservative nature of Depth-Limited Search is to improve upon the
arbitrary 0 value returned for nonterminal states. In fixed-depth heuristic search, this is
accomplished by applying a heuristic evaluation function to non-terminal states. Such functions are
based on features of states, and so they can be computed without examining entire game tree.

Examples of such heuristic functions abound. For example, in Chess, we often use piece count to
compare states, with the idea that, in the absence of immediate threats, having more material is
better than having less material. Similarly, we sometimes use board control, with the idea that
having control of the center of the board is more valuable than controlling the edges or corners.

The downside of using heuristic functions is that they are not necessarily guaranteed to be
successful. They may work in many cases but they can occasionally fail, as happens, for example in
Chess, when a player is checkmated even though it has more material and a better board control.
Still, games often admit heuristics that are useful in the sense that they work more often than not.

While, for specific games, such as Chess, programmers are able to build in evaluation functions in
advance, this is unfortunately not possible for general game playing, since the structure of the game
is not known in advance. Rather, the game player must analyze the game itself in order to find a
useful evaluation function. In a later chapter, we discuss how to find such heuristics.

That said, there are some heuristics for game playing that have arguable merit across all games. In
this section, we examine some of these heuristics. We also show how to build game players that
utilize these general heuristics.

The implementation of a general game player based on fixed-depth heuristic search is a simple
variation of the fixed-depth search player just described. See below. The difference comes in the
maxscore procedure. Rather than returning 0 on non-terminal states, the procedure returns the value
of a subroutine evalfn, which gives a heuristic value for the state.

function maxscore (role,state,level)
 {if (findterminalp(state,game)) {return findreward(role,state,game)};
  if (level>=limit) {return evalfn(role,state)};



  var actions = findlegals(role,state,game);
  var move = seq();
  var score = 0;
  for (var i=0; i<actions.length; i++)
      {var result = minscore(role,actions[i],state,level);
       if (result==100) {return 100};
       if (result>score) {score = result}};
  return score}

There are various ways of defining evalfn. In the following paragraphs, we look at just a few of
these - mobility, focus, and goal proximity.

Mobility is a measure of the number of things a player can do. This could be the number of actions
available in the given state or n steps away from the given state. Or it could be the number of states
reachable within n steps. (This could be different from the number of actions since multiple action
sequences could lead to the same state. All roads lead to Rome.)

A simple implementation of the mobility heuristic is shown below. The method simply computes
the number of actions that are legal in the given state and returns as value the percentage of all
feasible actions represented by this set of legal actions.

function mobility (role,state)
 {var actions = findlegals(role,state,game);
  var feasibles = findactions(role,game);
  return (actions.length/feasibles.length * 100)}

Focus is a measure of the narrowness of the search space. It is the inverse of mobility. Sometimes it
is good to focus to cut down on search space. Often better to restrict opponents' moves while
keeping one's own options open.

function focus (role,state)
 {var actions = findlegals(role,state,game);
  var feasibles = findactions(role,game);
  return (100 - actions.length/feasibles.length * 100)}

Goal proximity is a measure of how similar a given state is to desirable terminal state. There are
various ways this can be computed.

One common method is to count how many propositions that are true in the current state are also
true in a terminal state with adequate utility. The difficulty of implementing this method is
obtaining a set of desirable terminal states with which the current state can be compared.

Another alternative is to use the utility of the given state as a measure of progress toward the goal,
with the idea being that the higher utility, the closer the goal. Of course, this is not always true.
However, in many games the goal values are indeed monotonoic, meaning that values do increase
with proximity to the goal. Moreover, it is sometimes possible to compute this by a simple
examination of the game description, using methods we describe in later chapters.

None of these heuristics is guaranteed to work in all games, but all have strengths in some games.
To deal with this fact, some designers of GGP players have opted to use a weighted combination of
heuristics in place of a single heuristic. See the formula below. Here each fi is a heuristic function,
and wi is the corresponding weight.

f(s) = w1 × f1(s) + ... + wn × fn(s)



Of course, there is no way of knowing in advance what the weights should be, but sometimes
playing a few instances of a game (e.g. during the start clock) can suggest weights for the various
heuristics.

7.4 Variable Depth Heuristic Search

As we discussed in the preceding section, heuristic search is not guaranteed to succeed in all cases.
Failing is never good. However, it is particularly embarrassing in situations where just a little more
search would have revealed significant changes in the player's circumstances, for better or worse. In
the research literature, this is often called a horizon problem.

As an example of a horizon problem in Chess, consider a situation where the players are
exchanging piece, with white capturing black's pieces and vice versa. Now imagine cutting off the
search at an arbitrary depth, say 2 captures each. At this point, white might believe it has an
advantage since it has more material. However, if the very next move by black is a capture of the
white queen, this evaluation could be misleading.

A common solution to this problem is to forego the fixed depth limit in favor of one that is itself
dependent on the current state of affairs, searching deeper in some areas of the tree and searching
less deep in other areas.

In Chess, a good example of this is to look for quiescence, i.e. a state in which there are no
immediate captures.

The following is an implementation of a variable-depth heuristic. This version of maxscore differs
from the fixed-depth version in that there is a subroutine (here called expfn) that is called to
determine whether the current state and/or depth meets an appropriate condition. If so, the tree
expansion terminates; otherwise, the player expands the state.

 

function maxscore (role,state,level)
 {if (findterminalp(state,game)) {return findreward(role,state,game)};
  if (!expfn(role,state,level)) {return evalfn(role,state)};
  var actions = findlegals(role,state,game);
  var move = seq();
  var score = 0;
  for (var i=0; i<actions.length; i++)
      {var result = minscore(role,actions[i],state,level);
       if (result==100) {return 100};
       if (result>score) {score = result}};
  return score}

The challenge in variable-depth heuristic search is finding an appropriate definition for expfn. One
common technique is to focus on differentials of heuristic functions. For example, a significant
change in mobility or goal proximity might indicate that further search is warranted whereas
actions that do not lead to dramatic changes might be less important.

Problems

Problem 7.1: Consider the single-player game tree shown below. and answer the questions that
follow.
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1 2

3 4

5 6 7 8

1. What is the minimax value of the tree?
2. What is the value returned by Depth-Limited Search with a depth limit of 3?
3. How many nodes are examined by depth-first search with a depth-limit of 3, i.e. how many

times is maxscore called?
4. How many nodes are examined by breadth-first search with a depth-limit of 3, i.e. how

many times is maxscore called?
5. How many nodes are examined by iterative-deepening search with a depth-limit of 3 and a

depth increment of 1, i.e. how many times is maxscore called?

Problem 7.2: Consider the two-player game tree shown below. The values on the max nodes are
actual goal values for the associated states as given in the game description, not state utilities
determined by game tree search.

0

10 30 20 40

20 20 40 40 60 60 80 80 40 40 60 60 80 80 100 100

(a) What is the state utility of the top of the tree (as determined, for example, by Minimax)?

file:///ggp/problems/problem_07_02.html


(b) Now consider a player using fixed-depth heuristic search with depth limit 1. How many
max nodes are searched in evaluating the top node in this tree (i.e. how many times is
maxscore called)?

(c) Suppose the player uses a goal proximity heuristic with state reward as the heuristic value
for non-terminal states. What is the minimum final reward for this player in this game?



C H A P T E R  8

Probabilistic Search

8.1 Introduction

In the preceding chapter, we examined various approaches to incomplete search of game trees. In
each approach, the evaluation of states is based on local properties of those states (i.e. properties
that do not depend on the game tree as a whole). In many games, there is no correlation between
these local properties and the likelihood of success in completing a game successfully.

In this chapter, we look at some alternative methods based on probabilistic analysis of game trees.
In the next section, we examine an approach based on Monte Carlo game simulation. In the
subsequent section, we look at a more sophisticated variation called Monte Carlo Tree Search.

8.2 Monte Carlo Search

The basic idea of Monte Carlo Search (MCS) is simple. In order to estimate the value of a non-
terminal state, we make some probes from that state to the end of the game by selecting random
moves for the players. We sum up the total reward for all such probes and divide by the number of
probes to obtain an estimated utility for that state. We can then use these expected utilities in
comparing states and selecting actions.

Monte Carlo can be used in compulsive deliberation fashion to evaluate the immediate successors
of the current state. However, it can also be used as an evaluation function for heuristic search.
The former approach can then be seen as a special case of the latter where the depth limit for
expansion is set to 0. In the latter case, search takes the form of two phases of search - the
expansion phase and the probe phase.

The expansion phase of Monte Carlo is the same as bounded depth heuristic search. The tree is
explored until some fixed depth is reached. The tree shown below illustrates this process.

The probe phase of Monte Carlo takes the form of exploration from each of the fringe states
reached in the expansion phase, for each making random probes from there to a terminal state. See
below.



The values produced by each probe are added up and divided by the number of probes for each
state to obtain an expected utility for that state. These expected utilities are then compared to
determine the relative utilities of the fringe states produced at the end of the expansion phase.

The following procedure is a simple implementation of the two-phase Monte Carlo method. The
implementation is similar to that of the heuristic search player introduced in the preceding chapter.
The main difference is that the Monte Carlo method is used to evaluate states rather than general
heuristics.

 

function maxscore (role,state,level)
 {if (findterminalp(state,game)) {return findreward(role,state,game)};
  if (level>levels) {return montecarlo(state)};
  var actions = findlegals(role,state,game);
  var move = seq();
  var score = 0;
  for (var i=0; i<actions.length; i++)
      {var result = minscore(role,actions[i],state,level);
       if (result==100) {return 100};
       if (result>score) {score = result}};
  return score}



 

function depthchargeothers (role,action,rn,move,state,depth)
 {if (rn>=roles.length)
     {var newstate = simulate(move,state,game);
      return depthchargescore(role,newstate,4)};
  if (roles[rn]==role)
     {move[rn] = action;
      return depthchargeothers(role,action,rn+1,move,state,depth)};
  var actions = findlegals(roles[rn],state,game);
  var score = 100;
  for (var i=0; i<actions.length; i++)
      {move[rn] = actions[i];
       var result = depthchargeothers(role,action,rn+1,move,state,depth);
       if (result==0) {return 0};
       if (result<score) {score = result}};
  return score}

function depthchargescore (role,state,count)
 {var total = 0;
  for (var i=0; i

Note that, in the probe phase of Monte Carlo, only one action is considered for each player on
each step. Also, there is no additional processing (e.g. checking whether states have been
previously expanded). Consequently, making probes in Monte Carlo is fast, and this enables
players to make many such probes.

One downside on the Monte Carlo method is that it can be optimistic. It assumes the other players
are playing randomly when in fact it is possible that they know exactly what they are doing. It
does not help if most of the probes from a position in Chess lead to success if one leads to a state
in which one's player is checkmated and the the other player sees this. This issue is addressed to
some extent in the MCTS method described below.

Another drawback of the Monte Carlo method is that it does not take into account the structure of
a game. For example, it may not recognize symmetries or independences that could substantially
decrease the cost of search. For that matter, it does not even recognize boards or pieces or piece
count or any other features that might form the basis of game-specific heuristics. These issues are
discussed further in the chapters to follow.

Even with those drawbacks, the Monte Carlo method is quite powerful. Prior to its use, general
game players were at best interesting novelties. Once players started using Monte Carlo, the
improvement in game play was dramatic. Suddenly, automated general game players began to
perform at a high level. Using a variation of this technique, CadiaPlayer won the International
General Game Playing competition 3 times. Almost every general game playing program today
includes some version of Monte Carlo.

8.3 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is a variation of Monte Carlo Search. Both methods build up a
game tree incrementally and both rely on random simulation of games; but they differ on the way
the tree is expanded. MCS uniformly expands the partial game tree during its expansion phase and
then simulates games starting at states on the fringe of the expanded tree. MCTS uses a more
sophisticated approach in which the processes of expansion and simulation are interleaved.

MCTS processes the game tree in cycles of four steps each. After each cycle is complete, it repeats
these steps so long as there is time remaining, at which point it selects an action based on the



statistics it has accumulated to that point.

Selection. In the selection step, the player traverses the tree produced thus far to select an
unexpanded node of the tree, making choices based on visit counts and utilities stored on nodes in
the tree.

Expansion. The successors of the state chosen during the selection phase are added to the tree.

Simulation. The player simulates the game starting at the node chosen during the selection phase.
In so doing, it chooses actions at random until a terminal state is encountered.

Backpropagation. Finally, the value of the terminal state is propagated back along the path to the
root node and the visit counts and utilities are updated accordingly.

An implementation of the MCTS selection procedure is shown below. If the initial state has not
been seen (i.e. it has 0 visits), then it is selected. Otherwise, the procedure searches the successors
of the node. If any have not been seen, then one of the unseen nodes is selected. If all of the
successors have been seen before, then the procedure uses the selectfn subroutine (described
below) to find values for those nodes and chooses the one that maximizes this value.

 
function select (node)
 {if (node.visits==0) {return node};
  for (var i=0; i

One of the most common ways of implementing selectfn is UCT (Upper Confidence bounds
applied to Trees). A typical UCT formula is vi + c*sqrt(log np / ni). vi here is the average reward
for that state. c is an arbitrary constant. np is the total number of times the state's parent was
picked. ni is the number of times this particular state was picked.

 function selectfn(node)
 {return node.utility+Math.sqrt(2*Math.log(node.visits)/node.parent.visits)}

Of course, there are other ways that one can evaluate states. The formula here is based on a
combination of exploitation and exploration. Exploitation here means the use of results on
previously explored states (the first term). Exploration means expansion of as-yet unexplored
states (the second term).

Expansion in MCTS is basically the same as that for MCS. An implementation for a single player
game is shown below.

 

function expand (node)
 {var actions = findlegals(role,node.state,game);
  for (var i=0; i<actions.length; i++)
      {var newstate = simulate(seq(actions[i]),state,game);
       var newnode = makenode(newstate,0,0,node,seq());
       node.children[node.children.length]=newnode};
  return true}

On large games with large time bounds, it is possible that the space consumed in this process
could exceed the memory available to a player. In such cases, it is common to use a variation of
the selection procedure in which no additional states are added to the tree. Instead, the player
continues doing simulations and updating its numbers for already-known states.



Simulation for MCTS is essentially the same as simulation for MCS. So the same procedure can
be used for both methods.

Backpropagation is easy. At the selected node, the method records a visit count and a utility. The
visit count in this case is 1 since it was a newly processed state. The utility is the result of the
simulation. The procedure then propagates to ancestors of this node. In the case of a single player
game, the procedure adds 1 to the visit count of each ancestor and augments its total utility by the
utility obtained on the latest simulation. See below. In the case of a multiple-player game the
propagated value is the minimum of the values for all opponent actions.

 

function backpropagate (node,score)
 {node.visits = node.visits+1;
  node.utility = node.utility+score;
  if (node.parent) {backpropagate(node.parent,score)};
  return true}

Expanding the method to multiple-player games is tedious but poses no significant problems. Max
nodes and min nodes must be differentiated. Expansion must create a bipartite tree, alternating
between max nodes and min nodes. And backpropagation must be adjusted accordingly.



C H A P T E R  9

Propositional Nets

9.1 Introduction

In the introduction, we saw that it is possible to think of the dynamics of a game as a state graph.
See, for example, the state graph in Figure 9.1. A game is characterized by a finite number of
states, a finite number of players, each with a finite number of actions. At each point in time the
game is in one of the possible states; players choose from their possible actions; and, as the players
perform their chosen actions, the game changes from one state to another.

Figure 9.1 - State Machine for a simple game

However, we rarely think of states as monolithic entities. In practice, we typically characterize
states in terms of propositions that are true in those states. As actions are performed, some
propositions become true and others become false. This suggests a conceptualization of games as
propositional nets rather than state machines. A propositional net is a graph in which propositions
and actions are nodes rather than states and where these nodes are interleaved with nodes
representing logical connectives and transitions, as suggested by the example shown below.

Figure 9.2 - Propositional Net for a simple game

One of the benefits of formalizing games as propositional nets is compactness. A set of n



propositions corresponds to a set of 2n states (all different combinations of truth values for the n
propositions). Thus, it is often possible to characterize the dynamics of games with graphs that are
much smaller than the corresponding state machines. For example, the propnet in Figure 9.2, with
just three propositions, corresponds to a state machine with eight states.

In this chapter, we start by formalizing propositional nets; we then show how to describe games in
this way; and we talk about the properties of propositional nets. In the next chapter, we see how to
use propositional nets in game playing. And in the chapters after that, we see how we can use
propositional nets in recognizing structure in games and in discovering game-playing heuristics of
various sorts.

9.2 Propositional Nets

A propositional net (propnet) is a directed bipartite hypergraph consisting of propositions
alternating with connectives (inverters, and-gates, or-gates, and transitions). Propositions can be
partitioned into three classes: input propositions (those with no inputs); base propositions (those
with incoming arcs from transitions); and view propositions (those with incoming arcs from
connectives other than transitions).

The propnet in Figure 9.3 is an example. In this case, there are six propositions (the nodes labelled
a, b, p, q, r, and s); and there are four connectives (the and-gate on the upper left, the inverter on
the upper right, the or-gate on the lower right, and the transition on the lower left). Nodes a and b
are input propositions; node s is a base proposition; and nodes p, q, and r are view propositions.

Figure 9.3 - Sample propositional net

An input marking is a function from the input propositions of a propositional net to boolean
values. A base marking is a function from the base propositions of a propositional net to boolean
values. A view marking is a function from the view propositions of a propositional net to boolean
values.

Given a propnet, an input marking and a base marking determine a unique view marking for that
propnet. This is based on the types of gates leading into the view propositions. The output of an
inverter is true if and only if its input is false. The output of an and-gate is true if and only all of its
inputs are true. The output of an or-gate is true if an only if at least one of its inputs is true.

As an example, consider the propnet in Figure 9.3. Suppose we had an input marking that assigned
a the value true and b the value false, and suppose we had a base marking that assigned s the value
true. Then, the view marking for p would be true; the view marking for q would be false; and the
view marking for r would be false. At this point, we have values for all of the view propositions in
the propnet. See Figure 9.4.



Figure 9.4 - One marking for a propositional net

Transitions are the basis for dynamics in a propnet. Consider a step in the operation of a propnet.
Let us assume that there is an input marking and a base marking. From these, we can compute a
view marking, as we have just seen. Importantly, this includes the inputs to the transitions of the
propnet. On the next step, a new input marking is imposed from without. However, the new base
marking is determined by the transitions. If the inputs to the transitions are true, then the outputs
of the transitions are true on the next step. In effect, a transition as a mechanism for controlling the
flow of information from one step to the next. It is a 1-step delay, a flip-flop in digital circuitry.

As an example, once again consider the propnet in Figure 9.3 with the marking illustrated in
Figure 9.4. Now, let's move on to the next step. Suppose the input marking for the second step is
the same as the first, i.e. a is true and b is false. What is s on this step? Since s is the output of a
transition, its value on this step is the same as the value of that transition's input on the preceding
step. In this case, the transition's input was false on the preceding step, and so s is false on this new
step. As before, we can compute the view marking corresponding to the input marking and this
new base marking. See Figure 9.5. In this case, since the second input to the and-gate is false, p is
false and q is true and, therefore, r is true as well.

Figure 9.5 - Another marking

From this input marking and the new base marking, we can compute a new view marking. And we
can then repeat. In this case, the the value of proposition s will go on alternating between true and
false so long as input a is true and input b is false. If input a ever becomes false, it will stop
alternating. However, the alternation will begin again as soon as it is set to true again.

9.3 Games As Propositional Nets

Propnets are an alternative to GDL for expressing the dynamics of games. With a few additional
provisions, it is possible to convert any GDL game description into a propositional net with the
same dynamics.



As an example of this, consider the simple game described below. There is just one role. There is
just one base proposition, and there are two actions. The two actions are always legal. The player
gets 100 points in any state in which s is true; otherwise, the player gets 0 points. The game ends if
q ever becomes true.

  role(white)
  base(s)
  input(white,a)
  input(white,b)
  legal(white,a)
  legal(white,b)
  p :- does(white,a) & true(s)
  q :- ~p
  r :- true(q)
  r :- does(white,b)
  next(s) :- r
  goal(white,100) :- true(s)
  goal(white,0) :- ~true(s)
  terminal :- true(q)

Now, let's build a propnet for this game. The base propositions in the propnet consist of the
propositions defined by the base relation in the game description (viz. s). The input propositions
correspond to the actions defined by the input relation in the game description (viz. a and b).

We use the next relation to capture the dynamics of the game. Starting with the base and input
propositions, we add links for each rule (using inverters for negations, and-gates for multiple
conditions, and or-gates for multiple rules). In so doing, we augment the propnet with additional
view propositions as necessary. The result is the propnet shown in Figure 9.3.

We model terminal in the propnet by adding a special node for termination. If necessary, we can
extend the propnet to include new view propositions, as we do for next. In this case, terminal
corresponds exactly to q, so we could just use q as our terminal node. However, for the sake of
clarity, we can add a new node t and insert a connection from q to t. See Figure 9.6. Note that we
use a one-input and-gate here. We could equally well use a two-input and-gate with both inputs
supplied by q, but this is simpler. The behavior is the same.

Figure 9.6 - Propnet with terminal node

Rewards are handled analogously. We create a new node for each reward value, and we use the
definitions for these values to extend the propnet further. In this case, goal(white,100)
corresponds exactly to s, so we do not need to add a new node for goal(white,100). However,
for clarity, in our example, we have added one node for each of the two goal values. See Figure
9.7.
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General Game Playing With Propnets

10.1 Introduction

As we saw in Chapter 4, a game player is typically implemented as a web service that receives
messages from a Game Manager and replies appropriately. Building a player means writing event
handlers for the different types of messages in the GGP communication protocol using subroutines
for processing game descriptions and match data. Our job in building a player is to use the
available subroutines to implement event handlers for the various GGP messages.

Building a game player using a propnet is essentially the same. In fact, all of the methods we have
described so far still apply. The main difference is that we replace the subroutines that work
directly on game descriptions with subroutines that operate on propnets. For example, in place of
the findlegals subroutine we used earlier, we now use a proplegals subroutine that computes
legal actions using the propnet; in place of the findterminalp subroutine we used earlier, we now
use a propterminalp subroutine that computes whether or not a state is terminal using the
propnet; and so forth.

We begin this chapter by presenting a representation of propnets as data structures. We then define
the basic subroutines for marking propnets and reading marks on propnets. Then we use these
subroutines to build up the General Game Playing subroutines needed by our players (e.g.
proplegals, propterminalp, and so forth).

10.2 Propositional Nets as Data Structures

Before we can define methods for processing propnets, we need a representation of those propnets
as data structures. In the simple approach taken here, we represent each propnet component as a
structured object with various components depending on the type of the object. The connectivity
of the propnet is captured by values of these components.

A propnet as a whole is represented by an object of the form shown below. The type is propnet.
The roles component is a sequence of the roles in the game. The inputs component is a sequence
of sequences of input nodes, one sequence for each role; the bases component is a sequence of the
base nodes in the game; and the view component is a sequence of the view nodes in the game. The
legals component is a sequence of sequences of legal nodes, one sequence for each role; the
goals component is a sequence of sequences of goal nodes; and the terminal component is the
terminal node of the game.

{type:'propnet',

 roles:roles, inputs:inputs, bases:bases, views:views,
 legals:legals, rewards:rewards, terminal:terminal}

An input node is a structured object of the form shown below. The type component is input; the



name is the GDL representation of the input; and the mark an indication of whether the node is true
or false in the current state (as determined by the input marking current at each point in time).

{type:'input',name:name,mark:boolean}

A base node is a structured object of the form shown below. The type component is base; the
name is the GDL representation of the node; the source is the transition that leads to the base node;
and the mark is an indication of whether the node is true or false in the current state (as determined
by the base marking current at each point in time).

{type:'base',name:name,source:transition,mark:boolean}

A view node is a structured object of the form shown below. The type component is view; the
name is the GDL representation of the node; the source is the connective that leads to the view
node.

{type:'view',name:name,source:connective}

A negation is a structured object of the form shown below. The type component is negation, and
the source is the proposition that leads to the connective.

{type:'negation',source:source}

A conjunction is a structured object of the form shown below. The type component is
conjunction, and the sources component is a sequence of propositions that leads to the
connective.

{type:'conjunction',source:sources}

A disjunction is a structured object of the form shown below. The type component is
disjunction, and the sources component is a sequence of propositions that leads to the
connective.

{type:'disjunction',sources:sources}

A transition is a structured object of the form shown below. The type component is transitin,
and the source is the proposition that leads to the transition.

{type:'transition',source:source}

As an example, consider the propnet presented in the preceding chapter. For convenience, it
appears here again as Figure 10.1. In what follows, we see how to assemble this propnet manually.
In a general game player, it would be automatically generated from the GDL game description.



Figure 10.1 - Propnet for a simple game

First of all, we create input, base, and view nodes for the propositions in the propnet. Since we do
not yet have data structures for our connectives, we initialize the sources of our propositions with
null.

a = {type:'input',name:'a'}
b = {type:'input',name:'b'}
p = {type:'view',name:'p',source:null,mark:false}
q = {type:'view',name:'q',source:null,mark:false}
r = {type:'view',name:'r',source:null,mark:false}
s = {type:'base',name:'s',source:null,mark:false}

la = {type:'base',name:'la',source:null,mark:false}
lb = {type:'base',name:'lb',source:null,mark:false}
g100 = {type:'view',name:'100',source:null,mark:false}
g0 = {type:'view',name:'0',source:null,mark:false}
t = {type:'view',name:'terminal',source:null,mark:false}

Next, we create connectives and insert the propositions as components.

a1 = {type:'conjunction',sources:[a,s]}
a2 = {type:'conjunction',sources:[q,q]}
a3 = {type:'conjunction',sources:[s,s]}
i1 = {type:'negation',source:p}
i2 = {type:'negation',source:g100}
o1 = {type:'disjunction',sources:[q,b]}
t1 = {type:'transition',source:r}
t2 = {type:'transition',source:la}
t3 = {type:'transition',source:lb}

Now, we go back and insert the connectives into the proposition nodes.

p.source = a1
q.source = i1
r.source = o1
s.source = t1

la.source = t2
lb.source = t3
g100.source = a3
g0.source   = i2
t.source = a2

Finally, we insert all of these things into the components of mypropnet.



mypropnet = 
 {type:'propnet',
  inputs:[a,b],
  bases:[s, la, lb],
  views:[p,q,r],
  rewards:[g100,g0],
  terminal:t}

Once we have created our propnet, either manually or automatically from the GDL for a game, we
can access the components by simply naming the propnet and one of its components and
extracting the desired component. For example, to get a sequence of the base propositions in
mypropnet, we would ask for mypropnet.base; and to get the source of proposition r, we would
ask for r.source.

10.3 Marking and Reading Propositional Nets

In our approach to General Game Playing using propnets, we use input markings in place of
moves and base markings in place of states. In order to compute the various attributes of a game
on a given step, we typically mark the input propositions and base propositions of the propnet and
then compute the corresponding view marking. We then read the view marking to compute the
desired attributes. In this section, we discuss the details of marking and reading propnets, and in
the next section we show how they are used.

There are two different approaches to marking and reading propnets. In the forward propagation
approach, we mark propositions and then propagate the values to compute the values of view
propositions dependent on those marks. To answer questions, we then just read the values of the
relevant view propositions. In the backward reasoning approach, we mark our base and input
propositions but do not propagate. Instead, when we need a value for a view proposition, we work
backward from the desired view proposition to determine that value. The forward method saves
redundant computation. The backward methods is a little simpler and not much slower. We show
the backward method here.

Marking propositions is easy. See the subroutines below. We simply iterate through the base
propositions or input propositions marking those nodes with values from the input or base vectors
of booleans.

function markbases (vector,propnet)
 {var props = propnet.bases;
  for (var i=0; i<props.length; i++)
      {props[i].mark = vector[i]};
  return true}

function markactions (vector,propnet)
 {var props = propnet.actions;
  for (var i=0; i<props.length; i++)
      {props[i].mark = vector[i]};
  return true}

function clearpropnet (propnet)
 {var props = propnet.bases;
  for (var i=0; i<props.length; i++)
      {props[i].mark = false};
  return true}



Computing the values of view propositions is accomplished by working backwards from the
propositions of interests. If the proposition is an input or base proposition, we simply return the
mark on that proposition. In the case of a view proposition, we compute the values of propositions
for the inputs to the connective feeding the view proposition and combine those values in
accordance with the type of the connective.

function propmarkp (p)
 {if (p.type=='base') {return p.mark};
  if (p.type=='input') {return p.mark};
  if (p.type=='view') {return propmarkp(p.source)};
  if (p.type=='negation') {return propmarknegation(p)};
  if (p.type=='conjunction') {return propmarkconjunction(p)};
  if (p.type=='disjunction') {return propmarkdisjunction(p)};
  return false}

function propmarknegation (p)
 {return !propmarkp(p.source)}

function propmarkconjunction (p)
 {var sources = p.sources;
  for (var i=0; i<sources.length; i++)
      {if (!propmarkp(sources[i])) {return false}};
  return true}

function propmarkdisjunction (p)
 {var sources = p.sources;
  for (var i=0; i<sources.length; i++)
      {if (propmarkp(sources[i])) {return true}};
  return false}

10.4 Computing Game Playing Basics

Now that we have some tools for marking and reading propnets, let's see how we can use them to
define the basic subroutines used in the game playing methods we defined in previous chapters.

In order to compute the legal actions for a role in a given state using a propnet, we first mark the
base propositions of the propnet using the information in the given state. We then check each of
the legality nodes for the given role in the propnet. If the node is true, we put the corresponding
input node on the list. When we are done, we return the list of input nodes that we have
accumulated in this process. (Note that, to return one of these actions to a game manager, we
would need to extract the name component from the corresponding input node.)

function proplegals (role,state,propnet)
 {markbases(state,propnet);
  var roles = propnet.roles;
  var legals = seq();
  for (var i=0; i<roles.length; i++)
      {if (role==roles[i]) {legals = propnet.legals[i]; break}};
  var actions = seq();
  for (var i=0; i<legals.length; i++)
      {if (propmarkp(legals[i]))
          {actions[actions.length]=legals[i]}};
  return actions}

The propnexts subroutine shown below computes the next state for a given move and a given
state using a given propnet. (Note that the move here is assumed to be an input marking, not just a



sequence of actions. To simulate a move supplied by a game manager, we would need to convert
to an input marking before using propnexts.) In executing the propnexts subroutine, we first
mark the input propositions using the given move, and we mark the base propositions of the
propnet using the information in the given state. We then check each of the base propositions in
the propnet, collecting those that are true in the next state.

function propnexts (move,state,propnet)
 {markactions(move,propnet);
  markbases(state,propnet);
  var bases = propnet.bases;
  var nexts = seq();
  for (var i=0; i<bases.length; i++)
      {nexts[i] = propmarkp(bases[i].source.source)};
  return nexts}

To compute the reward for a given role in a given state using a propnet, we first mark the base
propositions as before. We then check each of the reward propositions for the given role until we
find one that is true.

function propreward (role,state,propnet)
 {markbases(state,propnet);
  var roles = propnet.roles;
  var rewards = seq();
  for (var i=0; i<roles.length; i++)
      {if (role==roles[i]) {rewards = propnet.rewards[i]; break}};
  for (var i=0; i<rewards.length; i++)
      {if (propmarkp(rewards[i])) {return rewards[i].name}};
  return 0}

Computing whether or not a state is terminal is particularly easy. We mark the base propositions
as before and check the terminal node for the propnet.

function propterminalp (state,propnet)
 {markbases(state,propnet);
  return propmarkp(propnet.terminal)}



Figure 9.7 - Propnet with goal nodes

Legality is the trickiest part. There are various ways of doing this. The simplest method
conceptually is to add one legality propositions for each possible action and extend the propnet to
say when these nodes are true. In this case, we add two new propositions la and lb, corresponding
to actions a and b. In this case they are always true. To model this, we add a self-loop - a transition
for each of these legality propositions - and we initialize to true. Because of the dynamics of
transitions, these propositions will remain true indefinitely.

Figure 9.8 - Propnet with legality nodes

That's it. Once this is done, we have a propnet that reflects the game described in the given GDL.
In the next chapter, we discuss how to use this propnet to play games.
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Factoring

11.1 Introduction

A compound game is a single game consisting of two or more individual games. The state of a
compound game is a composition of the states of the individual games. On each step of a
compound game, the players perform actions in each of the individual games. A compound game
is over when either one or all of the individual games are over (depending on the type of
compound game).

As an example, consider Hodgepodge. One state of the game is illustrated below. Hodgepodge is a
combination of Chess and Go. On each step, a player makes a move on each board.

Figure 11.1 - One state in Hodgepodge

Using the techniques we have seen thus far, compound games can be quite expensive to play.
Unless a player recognizes that there are independent subgames, it is likely to search a game tree
that is far larger than it needs to be. If one subgame has branching factor a and a second has
branching factor b, then the branching factor of the joint game is a×b, and the fringe of the game
tree at depth d is likely to be something like (a×b)d. This is wasteful if the two subgames are
independent. In that case, there are two trees - one with branching factor a and one with branching
factor b, and the total size of the fringe of these trees at depth d should be only ad+bd.

Factoring is the process of discovering independent games inside of larger games. Once
discovered, game players can use these factors to play the individual games independently of each
other and thus cut down on the combinatoric cost of playing such games. It turns out that it is often
easier to discover independent subgames using the propnet representation of games rather than the
original GDL.

In this chapter, we look at some elementary techniques for factoring games using propnets. In
Section 2, we talk about discovering factors with completely independent subgames. In Section 3,
we talk about factoring with interdependent goals and rewards; and, in Section 4, we talk about
factoring with interdependent actions. In section 5, we discuss conditional factors, i.e. factors that
appear only in certain states of games.

11.2 Compound Games With Independent Subgames



We begin our discussion of factoring with the simple case of compound games consisting of
multiple completely independent subgames only one of which is relevant to the overall game.
Without factoring, a player is likely to consider actions in all subgames when only one of the
subgames matters. This is admittedly a very special case. It does not arise often, and it can be
solved by means other than factoring (though not by the methods we have seen thus far).
Nevertheless, it is worth considering because it prepares us for factoring more complicated games.

Multiple Buttons and Lights is an example of a game of this sort. See below. The overall game
consists of multiple copies of Buttons and Lights. In each copy of Buttons and Lights, there are
three base propositions (the lights) and three actions (the buttons). Pushing the first button in each
group toggles the first light; pushing the second button in each group interchanges the first and
second lights; and pushing the third button in each group interchanges the second and third lights.
Initially, the lights are all off. The goal is to turn on all of the lights in the middle group. (The
settings of the other lights are irrelevant.)

Figure 11.2 - Multiple Buttons and Lights

The GDL for this game is shown below. There is just one role. There are nine base propositions,
and there are nine actions. All actions are legal at all times. Each ai toggles the corresponding pi.
Each bi moves the value of pi to qi. And each ci interchanges the values of qi an ri. The game ends
when p2 and q2 and r2 are true. In this case, the player gets 100 points. (In violation of our rule
about finiteness, there is no step counter, so this game could, in principle, run forever.)

 

  role(white)

  base(p(X)) :- index(X)
  base(q(X)) :- index(X)
  base(r(X)) :- index(X)

  input(white,a(X)) :- index(x)
  input(white,b(X)) :- index(x)
  input(white,c(X)) :- index(x)

  index(1)
  index(2)
  index(3)

  legal(a(2))
  legal(b(2))
  legal(c(2))

  next(p(x)) :- does(white,a(x)) & ~true(p(x))
  next(p(x)) :- ~does(white,a(x)) & true(p(x))
  next(q(x)) :- does(white,b(x)) & true(p(x))
  next(q(x)) :- does(white,c(x)) & true(r(x))
  next(q(x)) :- ~does(white,b(x)) & ~does(white,c(x)) & true(q(x))
  next(r(x)) :- does(white,c(x)) & true(q(x))
  next(r(x)) :- ~does(white,c(x)) & true(r(x))



  goal(white,100) :- terminal
  goal(white,0) :- ~terminal

  terminal :- true(p(2)) & true(q(2)) & true(r(2))

Figure 11.3 shows the propnet for Multiple Buttons and Lights. There are three disjoint parts of
the propnet - one portion for the first group of buttons and lights, a second portion for the second
group, and a third portion for the third group. Note that the goal and termination conditions are
based entirely on the lights in the second group.

Figure 11.3 - Propnet for Multiple Buttons and Lights

Looking at the propnet for this game, it is easy to see that the game has a very special structure.
The propnet consists of three completely disconnected subnets, one for each subgame. Finding
factors in situations like this is easy - it can be computed in time that is polynomial in the size of
the propnet.

Note that this technique can be applied equally well to multi-player games. Consider, for example,
Multiple Tic Tac Toe, i.e. three games of Tic Tac Toe glued together in which only the middle
game matters. See below.
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Figure 11.4 - Multiple TicTacToe

The propnet for Multiple TicTacToe is similar to the propnet for Multiple Buttons and Lights, and
it is possible to find the structure for Multiple TicTacToe just as easily as for Multiple Buttons and
Lights.

11.3 Compound Games With Interdependent Termination

In this section, we consider compound games with interdependent termination. As with the games
discussed in the preceding section, actions are partitioned over distinct subgames and there are no



incoming connections between those subgames. The main difference is that the termination
condition for the overall game can depend on more than one and perhaps all of the subgames.

In games of this sort, the termination of the overall game can be defined as any boolean
combination of conditions in the individual subgames. In the case where the combination is a
disjunction, the game is said to have disjunctive termination. In the case where the combination is
a conjunction, the game is said to have conjunctive termination.

As a simple example of a factorable game with disjunctive goals, consider Best Buttons and
Lights. In Multiple Buttons and Lights, as defined in the preceding section, only one group of
buttons and lights matters. In Best Buttons and Lights, the compound game terminates whenever
any group terminates. This gives the player the freedom to play whichever subgame it likes and
rest assured that, if it succeeds on that subgame, it succeeds on the overall game with the same
score.

Figure 11.5 presents a sketch of the propnet for this game.

Figure 11.5 - Propnet for Best Buttons and Lights

The good news is that we can extend the techniques discussed in the preceding section to this case.
Let's consider the disjunctive case. If the connective leading to a termination is a disjunction with
its inputs in turn supplied by nodes in different subgames, then we simply cut off that node and
inputs to the or-gate termination nodes for the overall game. We repeat this process so long as we
encounter only disjunctions. If the game is truly disjunctive, this will lead to a separable propnet.
See Figure 11.6.



Figure 11.6 - Modified Propnet for Best Buttons and Lights

If this process succeeds in factoring the propnet, then the player simply picks one of the subgames
and proceeds as with the case of independent subgames. Alternatively and better, the player tries
playing all of the subgames and picks the one with the best score. Or at least that is the basic idea.

Unfortunately it is not quite that simple. There is a problem that does not arise in the case of
completely independent subgames. The player may choose a subgame, find a winning strategy,
and begin executing that strategy. Unfortunately, in the course of execution on the chosen
subgame, one of the other subgames may terminate, terminating the game as a whole before the
strategy in the chosen subgame is complete. This can lead to a lower score than the player might
have expected.

The solution to this problem is to check each of the subgames for termination when no actions are
played. We take the shortest time period and play each of the other subgames with that as step
limit and take the one that provides the best result. For the subgame with the shortest termination,
if there is no other game with that step limit, we try the next shortest step limit.

Although in this approach, the player searches all of the subgames more than once, this is usually
a lot less expensive that searching the game tree for the unfactored game because it is not cross
multiplying the branching factors of the independent games as it would if it did not use the game's
factors.

11.4 Compound Games With Interdependent Actions

In this section, we look at compound games with interdependent actions. By interdependence of
actions, we mean that those actions have effects on more than one of the subgames of the
compound game.

On first blush, it might seem that games of this sort are not factorable. However, this is not
necessarily true. Under certain circumstances, even with interdependent actions, it is possible to
identify factors and use those factors to search the game tree more efficiently than without
considering these factors.

As an example, consider the game of Joint Buttons and Lights. See the illustration in figure 11.7.
As with the other Buttons and Lights variants that we have seen, the lights in this game are
organized into groups of three. However, unlike the previous variants, buttons are not associated



with specific groups. Instead, each button has effects on all groups. Button aaa toggles the first
light in the first group and the first light in the second groupand the first light in the third group.
Button aab toggles the first light in the first group and the first light in the second group and
interchanges the value of the first light and the second light in the third group. And so forth.

Figure 11.7 - Joint Buttons and Lights

Although all of the buttons in this game affect all of the subgames, the game is still factorable with
just three actions per factor. The reason is that there is one button in the compound game for each
combination of actions in the other two subgames. Thus the game trees for each subgame can be
searched independently of each other and the actions chosen can be reassembled into overall
actions of the compound game. For example, if action a is chosen in the first and second subgames
and action c is chosen in the third subgame, then action aac can be performed in the compound
game.

Recognizing when this can be done is not easy, but it is doable. There are two steps. In the first
step, the player groups actions into equivalence classes of actions for each subgame. In the second
step, the player determines whether these classes satisfy the lossless join property.

Finding equivalence classes is done by looking at the propnet for each subgame. Two actions are
equivalent if they are used in the same way in the propnet for that subgame. For example, if each
action is input to an and-gate with the same other input and if the outputs are connected by an or-
gate, then the effects of one action cannot be distinguished form the effects of the other action;
hence they are equivalent.

The process of finding equivalence classes is repeated for each potential subgame. In general, the
equivalence classes for each subgame will be different. In fact, as we shall see, in order for the
game to be factorable, they must be different.

Once a player has equivalence classes for each potential subgame, it then checks whether those
equivalence classes are independent of each other. The criterion is simple. Each equivalence class
in one potential subgame must have a non-empty intersection with each equivalence class of every
other potential subgame. If this is true, then the partitions pass the lossless join criterion.

If a player finds equivalence classes for various two potential subgames and they pass this lossless
join test, then the player can factor the game into subgames. In order to benefit from the factoring,
the player must modify each propnet so that the individual actions are replaced with the
equivalence classes of which they are members. This cuts down on the number of possible actions
to consider. Otherwise, the branching factor of the game trees for the subgames would be just as
large as the branching factor for the overall game.



Once this is done, the player can then search the game trees for the different subgames to select
actions to perform in each game. It can then find an action in the compound game for the
particular combination of subgame actions. This is always doable provided that the partitioning of
actions satisfies the lossless join property, which has already been confirmed. The player then
performs any action in the intersection of the equivalence classes chosen in this process.

11.5 Conditional Independence

We now consider the class of games that, over time, become factorable. For example, a game
might not initially be separable into independent games; but it may, after entering a certain state,
become separable.

Consider the following game, called Joint Tic Tac Toe - two games of Tic Tac Toe connected by a
single square that connects the two. The goal of the game for a player is to get two lines, a row,
column or diagonal of that player's mark, with at least two of the marks residing in a specific tic
tac toe domain. Diagonals through the middle square do not count. On each turn, the player in
control can place two marks, either one in each distinct Tic Tac Toe domain or one mark in a Tic
Tac Toe domain and one in the center square. Suppose that the state of the game is as follows.
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Figure 11.8 - Joint Tic Tac Toe

Once it is not possible for either player to achieve a row utilizing the center square, the only
possible solutions lie in the domains of the Tic Tac Toe games that are joined by the center square.
The states of the two Tic Tac Toe games can be considered independently to find the remaining
optimal moves for the duration of the game. Only the game trees for each Tic Tac Toe game,
modulo the center square, need to be searched to determine the remaining optimal moves. Given
the current state, the game can be factored into two independent sub-games. However, from the
initial state,this game cannot be factored into independent games, because the shared middle
square intertwines the two domains as it is relevant to the satisfaction of goals in both sub-games.

While this game is not factorable in general, it is factorable contingent upon entering a state in
which no row through the middle is possible for either player. We define the game as being
contingently factorable, since it reduces to independent simultaneous sub-games, given that it
enters a certain state. The raw computational benefit acquired from recognizing contingent factors
is less than that of recognizing initial factors, because it requires that the game be in a specific
state. However, the relative computational savings are still the same, because the number of
accessible fringe nodes reduces to the sum of the remaining accessible fringe nodes of the
individual games rather than the product.

At this point in time, there are no established techniques for discovering and exploiting cases of
conditional independence. However, it seems likely that some of the techniques just discussed can
be adapted to this case as well.
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Discovery of Heuristics

12.1 Introduction

The biggest open problem in General Game Playing is the discovery of game-specific pruning
rules and/or evaluation functions. In many games, it is possible to find such heuristics. The
challenge to find such heuristics without searching the entire game tree.

In this chapter, we look at just one technique of this sort. We start by defining latches and
inhibitors and discuss how to find them. Then we show how the concepts work together in a useful
technique for removing states from the game tree and ordering states within the game tree.

12.2 Latches

A latch is a proposition that, once it becomes true (or, respectively, false), remains true (or,
respectively, false) no matter what the players do. A latch is not the same as a constant in that it
may change value during the game; but, once the value changes, it keeps the new value for all
remaining steps.

Almost all of the propositions in our usual description of Tic Tac Toe are latches. Once a square is
marked, it keeps that mark for the rest of the game; and once a cell ceases to be blank, it can never
again become blank. In other words, propositions like cell(1,2,x) and cell(2,3,o) and
cell(3,3,b) are all latches.

Given a propnet, it is straightforward to find latches. We enumerate values for all base markings
and check the value of the candidate proposition. If the value remains the same, then the
proposition is a latch.

One feature of this approach is that we do need to consider arbitrary action histories, only possible
combinations of actions. The downside is that we still need to cycle through all possible states of
the propnet as well. And thus the technique is prohibitively expensive in general.

A partial solution to this problem is to restrict one's attention to those base and input propositions
that determine the proposition being checked. A set of base and input propositions determine all
and only the propositions in the propnet that are downstream from it, i.e. the propositions
themselves or the outputs of connectives for which they are the inputs and so forth. In the worst
case, this may be as bad as the full search just described, but in many cases it is much less
expensive.

Note that the idea of latches can be extended to groups of propositions. While no individual
proposition in the group is a latch, it is possible that the group as a whole might constitute a latch.
Consider, for example, a game in which one of p or q is always true. Then neither p nor q but their
disjunction does form a latch, even if that disjunction is not a node in the propnet. Obviously,
finding composite latches is more expensive that finding individual latches, but it may be helpful



in some games.

12.3 Inhibitors

A proposition p inhibits a proposition q if and only if p must be false to achieve q or retain q. In
other words, whenever p is true in a state, q is false in the next state. When this occurs, we say that
p is an inhibitor of q.

Some inhibitors can be detected by a simple scan of the propnet for a game. If every path from the
base propositions and input propositions to q involve the negation of p, then p is an inhibitor of q.

12.4 Dead State Removal

Dead state removal is the removal of dead states from a game tree, i.e. states that cannot lead to
satisfactory terminal states, i.e. those that can give a player an adequate score (e.g. 100 points,
points above a desired threshhold, or a plurality of points in a zero sum game). Pruning the game
tree below dead states can save lots of computation.

In a propnet, if the truth (or falsity) of a proposition makes it a dead state, then we should strive to
ensure that the that proposition never becomes true (or, respectively false). So the technique could
equally well be called dead proposition detection.

The trick in dead state removal is to find such states without actually searching the game tree
starting with those states. Many ways of doing this have been proposed. In this section, we
examine one such technique based on the concepts of latches and inhibitors.

As an example, consider a game with the following behavioral rule. White gets 100 points if both
q and r are true. If we assume that this is the only way in which white can get 100 points, then
both q and r are goal inhibitors.

 goal(white,100) :- true(q) & true(r)

Now let's add in the rule shown below. If q ever becomes true, it remains true forever. In other
words, q is a latch. Obviously, in a situation like this, we would like to ensure that q never
becomes true or we lose the possibility of getting 100 points.

 next(q) :- true(q)

Generalizing this gives us our rule for dead state removal / dead proposition setting - if a latch
inhibits the goal in a game, then we should not consider states in which that proposition is set to
true.

As an example of dead state removal in action, consider Untwisty Corridor. It is a single player
game. There are nine propositions - p and q1,..., q8. And there are four action - a, b, c, and d. q1 is
true in the initial state, and the goal is to turn on q8. Actions a, b, and c all turn on p. If a q
proposition is true, then action d turns on the next in sequence, provided that p is false; otherwise
it does nothing. There is a step counter that terminates the game after 7 steps.

The game tree for Untwisty Corridor has 349,525 states. However, most of those states are dead
states. Recognizing that p is a latch and a goal inhibitor allows us to prune all of these dead state,
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Logic

13.1 Introduction

In the last few chapters we looked at propositional nets as an alternative to the Game Description
Language for encoding games. In this and the following chapters we return to GDL as the typical
language in which the rules of games are communicated in general game playing.

We first look at the task of computing logical consequences from a logic program. This provides
the background for implementing the basic functionality of a general game player to generate legal
moves, compute state update and decide termination from a GDL game description (see Chapter
4).

The ability to draw inferences from a logic program is also needed for converting a GDL input
into a propnet or any other data structure that can be more efficient to compute with. We will show
how logic can be used to find structure in GDL games such as symmetries, which help improve
the performance of a general game-playing system. We will look into how single-player games
can be solved in logic and how logic can be used to aid decision making through the automatic
construction of a goal-priented evaluation function.

The basic type of inference we are concerned with can be formulated as queries that ask whether a
literal L, or a conjunction of literals L1 & L2 & … & Ln, follows from a set of clauses. Often a
query contains variables, and then we are interested in obtaining values for these variables under
which the query becomes true.

Let's suppose that we want to infer a legal move for a player, say white, in a particular state of a
game. We can formulate this as the query legal(white,L), which means to determine for which
L, if any, this is a logical consequence of the given rules.

Let's use as an example the GDL description of a 2-player game known as Nim. Players take turns
removing one or more objects from one of several heaps. The game rules 1-10 below define a
legal move as reducing the size of a selected heap to a smaller value. The facts in lines 12-15
encode a randomly chosen current state.

1 legal(P,reduce(X,N)) :-

2    true(control(P)) & true(heap(X,M)) & smaller(N,M)
3

4 smaller(X,Y) :- succ(X,Y)

5 smaller(X,Y) :- succ(X,Z) & smaller(Z,Y)

6 succ(0,1)

7 succ(1,2)

8 succ(2,3)

9 succ(3,4)



10 succ(4,5)
11 

12 true(heap(a,2))

13 true(heap(b,0))

14 true(heap(c,5))

15 true(control(white))

Figure 13.1 - A collection of rules from the game Nim along with facts encoding a given state.

13.2 Unification

The most basic step in computing a query to a logic program is called unification. It means the
process of replacing variables so that two logical expressions become similar. This is needed to
determine which rule from the program could provide an answer to an atomic query such as
legal(white,L).

Generally speaking, a program fact A, or a program rule A :- B1 & … & Bm, can only provide an
answer to a query atom L if it is possible to replace the variables occurring in L and A in such a
way that the two atoms become similar.

Definition 13.1 A substitution is a finite set of replacements {x1/t1, …, xn/tn} such that

n ≥ 0;
x1, …, xn are pairwise distinct variables; and
t1, …, tn are terms (which may or may not contain variables).

The result SUBST(E,σ) of applying a substitution σ = {x1/t1, …, xn/tn} to an expression E is
obtained by simultaneously replacing in E every xi by its replacement ti.

Definition 13.2 Two expressions E1 and E2 are unifiable if we can find a substitution σ such that
SUBST(E1,σ) = SUBST(E2,σ). Any such σ is called a unifier of E1 and E2.

Recalling the example from above, the atomic query legal(white,L) and the head of the first rule
in Figure 13.1, legal(P,reduce(X,N)), are unifiable. Indeed there are many different unifiers for
the two, including all of the following.

σ1 = {P/white,L/reduce(a,1),X/a,N/1}:
    SUBST(legal(white,L), σ1) = legal(white,reduce(a,1))
    SUBST(legal(P,reduce(X,N)), σ1) = legal(white,reduce(a,1))

σ2 = {P/white,L/reduce(X,X),N/X}:
    SUBST(legal(white,L), σ2) = legal(white,reduce(X,X))
    SUBST(legal(P,reduce(X,N)), σ2) = legal(white,reduce(X,X))

θ = {P/white,L/reduce(X,N)}:



    SUBST(legal(white,L), θ) = legal(white,reduce(X,N))
    SUBST(legal(P,reduce(X,N)), θ) = legal(white,reduce(X,N))

Comparing the three substitutions, the last one, θ, appears to be the most general way of unifying
our two atoms: While variable L is assigned a move of the form reduce(X,N) in all three cases,
unifier σ1 additionally fixes specific values for X,N whereas σ2 binds the two variables together.
But neither is necessary to unify legal(white,L) and legal(P,reduce(X,N)). This leads to
Definition 13.3 below, which refers to the composition of two substitutions θ1 ⚬ θ2 as a
substitution that, for any expression E, satisfies

SUBST(E,θ1 ⚬ θ2) = SUBST(SUBST(E,θ1), θ2)

Definition 13.3 A unifier θ is more general than a unifier σ if there is a third substitution τ such
that θ ⚬ τ = σ.

A most general unifier for expressions E1 and E2 is one that is more general than any other unifier
of the two expressions.

It follows that indeed our unifier θ from above is more general than both σ1 and σ2, as can be seen
from

σ1 = θ ⚬ {X/a,N/1}
σ2 = θ ⚬ {N/X}

In fact, θ is a most general unifier for our example. Fortunately it is a known fact that whenever
two atomic formulas are unifiable, then a most general unifier always exists and is unique up to
variable permutation.

Moreover, most general unifiers can be easily computed. The recursive algorithm below takes as
input two expressions and a partially computed unifier (which should be empty at the first function
call). It is assumed that expressions as well as partial unifiers are encoded as lists. For example,
the function call

unify([legal,white,L],[legal,P,[reduce,X,N]],nil)

returns the following most general unifier.

[[P,white],[L,[reduce,X,N]]]

The algorithm works by comparing the structure of the two expressions, argument by argument.

 

function unify (x,y,sigma)
 {if (x == y) {return sigma};
  if (is_variable(x)) {return unifyVariable(x,y,sigma)};
  if (is_variable(y)) {return unifyVariable(y,x,sigma)};
  if (! is_list(x))
     {if (is_list(y) || x != y) {return fail}
      else {return sigma}};
  if (! is_list(y)) {return fail};



  sigma = unify(head(x),head(y),sigma);
  if (sigma == fail) {return fail}
   else {return unify(tail(x),tail(y),sigma)}}

function unifyVariable(x,y,sigma)
 {if (var z = replacement_for(x,sigma)) {return unify(z,y,sigma)};
  if (var z = replacement_for(y,sigma)) {return unify(x,z,sigma)};
  if (x != y && occurs_in(x,y)) {return fail}
   else {return add_element([x,y],sigma)}}

Function replacement_for(x,sigma) is assumed to return the replacement for variable x
according to unifier sigma if such a replacement exists; and 0 otherwise. Function
occurs_in(x,y) should return true just in case variable x occurs anywhere inside the (possibly
nested) list y.

13.3 Derivation Steps (Without Negation)

Backward-chaining is the standard technique for query answering in clausal logic. For this we
work our way backwards from the query, first by finding a rule that applies to the leading query
element and then proving that the conditions of the rule hold.

A clausee is applicable to an atom that can be unified with the head of the rule. There is a small
subtlety though. Suppose we had formulated the search for legal moves of our player as
legal(white,X) instead of legal(white,L). We would then be unable to unify the query atom
with the head of the clause shown below.

legal(P,reduce(X,N)) :- true(control(P)) & true(heap(X,M)) &  smaller(N,M)

The reason is that no substitution σ can possibly exist such that SUBST(legal(white,X), σ) =
SUBST(legal(P,reduce(X,N)), σ) because X cannot be equated with reduce(X,N).

But the scope of a variable should never extend beyond the clause in which it appears. For this
reason, each application of a rule should be preceded by generating a "fresh" copy in which the
variables have been consistently replaced by new names that do not occur in the original query or
any other step in the same derivation.

For a single derivation step we then proceed as follows. Let's first consider the case that neither the
query nor any of the program clauses contains a negated literal.

Given:  Clauses G (without negation)
Query L1 & L2 & … & Ln (without negation), n ≥ 1

Let: A :- B1 & B2 & … & Bm "fresh" variant of a clause in G, m ≥ 0
σ most general unifier of a L1 and A

Then: L1 & L2 & … & Ln ⇒ SUBST(B1 & B2 & … & Bm & L2 & … & Ln, σ)

A derivation step thus replaces the leading element of the query by the body of a suitable clause
and applies the necessary variable bindings to all of the new query.



Here is an example that uses the first clause of Figure 13.1.

legal(white,L) rule 1 with {P/white,L/reduce(X,N)}
⇒ true(control(white)) &

true(heap(X,M)) & smaller(N,M)

When the applied clause is a fact, i.e., a rule with empty body, then the respective query element is
removed without replacement, as in the following derivation step.

true(heap(X,M)) & smaller(N,M) rule 12 with {X/a,M/2}
⇒ smaller(N,2)

13.4 Derivations

A complete derivation for a query is obtained by the repeated application of derivation steps until
all subgoals have been resolved. If the original query includes variables, then the computed answer
is determined by the variable bindings made along the way.

Definition 13.4 A series of derivation steps is called a derivation. A successful derivation is one
that ends with the empty query, denoted as "□".

The answer computed by a successful derivation is obtained by composing the unifiers σ1 ⚬ σ2 ⚬
… ⚬ σk of each step and restricting the result to the variables in the original query.

An example is shown below, where again we use the clauses of Figure 13.1.

legal(white,L) rule 1 with {P/white,L/reduce(X,N)}
⇒ true(control(white)) & rule 15 with {}

true(heap(X,M)) & smaller(N,M)

⇒ true(heap(X,M)) & smaller(N,M) rule 12 with {X/a,M/2}
⇒ smaller(N,2) copy of rule 4 with {X'/N,Y'/2}
⇒ succ(N,2) rule 6 with {N/1}
⇒ □
Answer: {L/reduce(a,1)}

Here is another successful derivation for the same query.

legal(white,L) rule 1 with {P/white,L/reduce(X,N)}
⇒ true(control(white)) & rule 15 with {}

true(heap(X,M)) & smaller(N,M)

⇒ true(heap(X,M)) & smaller(N,M) rule 12 with {X/a,M/2}
⇒ smaller(N,2) copy of rule 5 with {X'/N,Y'/2}
⇒ succ(N,Z') & smaller(Z',2) rule 6 with {N/0,Z'/1}



⇒ smaller(1,2) copy of rule 4 with {X''/1,Y''/2}
⇒ succ(1,2) rule 7 with {}
⇒ □
Answer: {L/reduce(a,0)}

Derivations aren't always successful.

Definition 13.5 A derivation fails if it leads to a query whose first element does not unify with the
head of any available clause.

Here is an example of a derivation for the same query as above that leads to a dead-end.

legal(white,L) rule 1 with {P/white,L/reduce(X,N)}
⇒ true(control(white)) & rule 15 with {}

true(heap(X,M)) & smaller(N,M)

⇒ true(heap(X,M)) & smaller(N,M) rule 13 with {X/b,M/0}
⇒ smaller(N,0) copy of rule 4 with {X'/N,Y'/0}
⇒ succ(N,0) rule 6 with {N/1}
⇒ failure

13.5 Derivation Tree Search

Some of the basic functions from Chapter 4 for a general game player require to consider all
possible derivations of a query. For instance, findlegals(role,state,description) is expected to
deliver every computable answer to legal(role,M) for a given state and game description.
Backtracking provides a systematic way to compute these: After having found the first successful
or failed derivation, one goes back to the most recent choice where a different clause could have
been applied to the query, until all choices have been exhausted.

We can draw a tree with the original query as the root to illustrate the search space of backward-
chaining. Each computed answer then corresponds to one branch that ends with the empty query.
Switching to a different example, consider the problem of computing all legal moves for a player
in a given Tic-Tac-Toe position. Let's use the clauses listed below in Figure 13.2. Specifically, the
facts in lines 1-10 together encode the following game state, with white to move.

1 true(cell(1,1,x))

2 true(cell(1,2,o))

3 true(cell(1,3,b))

4 true(cell(2,1,o))



5 true(cell(2,2,o))

6 true(cell(2,3,x))

7 true(cell(3,1,b))

8 true(cell(3,2,x))

9 true(cell(3,3,b))

10 true(control(white))
11 

12 legal(W,mark(X,Y)) :- true(cell(X,Y,b)) & true(control(W))

13 legal(white,noop) :- true(control(black))

14 legal(black,noop) :- true(control(white))

Figure 13.2 - The rules for legality in Tic-Tac-Toe along with facts encoding a given position.

The tree depicted in Figure 13.3 shows the 3 legal moves that can be computed for white in our
example Tic-Tac-Toe position. The labels at the arcs indicate which clause has been selected.
Backtracking can be implemented by a depth-first search through this tree.

Figure 13.3 - Derivation tree to compute all legal moves for white from the clauses in Figure 13.2.

For black there is just one legal move in the same position, as the computation tree below
illustrates.

Figure 13.3 - Derivation tree to compute all legal moves for white from the clauses in Figure 13.2.

A correct implementation of a complete search through a derivation tree requires you to address
the problem of potentially infinite derivations that may arise with some game descriptions. Even if



a GDL describes a finite game, there is always the risk that a computation loops because of a
recursive clause. Suppose, for example, the following rule were added to the game description of
Nim in Figure 13.1.

16 smaller(X,Y) :- smaller(X,Y)

This clause is obviously redundant but perfectly correct, both logically and syntactically. A
straightforward implementation to compute derivations with this rule will eventually enter a
nonterminating loop.

legal(white,L) rule 1 with {P/white,L/reduce(X,N)}
⇒ true(control(white)) & rule 15 with {}

true(heap(X,M)) & smaller(N,M)

⇒ true(heap(X,M)) & smaller(N,M) rule 12 with {X/a,M/2}
⇒ smaller(N,2) copy of rule 16 with {X'/N,Y'/2}
⇒ smaller(N,2) …
⇒ …

Although it may be unlikely that you encounter such a tricky game description in practice, it can
be a good idea to add a simple loop check to avoid nonterminating computations. Note that
potential loops may be less obvious to detect from the GDL itself than in our example if they are
spread over several clauses.

Recursive clauses may even lead to nonterminating derivations in which the query grows forever
without repetition. To see why, consider the following alternative formalization of clause 5 from
Figure 13.1.

5* smaller(X,Y) :- smaller(Z,Y) & succ(X,Y)

Logically, this means the very same thing, but it may give rise to a non-looping, infinite derivation
as follows.

legal(white,L) rule 1 with {P/white,L/reduce(X,N)}
⇒ true(control(white)) & rule 15 with {}

true(heap(X,M)) & smaller(N,M)

⇒ true(heap(X,M)) & smaller(N,M) rule 12 with {X/a,M/2}
⇒ smaller(N,2) copy of rule 5* with {X'/N,Y'/2}
⇒ smaller(Z',2) & succ(N,Z') copy of rule 5* with {X''/Z',Y''/2}
⇒ smaller(Z'',2) & succ(Z',2) & succ(N,Z') …
⇒ …

This problem can be avoided simply by reordering the atoms in a rule in such a way that recursive
calls always come last.

13.6 Handling Negation

Let's now generalize our derivation procedure to queries and programs that include negative



literals. A subgoal of the form ~A can be treated according to a principle known as negation-by-
failure: If A itself cannot be derived, then ~A is true. This is justified by our use of the minimal
model as the semantics of a set of GDL clauses.

For a single derivation step in the general case we thus proceed as follows.

Given:  Clauses G
Query L1 & L2 & … & Ln (n ≥ 1)

Case: L1 = A positive literal
• proceed as before

Case: L1 = ~A negative literal without variables
• if all derivations for A fail:  L1 & L2 & … & Ln ⇒ L2 & … & Ln

• if a derivation for A succeeds: L1 & L2 & … & Ln ⇒ failure

Recall, for example, one of the termination condition in Tic-Tac-Toe.

terminal :- ~open
open     :- true(cell(M,N,b))

As long as there is at least one blank cell in the current state, the sub-goal true(cell(M,N,b)) has
a successful derivation, and hence so has the atom open. Consequently, the negative sub-goal
~open fails unless all cells have been marked. The query terminal therefore fails too, provided
that no other terminating conditions hold that allow it to be derived.

But when a state is reached in which all cells have been marked, then true(cell(M,N,b)) can no
longer be derived, and hence open fails. Accordingly, ~open now succeeds, and so does the query
terminal.

The special, game-independent predicate distinct is computed very much like a negative
subgoal.

Given:  Query L1 & L2 & … & Ln (n ≥ 1)

Case: L1 = distinct(t1,t2) without variables
• if t1 and t2 are syntactically different:  L1 & L2 & … & Ln ⇒ L2 & … & Ln
• if t1 and t2 are syntactically identical: L1 & L2 & … & Ln ⇒ failure

It is crucial that only negative subgoals without variables can be subjected to the negation-by-
failure computation. The same holds for the distinct relation. In some cases it may be necessary
to reorder the subgoals to ensure that all variables have been replaced by non-variable terms before
a negative literal gets selected. The GDL description of Multiple Buttons And Light (see Chapter
11) is a point in case. Consider the following encoding of a given position and move in that game
along with one of the update rules.



1 true(p(1))

2 true(p(2))

3 true(p(3))

4 does(white,a(2))
5

6 next(p(X)) :- ~does(white,a(X)) & true(p(X))

Naturally we expect to be able to derive two answers to the query next(p(Z)), namely {Z/1} and
{Z/3}, since the first and third light are not affected by the action. So let's consider the situation
after the first step in a derivation.

next(p(Z)) rule 6 with {X/Z}
⇒ ~does(white,a(Z)) & true(p(Z))

But now if we were to ignore the restriction about negative literals with variables and chose the
subgoals in the given order, then the query would fail. For the positive part of the negative literal,
does(white,a(Z)), obviously has a successful derivation:

does(white,a(Z)) rule 5 with {Z/2}
⇒ □

If, however, we reorder the subgoals so as to ensure that before we select a negated subgoal, all its
variables have been substituted, then the two answers are obtained as expected.

next(p(Z)) rule 6 with {X/Z}
⇒ true(p(Z)) & ~does(white,a(Z)) rule 1 with {Z/1}
⇒ ~does(white,a(1)) query does(white,a(1)) fails
⇒ □
 

next(p(Z)) rule 6 with {X/Z}
⇒ true(p(Z)) & ~does(white,a(Z)) rule 3 with {Z/3}
⇒ ~does(white,a(3)) query does(white,a(3)) fails
⇒ □

Fortunately, the syntactic restrictions on valid GDLs guarantee that subgoals can always be
reordered in this manner. Specifically, every variable in a rule must occur in a positive literal in
the body, not counting the special game-independent predicate distinct. Hence you can always
compute values for all variables in a clause before selecting a negative subgoal or an instance of
distinct.

The negation-by-failure principle is recursively applied in case of nested negation, that is, when
negative sub-goals arise during an attempted derivation for another negated literal. An illustrative
example is given by the following excerpt from a fictitious game description.

1 role(red)

2 role(blue)



3 role(green)

4

5 true(free(blue))
6

7 trapped(R) :- role(R) & ~true(free(R))

8 goal(W,100) :- role(W) & ~trapped(W)

Only player blue can be shown to have achieved the goal in the current state, as per the nested
derivation below.

goal(blue,100) rule 8 with {W/blue}
⇒ role(blue) & ~trapped(blue) rule 2
⇒ ~trapped(blue) sub-derivation †
⇒ □

†
trapped(blue) rule 7 with {R/blue}

⇒ role(blue) & ~true(free(blue)) rule 2
⇒ ~true(free(blue)) sub-derivation ‡
⇒ failure

‡
true(free(blue)) rule 5

⇒ □

The attempt to derive goal(red,100) fails.

goal(red,100) rule 8 with {W/red}
⇒ role(red) & ~trapped(red) rule 1
⇒ ~trapped(red) sub-derivation †
⇒ failure

†
trapped(red) rule 7 with {R/red}

⇒ role(red) & ~true(free(red)) rule 1
⇒ ~true(free(red)) sub-derivation ‡
⇒ □

‡
true(free(red))

⇒ failure



The same is true for goal(green,100).

Exercises

1. The goal of this exercise is to unlock the mystery behind the single-player game shown
below - and then to solve it.

    role(you)

    succ(1,2)
    succ(2,3)
    succ(3,4)
    succ(4,5)
    succ(5,6)
    succ(6,7)
    succ(7,8)

    is_row(1)
    is_row(Y) :-
      succ(X,Y)

    base(step(1))
    base(step(2))
    base(step(3))
    base(step(4))
    base(step(5))
    base(row(X,empty)) :-
      is_row(X)
    base(row(X,one_coin)) :-
      is_row(X)
    base(row(X,two_coins)) :-
      is_row(X)
    input(you,jump(X,Y)) :-
      is_row(X) &
      is_row(Y)

    init(step(1))
    init(row(X,one_coin)) :-
      is_row(X)

    babbage(X,Y) :-
      succ(X,Y)

    babbage(X,Y) :-
      succ(X,Z) &
      true(row(Z,empty)) &
      babbage(Z,Y)

    lovelace(X,Y) :-
      succ(X,Z) &
      true(row(Z,empty)) &
      lovelace(Z,Y)

    lovelace(X,Y) :-
      succ(X,Z) &
      true(row(Z,one_coin)) &
      babbage(Z,Y)

    turing(X,Y) :-



      succ(X,Z) &
      true(row(Z,empty)) &
      turing(Z,Y)

    turing(X,Y) :-
      succ(X,Z) &
      true(row(Z,one_coin)) &
      lovelace(Z,Y)

    turing(X,Y) :-
      succ(X,Z) &
      true(row(Z,two_coins)) &
      babbage(Z,Y)

    legal(you,jump(X,Y)) :-
      true(row(X,one_coin)) &
      true(row(Y,one_coin)) &
      turing(X,Y)
      
    legal(you,jump(X,Y)) :-
      true(row(X,one_coin)) &
      true(row(Y,one_coin)) &
      turing(Y,X)

    next(row(X,empty)) :-
      does(you,jump(X,Y))

    next(row(Y,two_coins)) :-
      does(you,jump(X,Y))

    next(row(X,C)) :-
      true(row(X,C)) &
      does(you,jump(Y,Z)) &
      distinct(X,Y) &
      distinct(X,Z)

    next(step(Y)) :-
      true(step(X)) &
      succ(X,Y)

    terminal :-
      ~open

    open :-
      legal(you,M)
  
    goal(you,100) :-
      true(step(5))

    goal(you,0) :-
      ~true(step(5))

a. Answer Substitutions

Compute all successful derivations and their answer substitutions to the query
 init(F).

Hint: You should obtain 9 different answers, which together form the initial game
state. Can you draw a simple diagram to visualize it?



b. Derivations

The key to unlocking the mystery is to understand the meaning of the three recursive
relations,  babbage, lovelace, and turing. To get the idea, suppose given some facts
shown below.

  true(row(1,one_coin))
  true(row(2,one_coin))
  true(row(3,empty))
  true(row(4,empty))
  true(row(5,one_coin))
  true(row(6,one_coin))
  true(row(7,two_coins))
  true(row(8,one_coin))

Which of the following queries have a successful derivation?

babbage(2,5)

babbage(2,6)

lovelace(1,5)

lovelace(1,6)

turing(1,6)

turing(1,7)

turing(6,8)

Can you now describe in words the meaning of  turing(X,Y)?

c. Derivations: Legal Moves

Next, have a look at the definition for  legal(you,jump(X,Y)). In words, what are
the preconditions for jumping from row X to row Y? How many actions are possible
in the initial game state?

d. Derivations: State Update

Now pick any one of the legal actions  jump(m,n)  in the initial state and compute the
new state after  does(you,jump(m,n)). In words, what is the effect of jumping from
X to Y?

e. Playing

The definitions for  terminal  and  goal(you,100)  respectively imply that the game
ends when you are stuck (i.e. there are no more legal moves) and that you win the
game when you can make the maximum of 4 moves before getting stuck. Find a
sequence of actions that solves this game!

Hint: There is more than one solution.

f. Playing

Bonus challenge: We humans are often better than computers at generalising a
solution. How would you solve the game if you start with 998 coins in a row and the
goal is to make the maximum of 499 moves without getting stuck?





leaving a total of 8 states to be considered, a considerable savings.

Note that this basic idea can be generalized in various ways. For example, we can look for latches
that inhibit 90 point states and latches that inhibit 80 point states and so forth; and we can use our
discoveries to order states depending on the values of the goals that are affected.



C H A P T E R  14

Analyzing Games with Logic

14.1 Introduction

Analysing a set of rules with the aim to acquire useful knowledge about a new game is arguably
the biggest, and most interesting, challenge for general game-playing systems. Most knowledge is
only implicit in the description of a game and therefore needs to be learned, structured and verified
before it can be used to improve play.

The range of game knowledge extends from basic properties, such as whether a game is zero-sum
or cooperative, to expert knowledge that can fill entire databases, such as the world's chess
knowledge accumulated over centuries of play.

The uses of knowledge in a general game player are equally wide. Simple properties can be used
to decide on the right search method, like minimax with alpha-beta pruning in case a game has
been identified as zero sum with alternating moves. Structural knowledge, e.g. of symmetries in a
game, can be used to accelerate any search method. Knowledge of the value of different pieces or
of different board regions can form the basis for evaluation functions, etcetera.

While the possibilities to acquire and use knowledge in a general game player are nearly limitless,
in this and the following chapter we will consider a few approaches that are both relatively easy to
implement and at the same time (almost) universally applicable.

We begin with a solution to a very basic problem that you need to solve if, for example, you want
to transform a GDL description into a more efficient representation like a propositional network.
To do so you need to determine the possible values for the arguments of each function and relation
in a given game description. For some relations, like true, next, and does, this is easily computed
from the base and action relation. But for auxiliary predicates and functions, their input values
need to be explicitly computed.

14.2 Computing Domains

Computing the domains is actually fairly easy. We just need to examine the dependencies among
the arguments and variables in each game rule. This can be achieved through the construction of
the domain graph for a given GDL description.

The vertices of this graph include all function symbols and constants that occur in the rules. In our
GDL-description for Tic-Tac-Toe in Chapter 2, for example, we find the following constants and
functions, listed in the order of appearance.

white, black, mark, noop, 1, 2, 3, cell, x, o, b, control

The set of vertices also includes one node for each argument position of each predicate and



function. An example are the two nodes row[1] and row[2] for the auxiliary binary function row
from our Tic-Tac-Toe description.

The edges in the domain graph are directed. They indicate the dependencies between the
constants, functions, and argument positions.

Definition 14.1 The domain graph for a set of GDL rules G is the smallest directed graph (V,E)
with vertices V and edges E that satisfies all of the following.

1. c ∈ V for each constant c occurring in G.
2. p, p[1], …, p[n] ∈ V for each n-ary predicate or function symbol p occurring in G.
3. f → p[i] ∈ E for each occurrence of a function (or constant) f in the i-th argument of an

expression p in the head of a rule in G.
4. p[j] → q[i] ∈ E whenever a variable X in a clause in G is shared by

the i-th argument of expression q in the head and
the j-th argument of expression p in the body.

5. E includes the three edges
base[1] → true[1]
input[1] → does[1]
input[2] → does[2]

As an example, recall one of the rules from our Tic-Tac-Toe description in chapter 2.

base(cell(M,N,x)) :- index(M) & index(N)

This rule gives rise to four edges in the Tic-Tac-Toe domain graph according to items 3 and 4 of
Definition 14.1 as shown in the diagram below.

Figure 14.1 - Some edges in the Tic-Tac-Toe domain graph.

The edges cell → base[1] and x → cell[3] are obtained from the head of the clause. The edges
connecting index[1] to cell[1] and cell[2] follow respectively from the shared variables M and
N.

For another example, consider the clauses defining the auxiliary concepts of a row, column,
diagonal, and line.

    line(X) :- row(M,X)
    line(X) :- column(N,X)
    line(X) :- diagonal(X)

    row(M,X) :-
      true(cell(M,1,X)) &
      true(cell(M,2,X)) &
      true(cell(M,3,X))

    column(N,X) :-
      true(cell(1,N,X)) &



      true(cell(2,N,X)) &
      true(cell(3,N,X))

    diagonal(X) :-
      true(cell(1,1,X)) &
      true(cell(2,2,X)) &
      true(cell(3,3,X)) &

    diagonal(X) :-
      true(cell(1,3,X)) &
      true(cell(2,2,X)) &
      true(cell(3,1,X)) &

Along with the base definition for cell,

    index(1)
    index(2)
    index(3)

    base(cell(M,N,x)) :- index(M) & index(N)
    base(cell(M,N,o)) :- index(M) & index(N)
    base(cell(M,N,b)) :- index(M) & index(N)

these rules determine edges in the Tic-Tac-Toe domain graph as follows.

Figure 14.2 - An excerpt of the Tic-Tac-Toe domain graph that determines the range of values for
some of the auxiliary predicates.

The domains for the four features can easily be computed from this graph by following backwards
along all possible paths from the argument positions to the constants. The possible arguments of
line, say, can be determined as follows.

Domain(line[1]) = Domain(row[2]) ∪ Domain(column[2]) ∪ Domain(diagonal[1])
= Domain(cell[3])
= {b,x,o}

Altogether we thus obtain the domains shown in the table below.

Function Domain



line {b,x,o}

row {1,2,3} × {b,x,o}

column {1,2,3} × {b,x,o}

diagonal {b,x,o}

Table 14.1 - Some of the function symbols and their argument range from the rules of Tic-Tac-
Toe.

In the same way we can determine the domains for all other predicates and functions used in
Chapter 2 to describe Tic-Tac-Toe.

Predicate/Function Domain
role {white,black}

index {1,2,3}

cell {1,2,3} × {1,2,3} × {b,x,o}

control {white,black}

base {cell({1,2,3}×{1,2,3}×{x,o,b}),control({white,black})}

true {cell({1,2,3}×{1,2,3}×{x,o,b}),control({white,black})}

mark {1,2,3} × {1,2,3}

input {white,black} × {mark({1,2,3}×{1,2,3}),noop}

does {white,black} × {mark({1,2,3}×{1,2,3}),noop}

init {cell({1,2,3}×{1,2,3}×{b}),control({white})}

legal {white,black} × {mark({1,2,3}×{1,2,3}),noop}

next {cell({1,2,3}×{1,2,3}×{x,o,b}),control({white,black})}

goal {white,black} × {0,50,100}

Table 14.2 - The argument ranges of the remaining predicates and functions from the Tic-Tac-Toe
game description.

14.3 Reducing the Domains Further

While the domain graph helps to identify the range of possible values for each individual
argument, it does not consider dependencies between different argument positions of a predicate
or function. As a consequence, it may still generate many unnecessary instances.

Take, for example, the following rules from a GDL description of the game of chess.

    coordinate(a)   coordinate(b)   coordinate(c)   coordinate(d)

http://ggpserver.general-game-playing.de/public/view_game.jsp?name=chess


    coordinate(e)   coordinate(f)   coordinate(g)   coordinate(h)

    coordinate(1)   coordinate(2)   coordinate(3)   coordinate(4)
    coordinate(5)   coordinate(6)   coordinate(7)   coordinate(8)

    next_file(a,b)  next_file(b,c)  next_file(c,d)  next_file(d,e)
    next_file(e,f)  next_file(f,g)  next_file(g,h)

    next_rank(1,2)  next_rank(2,3)  next_rank(3,4)  next_rank(4,5)
    next_rank(5,6)  next_rank(6,7)  next_rank(7,8)

    adjacent(X1,X2) :-
       next_file(X1,X2)
    adjacent(X1,X2) :-
       next_file(X2,X1)
    adjacent(Y1,Y2) :-
       next_rank(Y1,Y2)
    adjacent(Y1,Y2) :-
       next_rank(Y2,Y1)

    kingmove(U,V,U,Y) :-
       adjacent(V,Y) & coordinate(U)
    kingmove(U,V,X,V) :-
       adjacent(U,X) & coordinate(V)
    kingmove(U,V,X,Y) :-
       adjacent(U,X) & adjacent(V,Y)

The rules define a king's move as going one square in either direction, that is, vertically,
horizontally, or diagonally. From the domain graph we can compute the possible values for the
arguments of the five predicates as shown below.

Predicate Domain
coordinate {a,b,c,d,e,f,g,h,1,2,3,4,5,6,7,8}

next_file {a,b,c,d,e,f,g} × {b,c,d,e,f,g,h}

next_rank {1,2,3,4,5,6,7} × {2,3,4,5,6,7,8}

adjacent {a,…,h,1,…,8} × {a,…,h,1,…,8}

kingmove {a,…,h,1,…,8} × {a,…,h,1,…,8} × {a,…,h,1,…,8} × {a,…,h,1,…,8}

Table 14.2 - The domains of some predicates from the rules of chess as determined by the domain
graph.

But many of the instances thus obtained are unnecessary because they will never be referred to
when playing the game.

To begin with, the domains for both adjacent(X,Y) and kingmove(U,V,X,Y) do not distinguish
between file and rank coordinates. As a consequence, the domain graph generates superfluous
instances like for example adjacent(a,2) or kingmove(d,e,5,6).

Even among the instances of kingmove(U,V,X,Y) for which both (U,V) and (X,Y) are proper
squares, the vast majority is not needed given the limited mobility of a king: For every (U,V) there



is a maximum of eight squares (X,Y) that a king can reach in one move. If we were able to
identify all combinations of arguments that do not correspond to a possible move, such as
kingmove(e,2,g,7), then this would significantly reduce the number of instances that we need to
compute. A simple calculation shows how much can thus be saved. There are 164 = 65,536
instances of kingmove with the domain as given in Table 14.2. If we respect the distinction
between file and rank coordinates, this number reduces to 84 = 4,096. Of these, less than 82⋅ 8 =
512 correspond to an actual king move. (The exact number is 444 because a king at the border can
reach no more than five squares and only three from a corner.)

The following procedure allows you to eliminate in a given game description G most of the
instances of predicates that will never be derivable.

1. Build the domain graph for G to determine the maximal range of values for all predicates
and functions in the game description.

2. Let G+ be obtained from G by

adding all facts true(t) and does(t1,t2) that follow from the domain graph; and
deleting all negative conditions from the rules in G.

3. For all possible predicate instances (except for the keywords true and does) with the
domains obtained in step 1, check if they can actually be computed from G+. Keep only
those that can.

4. For all possible instances of true(t) that follow from the domain graph, keep only those for
which init(t) or next(t) can be computed from G+.

5. For all possible instances of does(t1,t2) that follow from the domain graph, keep only
those for which legal(t1,t2) can be computed from G+.

Let's see how steps 1-3 of this process will indeed eliminate all unnecessary combinations of
values from Table 14.2. To begin with, out of the 49 possible instances of next_file(X,Y) only
the seven that are given as facts can be computed from the given game rules. The same is true for
next_rank(X,Y). For adjacent(X,Y), we can compute 28 instances (out of a total of 16⋅16 =
256), which rules out instances like, say, adjacent(a,2) and adjacent(8,2). Finally, the only
computable instances of kingmove(U,V,X,Y) are those 444 that correspond to actual moves by a
king.

The reason for augmenting G in step 2 by all possible state propositions and all actions is that
many predicates directly or indirectly depend on them. An example from Tic-Tac-Toe is shown
below.

    line(X) :- row(M,X)

    row(M,X) :-
      true(cell(M,1,X)) &
      true(cell(M,2,X)) &
      true(cell(M,3,X))

With all possible instances of true(cell(M,N,X)) in Tic-Tac-Toe added, it follows that each of
the nine combinations of arguments for row(M,X) according to Table 14.1 may indeed at some



point be true. The same holds for the three instances of line(X).

The reason for deleting all negative conditions in step 2 is that it would be incorrect to uphold
them after having added all possible state propositions and actions. This can be seen, for example,
with the rules for a draw in Tic-Tac-Toe.

    goal(white,50) :- ~line(x) & ~line(o)
    goal(black,50) :- ~line(x) & ~line(o)

Obviously, both line(white) and line(black) will be computable given all possible instances of
true(cell(M,N,X)). Hence, if the negative conditions in the rules for goal(white,50) and
goal(black,50) were not ignored, then we would wrongly conclude that neither of the two
predicate instances will ever be derivable.

Step 4 is used to identify propositions that can never be true in a reachable game state. Similarly,
step 5 is used to identify actions that will never be possible in a reachable state. As an example,
consider a further rule from the GDL description of chess, where the general concept of a king
move from above is used to define the conditions under which a player can legally move his king.

    piece_owner_type(wk,white,king)
    piece_owner_type(bk,black,king)

    legal(P,move(K,U,V,X,Y)) :-
      true(control(P)) &
      piece_owner_type(K,P,king) &
      true(cell(U,V,K)) &
      kingmove(U,V,X,Y) &
      occupied_by_opponent_or_blank(X,Y,P) &
      ~threatened(P,X,Y)

Recall that we were able in step 3 to restrict the possible instances of kingmove(U,V,X,Y) to those
for which (X,Y) is one square away from (U,V). The very same restriction follows for
legal(white,move(wk,U,V,X,Y)) and legal(black,move(bk,U,V,X,Y)) according to the rule
just given. Hence, step 5 eliminates all instances of moves of the form
does(white,move(wk,U,V,X,Y)) and does(black,move(bk,U,V,X,Y)) for which the two
squares are not adjacent.

If steps 4 and 5 lead to a reduction in the set of state propositions and actions, then step 3 can be
repeated with this reduced set in order to possibly further constrain the derivable predicate
instances. This, in turn, may lead to more reductions in steps 4 and 5, so that the whole process
can be iterated until no more ground predicates, state propositions, or moves are eliminated.

14.4 Instantiating Rules

Once you have computed the domains of all predicates and functions, you can generate all relevant
ground instantiations of the game rules, for example in order to construct a propnet. To instantiate
a rule, all variables need to be substituted by appropriate values, i.e., members of the domain
associated with the argument position in which each variable occurs. Variables with multiple
occurrences in a rule can only be instantiated with an element from the intersection of all
corresponding domains.

During the instantiation process, you can evaluate each condition of the form distinct(X,Y) in
the body of a rule as soon as both arguments have received a value. If true, the condition itself can



be removed, and if false, the entire instance of the rule should be deleted.

As an illustrative example, let's look at the Tic-Tac-Toe rule shown below.

    next(cell(M,N,b)) :-
      does(W,mark(J,K)) &
      true(cell(M,N,b)) &
      distinct(M,J)

From the domain computation we know that M,N,J,K ∈ {1,2,3} and W ∈ {x,o}. Hence, we can
instantiate the rule in 34⋅2 = 162 different ways. But every third of these instances violates the
condition distinct(M,J), so that in fact only 108 need to be generated.

A fully instantiated game description can be reduced further in size by identifying supporting
concepts that are being computed but never used as input by any of the game rules. Such instances
can safely be removed together with their defining clauses. Again, this is a process that can be
repeated until no further reduction is possible.

A point in case are the Tic-Tac-Toe rules defining a line.

    line(X) :- row(M,X)
    line(X) :- column(N,X)
    line(X) :- diagonal(X)

    row(M,X) :-
      true(cell(M,1,X)) &
      true(cell(M,2,X)) &
      true(cell(M,3,X))
      
    column(N,X) :-
      true(cell(1,N,X)) &
      true(cell(2,N,X)) &
      true(cell(3,N,X))

    diagonal(X) :-
      true(cell(1,1,X)) &
      true(cell(2,2,X)) &
      true(cell(3,3,X))

    diagonal(X) :-
      true(cell(1,3,X)) &
      true(cell(2,2,X)) &
      true(cell(3,1,X))

From Table 14.1 we know that X ∈ {b,x,o} for line(X). Indeed, line(b) is derivable in many
reachable states, including the initial one. But the supporting concept of a line is needed only for
the goal rules shown below, which do not refer to blank lines.

    goal(white,100) :- line(x) & ~line(o)
    goal(white,50) :- ~line(x) & ~line(o)
    goal(white,0) :- ~line(x) & line(o)

    goal(black,100) :- ~line(x) & line(o)
    goal(black,50) :- ~line(x) & ~line(o)
    goal(black,0) :- line(x) & ~line(o)

Consequently, we can delete each rule for line(X) that has been instantiated with X=b. This



eliminates 7 of the 21 clauses with predicate line in the head obtained from the domains of Table
14.1. Moreover, once these have been removed there are no rules that use any of the conditions
row(1,b), row(2,b), row(3,b), column(1,b), column(2,b), column(3,b) or diagonal(b).
Hence, these and their defining clauses can be eliminated too.

The process of instantiating logic program rules is also known as grounding. Some of the
techniques we described and others have been implemented in efficient systems that are
commonly referred to as grounders and are not specific to GDL. An example is the grounder
Gringo.

14.5 Analyzing the Structure of GDL Rules

Analzying the structure of GDL clauses has the goal to better understand the meaning of a rule by
abstracting from the syntax details. This can be useful for many purposes. For instance, it enables
the comparison of different formalizations of essentially the same rule. A general game player may
thus be able to recognize a known game that just comes in a new guise.

Focusing on the structure of GDL rules also allows a general game-playing system to recognize
symmetries in arbitrary games. As an example, the figure below illustrates two standard
symmetries on the Tic-Tac-Toe board that you will be able to identify with the help of the
structural rule analysis described in this section.

Figure 14.5 - Three symmetric positions in Tic-Tac-Toe. A rotation by 180° transforms the
position shown on the left-hand side into the center board. Mirroring the latter along the first

diagonal results in the position on the right-hand side.

Determining symmetries like these requires to look at the game description as a whole and to see
if some of its elements can be systematically exchanged with each other without affecting the
meaning of any of the rules. The rules for winning or losing a game must be included in this
analysis as symmetries can be broken by an asymmetric goal definition. If, say, a Tic-Tac-Toe
player wins by filling a row but not a column with his or her markers, then the mirror symmetry in
Figure 14.5 would no longer be applicable. (The 180° rotational symmetry, in contrast, would still
apply.)

14.6 Rule Graphs

Much like the domain computation in section 14.2, the structural analysis can be performed on a
graph constructed from the GDL rules. Specifically, the so-called rule graph for GDL game
description is obtained through the four steps described below. Figures 14.6 - 14.8 illustrate this
stepwise construction of the rule graph with a simple rule from our Tic-Tac-Toe description.

Prior to applying the following definition, all variables in a game description should be renamed
so that no two rules share the same variables. Constants are treated like function symbols with
zero arguments. The definition is rather involved, but an example immediately follows that
illustrates in detail how to construct the graph step by step.

http://potassco.sourceforge.net/


Definition 14.2 The rule graph for a set G of GDL rules is a colored directed graph (V,E,c) whose
vertices V, edges E, and vertex coloring c are obtained as follows.

1. Add a vertex for each occurrence, in G, of a logical connective, predicate symbol, function
symbol, and variable. Connect each vertex v that represents a logical connective, predicate,
or function p with the vertices for the arguments of p.

2. For each vertex v thus obtained:
If v stands for an n-ary function or predicate symbol p that is not a GDL keyword,

add vertices labeled p[1], …, p[n];
for each such new vertex p[i], add a directed edge from p[i] to the vertex that
in step 1 was created for the actual argument.

If v stands for the binary connective ":-" or a binary GDL keyword p, add a directed
edge from the first to the second argument.

3. Add a vertex for each variable or symbol p that occurs in G and is not a GDL keyword. Add
a directed edge from this vertex for p to

each occurrence node for p constructed in step 1, and
each node for p[1], …, p[n] constructed in step 2 if p is a function or predicate
symbol with n arguments.

4. Color the vertices such that
each logical connective has a unique color;
each GDL keyword has a unique color; and
all other nodes are colored in one of six colors, which depends only on their type:
predicate occurrence, function occurrence, variable occurrence, argument, variable
symbol, or non-variable symbol.

For illustration, recall a simple rule from our Tic-Tac-Toe game description.

open :- true(cell(M,N,b))

The result of the first step in the construction of this clause's rule graph is shown below. Vertices
are depicted in different shapes to indicate different types, which will help with the coloring in the
end.

Figure 14.6 - Step 1: A node for each occurrence of a logical connective (here, ":-"), predicate



(open, true), function (cell, b), and variable (M, N). Directed edges lead from vertices to their
arguments, if any.

In the second step, argument position nodes are added for non-keyword cell and connected to the
occurrences. Also added is an edge between the two arguments of the logical operator ":-".

Figure 14.7 - Step 2: Indicating arguments.

In step 3, nodes are added for each domain-dependent predicate symbol, function symbol, constant
and variable itself.

Figure 14.8 - Step 3: Connecting the symbols to their occurrences.

In step 4 all vertices get colored according to their type, which completes the construction of the
rule graph. Since the structure of a set of rules is independent of the names given to the variables,



functions and predicates, these symbols now become irrelevant. This will enable us to compare
game axiomatizations that are structurally similar and differ only in the symbols being used.

Figure 14.9 - The final rule graph for open :- true(cell(M,N,b)).

14.7 Using Rule Graphs

Determining the equivalence of game descriptions

The rule graph substitutes concrete symbols by abstract colors while maintaining the structure of
the original rules. This allows to compare syntactically different but otherwise identical rules or
game descriptions. An isomporhism between two colored graphs is a one-to-one mapping from the
vertex set of one graph into the vertex set of the other that preserves both the edge structure and
the coloring. Two graphs with an isomorphism between them are called isomorphic. Two GDL
descriptions whose rule graphs are isomorphic describe essentially the same game.

As a simple example, the rule graph for our GDL description of Tic-Tac-Toe is isomorphic to the
rule graph of any other description that just uses different coordinates, e.g. (a,a), (a,b), … instead
of (1,1), (1,2), …, or different symbols for the two markers.

Computing symmetries

The rule graphs can moreover be used for symmetry detection. This requires to compute
automorphisms, that is, on-to-one mappings from a rule graph into itself that are both structure- as
well as color-preserving. As an example, consider exchanging two vertices the rule graph for Tic-
Tac-Toe as follows.

1 ! 3, 3 ! 1

This mapping constitutes an automorphism for the sub-graph depicted in Figure 14.10, which is
obtained from the two GDL rules shown below.



init(cell(1,3,b))

init(cell(3,1,b))

Figure 14.10 - This graph remains unchanged by exchanging the two nodes 1 and 3. You can
easily verify this by drawing the graph with the left-hand side and the right-hand side swapped.

Our observation generalizes from this small sub-graph to the entire rule graph for our Tic-Tac-Toe
description, which means that we have found a symmetry in this game. More specifically, we have
discovered the 180° rotation symmetry from Figure 14.5 above, which is obtained by swapping the
first and third coordinate, just like in our automorphism.

The mirror symmetry along the first diagonal of the Tic-Tac-Toe board is obtained by the
following exchange of two vertices in the rule graph.

cell[1] ! cell[2], cell[2] ! cell[1]

This mapping also can be shown to be an automorphism on the graphs depicted in Figures 14.9
and 14.10, respectively, and in fact provides an automorphism for the entire Tic-Tac-Toe rule
graph.

The most common use of symmetry detection in general game players is to reduce the search
space. You can, for example, prune a branch of a search tree when another branch with a
symmetric joint move exists. You can also identify symmetric states and collate them in a single
node in a search tree because, by definition, they must have the same value for all players.

Exercises

1. This exercise aims at determining the relevant ground instances of all rules of a single-
player game called blocksworld.



Figure 14.11 - A simple single-player game of moving toy blocks with a robot gripper. The
goal is to transform the initial configuration on the left-hand side into the stack shown on the

right-hand side.

a. Let's start with the rules below.

   block(a)
   block(b)
   block(c)
   
   base(table(X)) :- block(X)
   base(clear(X)) :- block(X)
   base(on(X,Y)) :- block(X) & block(Y)

From these rules draw the domain graph with nodes a,b,c,table,clear,on and
block[1],base[1],table[1],clear[1],on[1],on[2].

b. Now consider the next set of rules.

   succ(1,2)
   succ(2,3)
   succ(3,4)
   
   base(step(1))
   base(step(N)) :- succ(M,N)

Extend the domain graph by the nodes 1,2,3,4,step along with nodes
succ[1],succ[2],step[1] and add all edges that follow from the given clauses. Use
the resulting graph to determine the possible arguments for keyword base.

c. Extend the domain graph further according to the following rules.

   role(robot)
   
   input(robot,stack(X,Y))   :- block(X) & block(Y)
   input(robot,unstack(X,Y)) :- block(X) & block(Y)

Use the resulting graph to determine the possible arguments for keyword input.

d. Complete the domain graph using the remaining rules of the game shown below.

  init(table(a))
  init(table(b))
  init(on(c,a))
  init(clear(b))
  init(clear(c))
  init(step(1))



  legal(robot,stack(X,Y)) :-
    true(clear(X)) & true(clear(Y)) & distinct(X,Y)
  legal(robot,unstack(X,Y)) :-
    true(clear(X)) & true(on(X,Y))

  next(on(X,Y)) :- does(robot,stack(X,Y))
  next(on(X,Y)) :- does(robot,stack(U,V)) & true(on(X,Y))
  next(on(X,Y)) :-
    does(robot,stack(U,V)) & true(on(X,Y)) & distinct(U,X)

  next(table(X)) :- does(robot(unstack(X,Y))
  next(table(X)) :- does(robot(unstack(U,V)) & true(table(X))
  next(table(X)) :-
    does(robot(stack(U,V)) & true(table(X)) & distinct(U,X)

  next(clear(Y)) :- does(robot,unstack(X,Y))
  next(clear(Y)) :- does(robot,unstack(U,V)) & true(clear(Y))
  next(clear(Y)) :-
    does(robot,stack(U,V)) & true(clear(Y)) & distinct(V,Y)

  next(step(N)) :- true(step(M)) & succ(M,N)

  terminal :- true(step(4))
  terminal :- true(on(a,b)) & true(on(b,c))

  goal(robot,100) :- true(on(a,b)) & true(on(b,c))
  goal(robot,  0) :- ~true(on(a,b))
  goal(robot,  0) :- ~true(on(b,c))

Use the resulting graph to determine the domain of next[1]. Which element from
Domain(base[1]) is not a member of Domain(next[1])?

e. Extend the given game description G to G+ by adding all facts true(t) and
does(robot,t) that follow from the domain graph. Which of the instances of
legal(robot,t) determined by the domain graph are not derivable from G+ and
therefore can be removed?

f. Use all of the above to determine only the relevant instances of the rule

  next(clear(Y)) :-
    does(robot,stack(U,V)) & true(clear(Y)) & distinct(V,Y)

Hint: You should obtain just 6 out of the 27 instances that without further reductions
would result from domain graph.

2. Implement the domain graph construction, the reduction strategy, and the grounding and try
it out on the Tic-Tac-Toe game description and another standard GDL game of your choice.

3. This exercise is concerned with finding equivalences and symmetries in a variant of the
Buttons and Lights game.

a. Draw the rule graph for the following fact.

role(player)



Why would this graph be isomorphic to the rule graph for the clause "role(white)"
but not for the clause "index(1)"?

b. Draw the rule graph for the clause below.

next(on(X)) :- ~true(on(X)) & does(player,toggle(X))

Use the rule graph method to show that this clause is structurally equivalent to the
rule

next(p(Y)) :- does(white,q(Y)) & ~true(p(Y))

c. Extend the graph for the entire game description given below.

    role(player)
    
    index(1)
    index(2)
    index(3)
    
    base(on(X)) :- index(X)
    input(player,toggle(X)) :- index(X)
    
    legal(player,toggle(X)) :- index(X)
    
    next(on(X)) :- ~true(on(X)) & does(player,toggle(X))
    next(on(X)) :- true(on(X)) & ~does(player,toggle(X))
    
    terminal :- true(on(1)) & true(on(2)) & true(on(3))
    goal(player,100) :- true(on(1)) & true(on(2)) & true(on(3))

Use the rule graph method to find all symmetries in this game.

4. Implement the rule graph construction and try it out on the Tic-Tac-Toe game description
and another standard GDL game of your choice. Search the web for a program to compute
isomorphisms of graphs and use this to determine the symmetries in each of the two games.



C H A P T E R  15

Solving Single-Player Games with Logic

15.1 Answer Set Programming

The GDL description of a single-player game can be viewed as the specification of a logical
problem. A perfect way to play any such game is by computing a solution upfront. A player can
then simply unwind this solution step by step to reach a winning terminal state.

Answer Set Programming (ASP) is one of the fastest existing method for domain-independent
solving of problems described in logic. It particularly lends itself to use in general game playing
because the input language for ASP is very similar to GDL. Translating one into the other is
therefore straightforward and can be easily automated. A variety of ASP solvers are available for
free download and can be plugged into your player.

In ASP, problems are described as collections of logic program clauses. A solution to such a
problem is any minimal model for the specification. A special type of input formula in ASP are
clauses without head. Called constraints, they are written as

:- L1 & L2 & … & Ln

Their purpose is to exclude any model as solution in which all of L1, L2, …, Ln are simultaneously
true.

As a first example, consider the ASP problem specification - also called answer set program -
listed below.

1 p0
2

3 p2 :- a1 & p1

4 p2 :- b1 & ~p1
5

6 a1 :- ~b1

7 b1 :- ~a1
8

9 :- p2

Figure 15.1 - An answer set program.

The clauses together have exactly one (minimal) model. To see why, observe first that p1 must
obviously be true in any model according to the fact in line 1. By the constraint in line 9, p2 must
be false. Hence, by clause 3, a1 must be false, because otherwise p2 would be true given that p1 is
true. Knowing that a1 is false, from clause 7 it follows that b1 must be true. We thus obtain the
dataset M = {p1,b1} as the only candidate for a model. It is easy to verify that this candidate also



satisfies the program rules we have not considered yet, that is, clause 6 (since ~b1 is false in M)
and clause 4 (since ~p1 is false in M). Hence, we have found a minimal model of the program.

In addition to being minimal, an ASP solution must also be supported. It means that every atom in
a candidate model needs to be the head of a clause whose body is true under the model. Our
solution M = {p1,b1} satisfies this requirement: p1 is supported by rule 1 and b1 is supported by
rule 7 (since ~a1 is true in M).

Thet example program in Figure 15.1 can be interpreted as the specification of a simple one-step
puzzle. A single state proposition is true at time 1 (fact p1). Whether it is still true at time 2 (literal
p2) depends on which of two actions are chosen, encoded by the literals a1 and b1. Taking the first
action does not change the state proposition between times 1 and 2 (rule 3) but taking the second
one does (rule 4). Clauses 6-7 together stipulate that exactly one of the two actions is chosen.
Finally, the constraint in line 9 can be interpreted as the goal to make the state proposition false:
Answers in which p2 holds are excluded. The model that we have just computed for this program
contains b1. This provides us with a solution to the problem, namely, that the goal is achieved by
taking the second action, b1.

15.2 Adding Time to GDL Rules

We can generalize the idea behind the example to single-player games whose solution needs more
than just one action. This requires to incorporate a linear temporal dimension into the game rules
so that different instances can refer to different time points.

Let's illustrate this with a non-factored variant of the Buttons and Light game from Chapter 11.
There are three lights and three buttons. Pushing the first button toggles the first light; pushing the
second button interchanges the first and second lights; and pushing the third button interchanges
the second and third lights.

Figure 15.2 - Buttons and Lights

According to the GDL description below, initially the lights are all off. The goal is to turn them
on. A step counter ensures that the game terminates after six moves.

    role(white)

    base(p)
    base(q)
    base(r)
    base(step(1))
    base(step(N)) :- successor(M,N)
    input(white,a)
    input(white,b)
    input(white,c)

    legal(white,a)
    legal(white,b)



    legal(white,c)

    init(step(1))

    next(p) :- does(white,a) & ~true(p)
    next(p) :- does(white,b) & ~true(q)
    next(p) :- ~does(white,a) & ~does(white,b) & true(p)
    next(q) :- does(white,b) & true(p)
    next(q) :- does(white,c) & true(r)
    next(q) :- ~does(white,b) & ~does(white,c) & true(q)
    next(r) :- does(white,c) & true(q)
    next(r) :- ~does(white,c) & true(r)
    next(step(N)) :- true(step(M)) & successor(M,N)

    terminal :- true(step(7))
    goal(white,100) :- true(p) & true(q) & true(r)
    goal(white,  0) :- ~true(p)
    goal(white,  0) :- ~true(q)
    goal(white,  0) :- ~true(r)

    successor(1,2)
    successor(2,3)
    successor(3,4)
    successor(4,5)
    successor(5,6)
    successor(6,7)

Given a set of GDL rules, time steps can be incorporated as follows.

1. Replace init(F) by true(F,0).
2. Replace next(F) by true(F,T+1).
3. Replace every other atom p(…) by p(…,T), unless

p is either of the keywords role, base, or input; or
p is a supporting concept that depends on neither true nor does.

4. Add the condition time(T) to the body of every clause to which variable T has been added.

Transforming the game rules above in this fashion results in the program clauses shown below.

    role(white)

    base(p)
    base(q)
    base(r)
    base(step(1))
    base(step(N)) :- successor(M,N)
    input(white,a)
    input(white,b)
    input(white,c)

    legal(white,a,T) :- time(T)
    legal(white,b,T) :- time(T)
    legal(white,c,T) :- time(T)

    true(step(1),1)

    true(p,T+1) :- does(white,a,T) & ~true(p,T) & time(T)
    true(p,T+1) :- does(white,b,T) & true(q,T) & time(T)
    true(p,T+1) :- ~does(white,a,T) & ~does(white,b,T) & true(p,T) & time(T)
    true(q,T+1) :- does(white,b,T) & true(p,T) & time(T)



    true(q,T+1) :- does(white,c,T) & true(r,T) & time(T)
    true(q,T+1) :- ~does(white,b,T) & ~does(white,c,T) & true(q,T) & time(T)
    true(r,T+1) :- does(white,c,T) & true(q,T) & time(T)
    true(r,T+1) :- ~does(white,c,T) & true(r,T) & time(T)
    true(step(N),T+1) :- true(step(M),T) & successor(M,N) & time(T)

    terminal(T) :- true(step(7),T) & time(T)
    goal(white,100,T) :- true(p,T) & true(q,T) & true(r,T) & time(T)
    goal(white,  0,T) :- ~true(p,T) & time(T)
    goal(white,  0,T) :- ~true(q,T) & time(T)
    goal(white,  0,T) :- ~true(r,T) & time(T)

    successor(1,2)
    successor(2,3)
    successor(3,4)
    successor(4,5)
    successor(5,6)
    successor(6,7)

The domain for time points should be defined as ranging from 0 to some maximum solution
length, say 2. Instead of explicitly adding the three facts time(1), time(2), and time(3), any
standard ASP solver supports the abridged syntax

    time(1..3)

Given an element T from this domain, the solver interprets the expression T+1 in the way you
would expect. Note, therefore, that true is the only predicate whose time argument extends one
step beyond the given horizon.

The additional time argument allows us to compute the effect of a sequence of moves within the
same program. Consider, for example, the move a followed by b, then c. We can compute the
sequence of game states by adding the facts shown below to our time-enriched program from
above.

    does(white,a,1)
    does(white,b,2)
    does(white,c,3)

The resulting set of clauses has exactly one minimal and supported model. This includes all of the
following atoms.

Time 1 Time 2 Time 3 Time 4
legal(white,a,1) legal(white,a,2) legal(white,a,3)

legal(white,b,1) legal(white,b,2) legal(white,b,3)

legal(white,c,1) legal(white,c,2) legal(white,c,3)

does(white,a,1) does(white,b,2) does(white,c,3)

true(p,2)

true(q,3)

true(r,4)

true(step(1),1) true(step(2),2) true(step(3),3) true(step(4),3)

goal(white,0,1) goal(white,0,2) goal(white,0,3)



To understand how such models are computed, observe first that true(p,1), true(q,1), and
true(r,1) must all be false in any supported model because they do not occur in the head of any
clause. The same holds for does(white,b,1), does(white,c,1), and true(step(2),1), …,
true(step(7),1). It follows that true(step(1),1) and does(white,a,1) - along with the other
facts in the leftmost column of the table above - are the only atoms with time argument 1 that can
occur in a solution. From this we can compute all atoms with time argument 2 using the
instantiated rules with the heads true(p,2), true(q,2), true(r,2), and true(step(1),2), …
true(step(7),2). Finally, the same rules but now instantiated with T = 2 can be used to generate
the atoms in the solution with time argument 3.

All time-independent facts are of course included in the solution too.

role(white) base(p) base(q) base(r)

base(step(1)) base(step(2)) base(step(3)) base(step(4))

base(step(5)) base(step(6)) base(step(7)) input(white,a)

input(white,b)) input(white,c) successor(1,2) successor(2,3)

successor(3,4) successor(4,5) successor(5,6) successor(6,7)

15.3 Solving Single-Player Games with Answer Set Programming

We have seen how a time-expanded GDL description allows you to compute the evolution of the
game state for a given sequence of actions. The goal, however, is to find some such sequence that
leads to a winning terminal state. In other words, we are looking for a model in which the player
takes one legal move at every time step and eventually is awarded 100 points. This is achieved
with just a few more clauses.

First, we need to stipulate that the player does one action per time point until the game has
terminated. In analogy to the program in Figure 15.1, we could write the following for our
example game with the three actions a, b, and c.

does(white,a,T) :- time(T) & ~does(white,b,T) & ~does(white,c,T)
does(white,b,T) :- time(T) & ~does(white,a,T) & ~does(white,c,T)
does(white,c,T) :- time(T) & ~does(white,a,T) & ~does(white,b,T)

These clauses together requiree that for every instance of T, exactly one element from the set
{does(white,a,T), does(white,b,T), does(white,c,T)} is true in a model. Fortunately, most
ASP systems support a more convenient way of specifying exactly this.

1 { does(white,a,T), does(white,b,T), does(white,c,T) } 1 :- time(T)

The numbers before and after the curly brackets respectively indicate the minimum and maximum
number of set elements that must be contained in a solution in order for the head of this clause to
be true, for any instance of T. This reduces the three clauses from above to a single one. But it still
requires us to enumerate all possible moves. An even more compact encoding is obtained by
implicitly, rather than explicitly, specifying the elements of a set. There is a simple way to do this
by referring to another GDL keyword: Because the set contains all moves M that satisfy
input(white,M), we can use the following to require our player to make one move at every time
step.



1 { does(white,M,T) : input(white,M) } 1 :- time(T)

In fact, we do not even need to mention explicitly our player's name, white, and instead refer to
the keyword role. This leads to the following rule, which is applicable in any single-player game.

1 { does(R,M,T) : input(R,M) } 1 :- role(R) & time(T)

A valid solution to a single-player game requires that all chosen moves be legal at the time when
they are performed. This is best expressed as a constraint by which any illegal moves are ruled
out.

:- does(R,M,T) & ~legal(R,M,T)

The last and of course most important step is to look for models in which the goal of the game is
achieved. To this end, the first constraint below rule out any candidate set in which the game never
reaches a terminal state. Aiming high, the second constraint discards any model in which the game
reaches a terminal state where the player is not awarded 100 points.

:- 0 { terminal(T) : time(T) } 0

:- terminal(T), role(R), ~goal(R,100,T)

This completes the answer set program for solving single-player games. Coming back to our
example game, Buttons and Lights, suppose the time horizon is set to 7, that is,

time(1..7)

The program then has a minimal and supported model that includes the following atoms.

does(white,a,1) does(white,b,2) does(white,c,3)

does(white,a,4) does(white,b,5) does(white,a,6)

Another model exists with moves as shown below.

does(white,a,1) does(white,b,2) does(white,a,3)

does(white,c,4) does(white,b,5) does(white,a,6)

In fact, both solutions come in three variants, one for each available actions at time 7. This last
move is obviously irrelevant since the game has terminated at that time. But it is required
according to the rule that the player has to do one action at every time point.

No solution can be found with a time horizon shorter than 7. A longer time horizon, on the other
hand, will generate more models with redundant actions before or after the game has terminated.
Normally, of course, the required solution length is unknown when you get a new game
description. But you can start with setting it to 1 and then increment it until a model is found. This
guarantees that the first computed solution is a shortest one.

15.4 Systems for Answer Set Programming



Several ASP systems are available for free download. They are powerful enough to compute
solutions to answer set programs for single-player games of medium size. Two such systems are
Clasp and DLV.

Exercises

1. Minimal and supported models

Consider the answer set program in Figure 15.1 but without rule 1. Show that this program
has two minimal models. Show that only one of them is supported.

2. Answer set programming

Recall the rules that requires every role to make a legal move at every time step.

1 { does(R,M,T) : input(R,M) } 1 :- role(R) & time(T)

:- does(R,M,T), not legal(R,M,T)

This requirement may be too strong as it includes one or more time points after the
termination of a game. Extend this specification so as to require a (legal) move only in case
the game has not terminated at or before time point T.

Hint: Use the GDL keyword terminal but be aware that this atom may only be derivable at
the time of termination but not at later points in time.

3. Solving a single-player game with logic

Recall the mysterious single-player game dealt with in Exercise 1 of Chapter 13. The goal of
this exercise is to solve it with an ASP system.

a. Extend the given rules by time points as needed.
b. Add general rules to search for a sequence of legal moves that achieves the goal.
c. Choose a suitable time horizon and feed the resulting answer set program into an

existing ASP solver.

Hints:

Remember that this game terminates when the player is left without a legal move.
Hence you need a solution to Exercise 2.
Familiarize yourself with the exact input syntax for the system of your choice, as this
may be slightly different from the one used throughout this chapter. Specifically, the
delimiter "." should be added to mark the end of a clause. And most likely, "&" and
"~" need to be substituted by "," and "not", respectively.

4. An automatic solver for single-player games

Write a module that automatically translates a single-player GDL into an answer set
program and that uses an existing ASP system to try to solve them.

http://potassco.sourceforge.net/
http://www.dlvsystem.com/dlv/
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Discovering Heuristics with Logic

16.1 Discovering Heuristics with Answer Set Programming

Answer set programming, the topic of the previous chapter, has an interesting application beyond
single-player games, namely, to discover useful properties of games written in GDL. You can use
it to find latches, for example. Recall from Chapter 12 that a latch is a proposition that, when it
becomes true (respectively, false), stays so for the rest of the game. To check that a state feature
has this property, you first replace the given clauses for the initial state by the following ASP rule.

0 { true(F,1) : base(F) }

This fact acts as a state generator because it supports any base proposition to either be true or not
at time 1. The missing number after the closing curly bracket indicates that a model can contain
arbitrarily many elements from the set.

We also stipulate that all players choose one legal move at time 1.

1 { does(R,M,1) : input(R,M) } 1 :- role(R)

:- does(R,M,1), ~legal(R,M,1)

Now suppose that we want to verify an arbitrary base proposition p to be a positive latch, that is, to
stay true once it becomes true. This is achieved by trying to find a counter-example, that is, a
model in which p is true in one state but not so in the next state.

counterexample :- true(p,1), ~true(p,2)

Finally, we need to filter out all models without such a counter-example as per the constraint
below.

:- ~counterexample

Every model that an ASP system will generate is a counter-example to the hypothesis that p
cannot revert back from true to false. In other words, if the solver produces no answer, then you
have checked that the proposition is in fact a latch. This argument involves double negation but is
perfectly valid.

In order to check that a proposition cannot revert back to true once it became false, you just need
to replace the above by

counterexample :- ~true(p,1), true(p,2)

Note that you only need two time points for this proof technique, which is one of the reasons why



it is very viable in practice.

16.2 Goal Heuristics

Goal heuristics are based on the idea to evaluate intermediate positions according to their
estimated distance to a goal - the closer a state is to our player's goal, the more promising it is. A
good distance measure is often indicative of the quality of domain knowledge that a player has.

In general game playing, players begin with knowing nothing of their goal besides the pure logical
description. But this information alone suffices to create a basic distance measure. Fuzzy Logic
helps us to define it. The main idea is to equate distance with the degree to which a given state
satisfies a goal formula.

As a motivating example, consider a popular single-player game.

Figure 16.1 - A solved 15-puzzle.

Suppose the GDL description of this game includes the following rule to define the goal.

goal(player,100) :-
  true(cell(1,1,1)) & true(cell(2,1,2)) & true(cell(3,1,3)) &
  true(cell(4,1,4)) & true(cell(1,2,5)) & true(cell(2,2,6)) &
  true(cell(3,2,7)) & true(cell(4,2,8)) & true(cell(1,3,9)) &
  true(cell(2,3,10)) & true(cell(3,3,11)) & true(cell(4,3,12)) &
  true(cell(1,4,13)) & true(cell(2,4,14)) & true(cell(3,4,15))

Figure 16.2 - The goal formula for the 15-puzzle.

In Fuzzy Logic, the degree to which a conjunctive formula is satisfied is proportional to the
number of conjuncts that are true. Hence, an intermediate position in the 15-puzzle will be judged
by the number of tiles that are in the correct place. While not a perfect distance measure, it can be
successfully employed as the sole parameter of the evaluation function in a depth-limited search
with the effect that the player prefers moves that bring it closer to the goal configuration.

16.2 Fuzzy Logic

To implement a Fuzzy Logic-based goal heuristics, we first need to fix a truth value τ with
0.5<τ<1. When evaluating a GDL formula against a given state S, value τ will be assigned to all
atoms true(p) for which p holds in S. Conversely, 1-τ will be assigned to any atom true(p)



whose argument p does not hold in S.

Consider, for example, a random Tic-Tac-Toe position.

Figure 16.3 - A state in Tic-Tac-Toe.

This state determines the truth values for three selected features shown in the table below, where τ
has been set to 0.9.

Atom Value
true(cell(1,1,x)) 0.9

true(cell(2,2,x)) 0.1

true(cell(3,3,x)) 0.9

For the evaluation of compound formulas in Fuzzy Logic, we need to also decide on a so-called t-
norm. A t-norm (for: triangular norm) is a function T : [0,1] × [0,1] → [0,1] that is used to
compute the truth value of a conjunction. (As a triangular norm the function must satisfy
T(x,z)>T(y,z) whenever x>y and z>0.)

A common and simple t-norm is given by the multiplication of the two arguments. For example,
by multiplying the individual truth values taken from the table above we can determine the truth
value of the conjunction in the formula shown below.

diagonal(x) :-
  true(cell(1,1,x)) &
  true(cell(2,2,x)) &
  true(cell(3,3,x))

The resulting value is 0.081. This can be interpreted as the degree to which the body of the clause
is satisfied in the state of Figure 16.3.

Evaluating Complex Formulas

Any t-norm is extensible to an evaluation function for arbitrary formulas with negation (~) and
disjunction (|). For our example t-norm, computing the truth value of a compound formula
follows the recursive definition shown below.

truth(~A) = 1 - truth(A)



truth(A & B) = truth(A) ⋅ truth(B)

truth(A | B) = 1 - (1 - truth(A)) ⋅ (1 - truth(B))

The function for the disjunction can be used for the evaluation of an atom that is defined by more
than one rule. Consider, for example, the two rules defining a diagonal in Tic-Tac-Toe.

diagonal(x) :-
  true(cell(1,1,x)) &
  true(cell(2,2,x)) &
  true(cell(3,3,x))

diagonal(x) :-
  true(cell(1,3,x)) &
  true(cell(2,2,x)) &
  true(cell(3,1,x))

The body of the second clause evaluates to 0.13 = 0.001 in the position shown in Figure 16.3.
Together with the value for the body of the first clause, 0.081, we obtain 0.081+0.001-
(0.081⋅0.001) = 0.081919 for the truth value of diagonal(x).

Analogously, we can use the rules for row(M,x) and column(N,x) to compute the truth values for
each of their instances, that is, where M,N ∈ {1,2,3}. The resulting values can then be combined
into the overall truth value for line(x). Again, this means to compute a disjunction from all
instances of all rules for this predicate,

line(x) :- row(1,x)
line(x) :- row(2,x)
line(x) :- row(3,x)
line(x) :- column(1,x)
line(x) :- column(2,x)
line(x) :- column(3,x)
line(x) :- diagonal(x)

For our example position from Figure 16.3 we thus obtain a truth value of 0.116296 for line(x).
In a similar fashion, we can compute the truth value for line(o) for the same position as
0.023797. According to the rule,

goal(white,100) :- line(x) & ~line(o)

we can now compute the degree to which goal(white,100) is satisfied.

truth(goal(white,100)) = truth(line(x)) ⋅ (1 - truth(line(o))) = 0.113529

Finally, for games with more goal values than just the maximum of 100, we can compute a
weighted average over all goal formulas and use the Fuzzy Logic function for disjunction to obtain
a single number for the goal heuristics. In Tic-Tac-Toe, where the two positive goal values are 50
and 100, respectively, we compute the weighted average for white as shown below.

100 ⋅ [ truth(goal(white,100)) ⋅ 1
+ truth(goal(white,50)) ⋅ 0.5



- truth(goal(white,100)) ⋅ 1 ⋅ truth(goal(white,50)) ⋅ 0.5 ]

With truth(goal(white,50)) = (1 - truth(line(x))) ⋅ (1 - truth(line(o))) = 0.862674 according to
the rule

goal(white,50) :- ~line(x) & ~line(o)

this altogether results in a goal heuristics value of 49.589684 for the position shown in Figure
16.3.

16.3 Using the Goal Heuristics

The primary use of the Fuzzy Logic goal heuristics is to evaluate leaf nodes during a game tree
search. To see the heuristics in action, we can apply it to all successor states of the initial position
in Tic-Tac-Toe to see which of the possibilities for placing the first mark looks most promising.

Figure 16.4 - Using the goal heuristics to decide on the opening move in Tic-Tac-Toe.

Without any search beyond the first ply, it follows that the center square is the best move
according to the goal heuristics. Moreover, a cell in the corner is deemed more valuable than a
non-corner border cell.

Computing the fuzzy truth values for auxiliary atoms, such as line(x) or goal(x,100), requires
to generate all relevant instances of the rules that define these atoms. This can be easily
accomplished with the help of the domain analysis described in chapter 14. The domain graph for
Tic-Tac-Toe depicted in Figure 14.2, for example, tells us which instances of the rules for line(X)
shown below need to be considered when computing the fuzzy truth value of line(x) in any
given situation.

line(X) :- row(M,X)
line(X) :- column(N,X)
line(X) :- diagonal(X)

16.4 Optimizations and Limitations

When computing the fuzzy truth value of a defined predicate, atoms in the body of a rule can be
treated differently if their truth is independent of the current state. Examples include instances of



the keywords role and distinct as well as every auxiliary predicate whose definition does not
depend on keyword true. Any such state-independent atom can be assigned truth value 1 (if it is
true) or 0 (if it is false) rather than τ or 1-τ. So doing simplifies the computation and also leads to
sharper distinctions between different positions.

The strict application of our example t-norm for the goal heuristics can have the practical
disadvantage of approaching 0 for large conjunctions even when each conjunct is true. The goal
predicate in the 15-puzzle shown in Figure 16.2, for instance, still has a low degree of τ15 = 0.915

= 0.20589 after the final goal position has been reached. In practice it is therefore useful to
introduce a threshold θ that satisfies 0.5 < θ ≤ τ. This threshold can be used to ensure that a true
formula always has a truth value greater than 0.5. To do so, we just need to slightly extend the
computation of the fuzzy truth values for complex formulas.

truth(~A) = 1 - truth(A)
truth(A & B) = max{truth(A) ⋅ truth(B); θ} if truth(A) > 0.5, truth(B) > 0.5

truth(A & B) = truth(A) ⋅ truth(B) otherwise

truth(A | B) = 1 - (1 - truth(A)) ⋅ (1 - truth(B))

The better a heuristics can distinguish between different states, the more useful it is for evaluation
functions. The multiplication t-norm allows for little flexibility in this regard. A much wider range
of t-norms is captured by the so-called Yager family. Each t-norm from this family is given for 0 ≤
q ≤ ∞ by

S(x,y) = (xq + yq)1/q

T(x,y) = 1 - S(1-x,1-y)

Any function S that is used to define a Yager t-norm T also serves as the corresponding
computation rule for disjunctions. General game-playing systems that use these t-norms can adjust
parameter q as well as the basic truth value τ depending on the complexity and structure of the
goal formulas for different games.

Limitations

The Fuzzy Logic-based goal heuristics can be very useful for games whose goal, broadly
speaking, is reachable through achieving successive sub-goals. This extends well beyond obvious
examples like the 15-puzzle shown above. If, for instance, the aim is to eliminate all of your
opponent's pieces or to occupy all locations on a board, and if this can be achieved successively,
then goal heuristics can provide a useful guidance for a depth-limited search.

A limitation of the simple goal heuristics is not to take into account how difficult it is to extend a
partial solution to a complete one, or even if that is possible at all. In Tic-Tac-Toe, for example,
every row, column, or diagonal with exactly two of our player's markers has the same fuzzy truth
value, no matter whether the remaining third square is still free or already blocked. A possible
solution could involve the concepts of latches and inhibitors (cf. Chapter 12). A proposition that is
inhibited by an active latch can always be assigned truth value 0 because, by definition, it will



never become true later in the game.

Simple goal heuristics moreover generally fail to provide useful information for games with
specialized goals like, for example, checkmate, whose logical definition alone does not allow to
determine the degree to which it is already satisfied in an intermediate position.

Exercises

1. Use answer set programming to discover the following properties in the Buttons and Lights
game of Chapter 15.

a. Verify that step(1) is a (negative) latch.
b. Show that none of the propositions p, q, r, which represent the status of the lights,

is a latch in this game.
c. Write a module for your player that uses an ASP system to systematically check every

base proposition whether it is a latch.

2. Consider the two possible replies shown below to white's opening move.

What truth value does goal(black,100) have in these two positions? Which move,
therefore, would black take based on the goal heuristics without search?

3. If both players always choose their moves based on the goal heuristics without search, how
would the game be played out starting in the following position, where black moves next?

4. For each of the three positions shown below, what is the truth value of the formula in the
body of the goal description for the 15-puzzle (cf. Figure 16.2)? Use the multiplication as t-
norm to answer this question, with truth value τ = 0.9 and no threshold θ.



5. Answer the previous question for the same three positions, the same t-norm and truth value
τ = 0.9, but now using a threshold θ of 0.6.

6. Implement the Fuzzy Logic goal heuristics in your player and try it out on the 15-puzzle
using minimax search.
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Games With Incomplete Information

17.1 Introduction

Our input language GDL has been designed with the assumption that after every round the players
are informed about each others' moves. The effects of these moves are completely and
unambiguously determined by the game rules, so that players can always compute the subsequent
game state from the current one. Given that the players have full knowledge of the initial position,
they effectively have complete knowledge of the state throughout a game.

This is adequate for classical board games like Chess, Checkers, and Go. But many games of
interest use moves with indeterminate effect, like rolling a die. Others are characterized by
incomplete and asymmetric information. In the chess variant known as Kriegspiel, fro example,
the two players only can see the pieces of their own color. Most card games combine randomized
moves (shuffling) with information asymmetry (you can't see cards dealt to the other players). The
poker variant Texas hold'em is a point in case.

Truly general game playing therefore requires the extended game description language GDL-II,
which enables des descriptions of games with nondeterministic moves and where players have
incomplete information about the game state.

17.2 GDL-II

GDL-II stands for "GDL for games with incomplete information." By incompleteness we mean
that players do not know the full game. Mathematical game theorists draw a finer distinction
between what they call imperfect-information games and those of incomplete information. We do
not distinguish between the two and just mention that both can be modeled in GDL-II.

The extended game description language uses the three additional keywords described below.

random

means a pre-defined role that moves purely randomly.
percept(r,p)

means that p is a percept of player r in the game.
sees(r,p)

means that player r perceives p in the next state.

By definition, the role of the random player is to always choose with uniform probability among
its legal moves. This can be used to model nondeterministic actions as moves whose actual effect
depends on the move simultaneously chosen by the game-independent role random.

The keyword percept(r,p) is used to define all possible percepts for a player in the same way as
GDL-keyword input(r,a) describes the range of available moves. Percepts can be anything from
the move by another role to a specific state feature such as the value of a card dealt face-down to



the player. Even communication between players, both private and public, can be described with
the help of percepts that are triggered by certain moves.

What a player actually perceives is described by the predicate sees(r,p) and generally depends
on both the current state and a joint move, much like GDL-keyword next(f) does. Percepts are,
by definition, private. Hence, they can be used to model games with imperfect and asymmetric
information.

Regular GDL games can be simulated in GDL-II by adding the general game rule

sees(P,move(Q,M)) :- role(P) & does(Q,M)

With this clause, all players are informed about each others' moves in every round. This
information suffices to maintain complete knowledge of the position throughout the game, just as
in regular GDL.

17.3 Blind Tic-Tac-Toe

As an example of how to describe imperfect-information games in GDL-II, let us look at a
variation of Tic-Tac-Toe where, much like in Kriegspiel, the players don't get to see each others'
moves. Of course it may then happen that a player intends to mark a cell that's already been
occupied. In that case, the move shall have no effect but the player will be informed about it. To
make the game fairer, both players mark concurrently. If they happen to choose the same cell at
the same time, then the toss of a coin determines who is successful.

To begin with, our new two-person game, which we call Blind Tic-Tac-Toe, features three roles,
where the new random player is needed to simulate the coin toss.

    role(white)
    role(black)
    role(random)

Note that GDL-II requires you to declare random as a role whenever you want to use it in a game,
even though it is a pre-defined one. This guarantees upward compatibility between GDL and
GDL-II.

The initial state is similar to classical Tic-Tac-Toe (see Chapter 2) but without the state feature to
indicate whose turn it is, which is no longer needed now that white and black move concurrently.
A new feature records every attempt by a player to mark a cell. Players will only be allowed to try
each cell once, which will help to ensure that the game terminates.

    index(1)
    index(2)
    index(3)

    base(cell(M,N,x)) :- index(M) & index(N)
    base(cell(M,N,o)) :- index(M) & index(N)
    base(cell(M,N,b)) :- index(M) & index(N)

    base(tried(white,M,N)) :- index(M) & index(N)
    base(tried(black,M,N)) :- index(M) & index(N)

    init(cell(1,1,b))
    init(cell(1,2,b))



    init(cell(1,3,b))
    init(cell(2,1,b))
    init(cell(2,2,b))
    init(cell(2,3,b))
    init(cell(3,1,b))
    init(cell(3,2,b))
    init(cell(3,3,b))

Next, we define legality in Blind Tic-Tac-Toe. In each round, both white and black may choose
any cell that they have not already tried. At the same time a coin toss is simulated, the result of
which is used to break the tie in case both players attempt to mark the same cell. Accordingly, we
call this random move a tiebreak.

    input(white,mark(M,N)) :- index(M) & index (N)
    input(black,mark(M,N)) :- index(M) & index (N)

    input(random,tiebreak(x))
    input(random,tiebreak(o))

    legal(white,mark(X,Y)) :-
      index(X) &
      index(Y) &
      ~true(tried(white,X,Y))

    legal(black,mark(X,Y)) :-
      index(X) &
      index(Y) &
      ~true(tried(black,X,Y))

    legal(random,tiebreak(x))
    legal(random,tiebreak(o))

Next, we look at the new update rules for the game. Any try to mark a cell is recorded. A cell is
marked with an "x" or an "o" if the corresponding player chooses that cell and if the cell is blank
and not simultaneously targeted by the other player. If both players aim at the same cell, then the
cell ends up being marked according to the result of the random tie-breaking move. Finally, if a
cell contains a mark, then it retains that mark on the subsequent state; and if a cell is blank and
neither player attempts to mark it, then it remains blank.

    ; any new attempt to mark a cell is recorded
    next(tried(W,M,N)) :-
      does(W,mark(M,N))

    ; all recorded attempts are remembered
    next(tried(W,M,N)) :-
      true(tried(W,M,N))

    ; white is successful in marking a blank cell
    ; when black moves in a different column
    next(cell(M,N,x)) :-
      does(white,mark(M,N)) &
      true(cell(M,N,b)) &
      does(black,mark(J,K)) &
      distinct(M,J)
      
    ; white is successful in marking a blank cell
    ; when black moves in a different row
    next(cell(M,N,x)) :-



      does(white,mark(M,N)) &
      true(cell(M,N,b)) &
      does(black,mark(J,K)) &
      distinct(N,K)

    ; black is successful in marking a blank cell
    ; when white moves in a different column
    next(cell(M,N,o)) :-
      does(black,mark(M,N)) &
      true(cell(M,N,b)) &
      does(white,mark(J,K)) &
      distinct(M,J)

    ; black is successful in marking a blank cell
    ; when white moves in a different row
    next(cell(M,N,o)) :-
      does(black,mark(M,N)) &
      true(cell(M,N,b)) &
      does(white,mark(J,K)) &
      distinct(N,K)

    ; if both players aim at the same cell, then that cell
    ; gets marked by the result of the random tiebreak move
    next(cell(M,N,W)) :-
      true(cell(M,N,b)) &
      does(white,mark(M,N)) &
      does(black,mark(M,N)) &
      does(random,tiebreak(W))

    ; markings are forever
    next(cell(M,N,x)) :-
      true(cell(M,N,x))

    next(cell(M,N,o)) :-
      true(cell(M,N,o))

    ; a cell remains blank if no player attempts to mark it
    next(cell(M,N,b)) :-
      true(cell(M,N,b)) &
      ~marked(M,N)

    marked(M,N) :-
      does(W,mark(M,N))

GDL-II is based on the assumption that players are no longer automatically informed about any
other players' moves. Thus, without additional hints our Blind Tic-Tac-Toe players would be
completely oblivious as to whether any of their attempts to mark a cell was successful. According
to the following rules, which define the players' percepts, they are provided with exactly that but
no more information.

    percept(white,ok)
    percept(black,ok)

    ; players get ok when they mark a blank cell
    ; in a different column from where their opponent moves
    sees(R,ok) :-
      does(R,mark(M,N)) &
      true(cell(M,N,b)) &
      does(S,mark(J,K)) &
      distinct(M,J)



    ; players get ok when they mark a blank cell
    ; in a different row from where their opponent moves
    sees(R,ok) :-
      does(R,mark(M,N)) &
      true(cell(M,N,b)) &
      does(S,mark(J,K)) &
      distinct(N,K)

    ; white gets ok when he marks a blank cell
    ; and the random tiebreak went to his side
    sees(white,ok) :-
      does(white,mark(M,N)) &
      true(cell(M,N,b)) &
      does(random,tiebreak(x))

    ; black gets ok when he marks a blank cell
    ; and random tiebreak went to his side
    sees(black,ok) :-
      does(black,mark(M,N)) &
      true(cell(M,N,b)) &
      does(random,tiebreak(o))

By these rules a player sees "ok" after attempting to mark a cell that was indeed blank and that was
not simultaneously targeted by the opponent. The very same will be seen by the player in whose
favor the tie was broken, provided again that the cell being aimed at was empty. Since the percepts
are identical in both cases, players cannot distinguish between them. Hence, they will not know,
for example, if their opponent attempted (and failed) to mark the same cell at the same time. Even
when both cases apply together, the percept will not change.

Still, the players obtain enough information to infer which of the board's cells carry their own
marks. In turn, this allows them to determine exactly their legal moves according to the rules from
above. Generally speaking, a good GDL-II game description should always provide players with
sufficient information for them to know their legal moves and also to know whether a game has
terminated and what their result is.

In our example game, the absence of the percept "ok" tells players that they were unsuccessful in
their attempt to mark a cell. A smart player can even conclude that the cell in question must now
be occupied by their opponent, because either the cell already was marked before, or the tie break
decided in the other player's favor.

The terminal condition for our blind version of Tic-Tac-Toe can be taken as is from the
description of the standard game. Also the rules for the goals are the same as before but need to be
extended to the possibility that both players complete a line in the same round.

    terminal :- line(x)
    terminal :- line(o)
    terminal :- ~open

    goal(white,100) :- line(x) & ~line(o)
    goal(white, 50) :- line(x) & line(o)
    goal(white, 50) :- ~open & ~line(x) & ~line(o)
    goal(white,  0) :- ~line(x) & line(o)

    goal(black,100) :- ~line(x) & line(o)
    goal(black, 50) :- line(x) & line(o)
    goal(black, 50) :- ~open & ~line(x) & ~line(o)



    goal(black,  0) :- line(x) & ~line(o)

The supporting concepts line(w) and open are defined as before; see Chapter 2.

17.4 Card Games and Others

The two new keywords in GDL-II can be used to describe all kinds of card games, which are
typically characterised by both randomness (shuffle​) and information asymmetry (individual
hands). For example, a single card dealt face down to a player can be specified thus.

    legal(random,deal(Player,Card)) :-
       role(Player) &
       distinct(Player,random) &
       true(indeck(Card))

    next(holds(Player,Card)) :-
       does(random,deal(Player,Card))
    sees(Player,Card) :-
       does(random,deal(Player,Card))

Here, only the player who is dealt the card can see it. Multiple cards can be handed out in a single
move that takes each card as a separate argument and of which players only get to see the
argument position for their card.

In contrast, a card dealt face-up, say like in Texas hold'em, would be described as follows.

    legal(random,deal(river(C))) :-
       true(indeck(C))

    next(river(C)) :-
       does(random,deal(river(C)))
    sees(P,river(C)) :-
       role(P) &
       distinct(P,random) &
       does(random,deal(river(C)))

With the last rule all players are informed about the river card.

Games involving communication among players, both public and private, can also be described in
GDL-II. For example, as part of a negotiation a player P may offer a player Q to exchange an item
C for another item D. This can be formalized by the GDL-II clauses below.

    legal(P,ask(Q,trade(C,D))) :-
       true(has(P,C)) &
       true(has(Q,D)) &
       distinct(P,Q) &
       distinct(C,D)

    sees(Q,offer(P,C,D)) :-
       does(P,ask(Q,trade(C,D)))

Under these rules, their communication is private: only the addressee gets to see the offer.

17.5 GDL-II Game Management

GDL-II requires a modified protocol for running a game so that players are no longer



automatically informed about everyone's moves after each round (cf. Chapter 3). Rather, each
player gets his or her individual percept, or percepts, as determined by the game rules for the new
keyword sees.

Shown below is the format of the Play message for GDL-II games in the current GGP
communication language. The parameters are, (1) the usual match identifier; (2) an integer
counting the number of turns; (3) the move that was executed by the player in the last turn; and (4)
a list of the player's percepts.

(play id turn move percept)

If the player receives no information according to the game rules, the percept field is nil. The
number of turns and the confirmation of the previous move help players recover from
communication and other errors, when the game master selected a move on their behalf. On the
first request, turn is 0 and both the move field and the percept field are nil.

The specification of the Stop message is likewise modified.

(stop id turn move percept)

Here is a sample of messages for a quick game of Blind Tic-Tac-Toe. As always, the Game
Manager initiates the match by sending a start message to all of the players with their individual
role, the rules of the game, and the values for the startclock and playclock. The players then
respond with ready.

Game Manager to Player x: (start m23 white ( ... ) 10 10)
Game Manager to Player y: (start m23 black ( ... ) 10 10)

 Player x to Game Manager: ready
 Player y to Game Manager: ready

The manager starts play by sending an initial play message to all of the players. In this case, the
first player responds with the action (mark 1 1) while the second player chooses (mark 2 3).

Game Manager to Player x: (play m23 0 nil nil)
Game Manager to Player y: (play m23 0 nil nil)

 Player x to Game Manager: (mark 1 1)
 Player y to Game Manager: (mark 2 3)

The Game Manager checks that these actions are legal, chooses a legal move for random, updates
the state of the game according to this joint move, and then sends play messages to the players to
solicit their next actions. Since the players aimed at different cells, they both get their "ok". On the
next step, the two players attempt to mark the same cell and both play (mark 2 2).

Game Manager to Player x: (play m23 1 (mark 1 1) (ok))
Game Manager to Player y: (play m23 1 (mark 2 3) (ok))

 Player x to Game Manager: (mark 2 2)
 Player y to Game Manager: (mark 2 2)

Again, the Game Manager checks legality, randomly chooses a legal move for random, updates its



state, and sends a play message requesting the players' next actions. In this case, the random move
decided in favor of the first player, which therefore is the only player to again see "ok". The first
player takes advantage of the situation and plays (mark 3 1) while the second player chooses
(mark 1 3).

Game Manager to Player x: (play m23 2 (mark 2 2) (ok))
Game Manager to Player y: (play m23 2 (mark 2 2) nil)

 Player x to Game Manager: (mark 3 3)
 Player y to Game Manager: (mark 1 3)

With this move, the game is over. The Manager lets the players know by sending a suitable stop
message, stores the results in its database for future reference, and terminates.

Game Manager to Player x: (stop m23 3 (mark 3 3) (ok))
Game Manager to Player y: (stop m23 3 (mark 1 3) (ok))

 Player x to Game Manager: done
 Player y to Game Manager: done

17.6 Playing GDL-II Games: Hypothetical States

Most of the techniques that we have dealt with in this book can be applied to GDL-II unchanged:
Factoring, the discovery of heuristics, and logical reasoning all operate on the elements of a game
description. Their syntax and semantics is the same in both complete- and incomplete-information
games.

But there are additional challenges specific to GDL-II. General game-playing systems need to be
able also to draw the right conclusions from their partial observations. An example of this was
mentioned above, when the absence of the observation "ok" implied that a particular cell had to be
occupied by the opponent. This illustrates the kind of logical reasoning that GDL-II games require.

Players also need to evaluate the value of a move under incomplete knowledge of the state. They
can do so, at least in principle, by computing a complete table of all possible positions after each
round. This table is called an information set in mathematical game theory. It is constructed in a
similar way to a game tree. Beginning with the initial position, which is fully known, a player can
compute the resulting states for all combinations of legal moves. Later in the game, the player can
generate every legal successor state for every possible current state. The percepts made after every
round serve as filters. They allow to exclude any element from the information set that, according
to the game rules, would have led to an observation different from the actual one.

Figure 17.1 shows an example of the possible states from white's perspective after the first round
in Blind Tic-Tac-Toe.



Figure 17.1 - The set of positions that white - the player playing crosses - considers possible after
selecting the middle square in the first move and, respectively, seeing ok (left-hand side) or seeing

nothing (right-hand side).

The depicted information sets illustrate how a general game-playing system can draw logical
conclusions from a complete table of possible states. Square (2,2) carries an "x" in all elements of
the first set. It follows that white's move must have been successful. On the other hand, (2,2)
carries an "o" in each element of the second set, which in fact is a singleton. Again, white can
deduce everything that follows logically from the absence of the expected percept. Black of course
will likewise know that the cell in the middle has been marked in this case. Unlike white, however,
black has no way of knowing that this is the only square that is occupied after the first round.

Provided the set of possible states remains sufficiently small throughout a game, a player can use
this set to determine all moves that are guaranteed to be legal. The evaluation of a move can
likewise be based on the entire information set. A player can, for instance, follow the minimax
principle, for example, and always choose the move with the highest minimum value across all
possible positions.

Blind Tic-Tac-Toe is an example of a game with a manageable table of possible states. The
possible moves by the other players, including random, lead to further branching as the game
progresses. On the other hand, the players gain information after each round, which helps to
contain the growth of the information set.

But this is obviously not the case for larger imperfect-information games, like chess without
revealing opponents' moves or where a deck of cards is shuffled at the beginning. Maintaining the
complete information set is practically impossible in these games.

17.7 Sampling Complete States

A simple solution is to apply a technique similar to Monte Carlo tree search (cf. Chapter 8). Rather
than generating all possible states, a player can restrict the computation of successor states to just a
few, randomly selected joint moves. This allows to compute with only a few elements from the
information set. Each of these hypothetical states will be tested against the player's percept after
each round. If inconsistent, the hypothesis will be discarded or replaced by another randomly
selected possible state.

Every ordinary GDL player can thus be lifted to GDL-II, since each element picked from the
information is a complete state. A single hypothetical state can thus be treated by the player as if it
was the actual state in a perfect-information game. Moreover, these hypothetical states can be



analyzed independently. The individual results from this analysis can then be combined into an
expect value for each move across the different possible states. The independence of the
hypotheses allows the easy parallelization of this process.

But playing GDL-II games by randomly sampling complete states has its limitations. A player that
considers only a small subset of all possible states may draw wrong conclusions. Even the mere
legality of a move is not guaranteed by its being legal in just a few sample states. A move that
seems promising in some states may likewise turn out not to be a good move if all possible
positions would be considered.

A further and more fundamental disadvantage lies in the implicit assumption of complete
information when playing with individual elements of the information set. In so doing we
completely ignore the difference between knowledge and the lack thereof. As a consequence, a
move will never be considered useful if its sole purpose is to gain information. This is so because
additional information has no value for any hypothetical state that assumes complete knowledge
anyway.

Let's look at a very simple example of a single-player game that demonstrates how little the
sampling technique values knowledge and how it will never choose an information-gathering
move. Play commences with the random player choosing a red or blue wire to arm a bomb
accordingly. The player, which shall be called agent, may then choose whether or not to ask
which wire was used; asking carries a cost of 10 points to the final score. Finally, the agent must
cut one of the wires to either disarm - or accidentally detonate - the bomb.

    role(random)
    role(agent)

    action(noop)
    action(ask)
    action(arm(C)) :- color(C)
    action(cut(C)) :- color(C)

    color(red)
    color(blue)

    base(step(1))
    base(step(N))  :- succ(M,N)
    base(armed(C)) :- color(C)
    base(score(S)) :- score(S)
    
    succ(1,2)
    succ(2,3)
    succ(3,4)

    score(90)
    score(100)

    init(step(1))

    legal(random,arm(C)) :- color(C) & true(step(1))
    legal(random,noop)   :- ~true(step(1))
    legal(agent,noop)    :- true(step(1))
    legal(agent,noop)    :- true(step(2))
    legal(agent,ask)     :- true(step(2))
    legal(agent,cut(C))  :- true(step(3)) & color(C)



    sees(agent,C) :- does(agent,ask) & true(armed(C))

    next(step(N))    :- true(step(M)) & succ(M,N)
    next(score(90))  :- does(agent,ask)
    next(score(100)) :- does(agent,noop)
    next(score(S))   :- true(score(S))
    next(armed(C))   :- does(random,arm(C))
    next(armed(C))   :- true(armed(C))

    terminal :- true(step(4))

    explodes :-
      true(armed(C)) &
      does(agent,cut(C))

    goal(agent,S) :- true(score(S)) & ~explodes
    goal(agent,0) :- explodes

Shown below is the full game tree, including the outcomes for the agent at each terminal node.

Figure 17.2 - The Exploding Bomb game tree

If your player samples the two states in the information set after round 1 and assumes complete
knowledge in each of them, then in either case he believes he knows which color has been used to
arm the bomb. Hence, he never asks the question in this game since it carries a penalty that he
thinks he can avoid (due to superficial agreement of the samples). But after playing noop in round
2 the two samples (that is, the two gray nodes in Figure 17.2) do not agree on which move to take
next, so that the player can do no better than choose randomly and thus obtain an average outcome
of 50.

A variation of the Exploding Bomb game shows that a player also will never discount a move that
gives away valuable information to opponents, for the same reason. In this version our player
plays the arming agent - that chooses which wire arms the bomb - and also decides whether to tell
its opponent which wire to cut. Freely providing this information carries a reward of 10 points.

    role(agent)
    role(opponent)

    action(noop)
    action(tell)
    action(arm(C)) :- color(C)
    action(cut(C)) :- color(C)



    color(red)
    color(blue)

    base(step(1))
    base(step(N))  :- succ(M,N)
    base(armed(C)) :- color(C)
    base(score(S)) :- score(S)

    succ(1,2)
    succ(2,3)
    succ(3,4)

    score(90)
    score(100)

    init(step(1))

    legal(agent,arm(C))    :- color(C) & true(step(1))
    legal(agent,noop)      :- true(step(2))
    legal(agent,tell)      :- true(step(2))
    legal(agent,noop)      :- true(step(3))
    legal(opponent,noop)   :- ~true(step(3))
    legal(opponent,cut(C)) :- color(C) & true(step(3))

    sees(opponent,C) :- does(agent,tell) & true(armed(C))

    next(step(N))    :- true(step(M)) & succ(M,N)
    next(score(100)) :- does(agent,tell) & true(step(2))
    next(score(90))  :- does(agent,noop) & true(step(2))
    next(score(S))   :- true(score(S))
    next(armed(C))   :- does(random,arm(C))
    next(armed(C))   :- true(armed(C))

    terminal :- true(step(4))

    explodes :-
      true(armed(C)) &
      does(opponent,cut(C))

    opposite_score(0,100)
    opposite_score(10,90)
    opposite_score(90,10)
    opposite_score(100,0)

    goal(agent,S)    :-  explodes & true(score(S))
    goal(agent,T)    :- ~explodes & true(score(S)) & opposite_score(S,T) 
    goal(opponent,S) :- ~explodes & true(score(S))
    goal(opponent,T) :-  explodes & true(score(S)) & opposite_score(S,T) 

If our agent samples the information set after his first move and again makes the implicit
assumption that both players play with complete information, then he believes that the opponent
knows the right color anyway. Hence he always tells to avoid the penalty and thus is guaranteed to
lose against a rational opponent (with a score of 10 to 90 points) while withholding the
information would lead to a better outcome on average as the opponent has a mere 50/50 chance.

The two example games in this section are better approached by taking into account the entire
information set of a player to decide on a move. But to reason correctly about one's own
knowledge (and that of the other players) remains one of the many major challenges in general
game playing for practical games where information sets are too large to be maintained explicitly.



Exercises

1. In Blind Tic-Tac-Toe, how many states are possible at the end of round 2 after you

a. played mark(2,2) then mark(1,3) and your percepts were nil followed by (ok)?
b. played mark(2,2) then mark(1,3) and your percepts were nil followed by nil?
c. played mark(2,2) then mark(1,3) and your percepts were (ok) followed by nil?

2. Modify the rules of Blind Tic-Tac-Toe so as to describe a version without the random role,
where

both players simultaneously choose a cell to mark;
they can choose any cell that is not already occupied with their own marker;
if they choose the same cell in the same move, then this cell remains blank;
otherwise, a player succeeds in marking a cell only if that cell was empty;
they see "ok" if and only if their attempt to mark a cell was successful.

3. Describe the following card game in GDL-II.

A deck initially has 13 cards: ♣2, ♣3, …, ♣10, ♣J, ♣Q, ♣K, ♣A. Two players, alice and
bob, are randomly dealt one card each from the deck. The first player then decides whether
to bet or fold.

If she folds, the second player gets $5.
If she bets, the second player can decide to fold, check, or raise.

If he folds, neither player gets anything.
If he checks, the player with the higher card get $5.
If he raises, the first player can either fold or check.

If she folds, the second player gets $5.
If she checks, the player with the higher card wins $10.

The players get to see their opponent's card immediately after one of them has decided to
check. If, however, the round ended with one of them folding, then the players are not
informed about each other's hand. The game continues with two new cards dealt from
reduced deck, but now bob has to make the initial choice between betting and folding
choice. The game ends after six rounds, when there is only one card left in the deck. The
player wins who has amassed the higher total amount.

4. Extend the game description from Exercise 3 by giving both players $100 at the start. When
betting or raising, the players can decide how much they want to put in. When they check
they have to match the previous bet (or raise, respectively), or go all-in. The minimum
opening bet is always $5. The game ends prematurely when one of the players went broke.

5. Invent a simple (but non-trivial) game with imperfect information of your own. Describe in
English. Write a GDL-II rulesheet for the game. Give a move history that takes the game
from the initial state to a terminal state. Use the GDL stepper to show that your history
works.

6. Implement the stochastic simulation of possible states as a bolt-on solution to your GDL
player. Try your player out on one of the standard GDL-II games.



C H A P T E R  18

Games with Historical Constraints

18.1 Introduction

One of the distinctive features of GDL is its Markov character - the truth values of all state-
dependent conditions are defined entirely in terms of the truth values of conditions on the current
state and/or the the immediately preceding state. There is no explicit dependence on other states of
the world.

In some games and in many real-word applications, it is more convenient to define state-
dependent relations (such as legality, reward, and termination) in terms of multiple preceding
states. For example, in Chess, we need to express the fact that a player may not castle if it has
moved either its king or rook on any preceding step.

Now, for finite games, it is always possible to transform such conditions into Markov conditions
by adding information to the state of the game. Unfortunately, this is sometimes inconvenient; and
in many real-world applications, this is not possible, since the state description is often controlled
by others. In such cases, we need a language to allow us to express non-Markov conditions
directly, without such state modifications.

In this chapter, we examine a language called System Definition Language (or SDL), which
supports this level of expressiveness. In the next section, we give the details of the language. We
then show how to use it in the context of a couple of examples.

18.2 System Definition Language

System Description Language (or SDL) is a non-Markov variant of GDL. Like GDL, descriptions
take the form of open logic programs. The only difference is in the game-independent vocabulary,
and even this is very similar to that of GDL.

First of all, SDL includes all of the structural relations in GDL without change.

role(a) means that a is a role in the game.
base(p) means that p is a base proposition in the game.
percept(r, a) means that p is a percept for role r.
action(r, a) means that a is an action for role r.

To these basic structural relations, we add a couple of relations for talking about steps.

step(s) means that s is a step.
successor(s1,s2) means that step s1 comes immediately before step s2.

The relations true, sees, does, legal, goal, and terminal are all the same as in GDL except that
each is augmented with a step argument.



true(p,s) means that the proposition p is true on step s.
sees(r,p,s) means that role r sees percept p on step s.
does(r,a,s) means that role r performs action a on step s.
legal(r,a,s) means it is legal for role r to play action a on step s.
goal(r,n,s) means that player has utility n for player r on step s.
terminal(s) means that the state on step s is terminal.

And that's it; that's the entire language. We no longer need init and next. Why? The truth of
propositions in the initial state can be stated using true with the first step as the step argument;
and update rules, formerly written using next, can be stated using true and successor. Just how
this works should become clear from the examples given below.

18.3 Example - Tic Tac Toe

As an illustration of SDL, let's see how we can use the language to describe the game of Tic Tac
Toe. As we have seen, we can describe the game adequately in GDL. The point of rewriting the
description in SDL is to underscore the similarities and differences.

In SDL, as in GDL, we use the ternary function constant cell together with a row m and a column
n and a mark w to designate the proposition that the cell in row m and column n contains w where
w is either an x or an o or a b (for blank); and we use the unary function constant control to state
that it is that role's turn to mark a cell. The binary function mark together with a row m and a
column n designates the action of placing a mark in row m and column n, and the object constant
noop refers to the act of doing nothing.

The first step in writing an SDL description is the same as that in GDL - we enumerate the
structural components of the game - roles, base propositions, percepts (there are none in this case),
and actions. In SDL, these descriptions are exactly the same as in GDL.

  role(white)
  role(black)

  base(cell(X,Y,W)) :-
    index(X) &
    index(Y) &
    filler(W)

  base(control(W)) :-
    role(W)

  input(W,mark(X,Y)) :-
    role(W) &
    index(X) &
    index(Y)

  input(W,noop) :-
    role(W)

  index(1)
  index(2)
  index(3)



  filler(x)
  filler(o)
  filler(b)

To these basic components, we add a set of steps and a suitable successor function. In this case,
we use the natural numbers 1, ..., 10 with their usual successor function.

  step(1)
  step(2)
  step(3)
  step(4)
  step(5)
  step(6)
  step(7)
  step(8)
  step(9)
  step(10)

  successor(1,2)
  successor(2,3)
  successor(3,4)
  successor(4,5)
  successor(5,6)
  successor(6,7)
  successor(7,8)
  successor(8,9)
  successor(9,10)

The initial state of the game is written using the true relation and the first step (in this case the
natural number 1).

  true(cell(1,1,b),1)
  true(cell(1,2,b),1)
  true(cell(1,3,b),1)
  true(cell(2,1,b),1)
  true(cell(2,2,b),1)
  true(cell(2,3,b),1)
  true(cell(3,1,b),1)
  true(cell(3,2,b),1)
  true(cell(3,3,b),1)
  true(control(white),1)

The update rules are basically the same as in GDL. There are just two differences. (1) We add a
step argument M to does and true. (2) We replace next with true and add a different step
argument N. (3) We use successor to relate M and N.

  true(cell(I,J,x),N) :-
    does(white,mark(I,J),M) &
    successor(M,N)

  true(cell(I,J,o),N) :-
    does(black,mark(I,J),M) &
    successor(M,N)

  true(cell(K,L,b),N) :-
    does(W,mark(I,J),M) &
    true(cell(K,L,b),M) & I!=K &
    successor(M,N)



  true(cell(K,L,b),N) :-
    does(W,mark(I,J),M) &
    true(cell(K,L,b),M) & J!=L &
    successor(M,N)

  true(cell(I,J,Z),N) :-
    does(W,mark(I,J),M) &
    true(cell(I,J,Z),M) & Z!=b &
    successor(M,N)

  true(control(white),N) :-
    true(control(black),M) &
    successor(M,N)

  true(control(black),N) :-
    true(control(white),M) &
    successor(M,N)

Our view relations are the same except that, once again, we add step arguments. In this case, we
do not need the successor relation since the same step is involved in all cases.

  row(M,W,S) :-
    true(cell(M,1,W),S) &
    true(cell(M,2,W),S) &
    true(cell(M,3,W),S)

  column(N,W) :-
    true(cell(1,N,W)) &
    true(cell(2,N,W)) &
    true(cell(3,N,W))

  diagonal(W) :-
    true(cell(1,1,W)) &
    true(cell(2,2,W)) &
    true(cell(3,3,W))

  diagonal(W) :- 
    true(cell(1,3,W)) &
    true(cell(2,2,W)) &
    true(cell(3,1,W))

  line(W,N) :- row(J,W,N)
  line(W,N) :- column(K,W,N)
  line(W,N) :- diagonal(W,N)

  open(N) :- true(cell(J,K,b),N)

Finally, we define the notions of legality, goal, and termination using our augmented versions of
these relations.

  legal(W,mark(X,Y),N) :-
      true(cell(X,Y,b),N) &
      true(control(W),N)

  legal(white,noop,N) :-
      true(control(black),N)

  legal(black,noop,N) :-
      true(control(white),N)



  goal(white,100,N) :- line(x,N)
  goal(white,50,N) :- ~line(x,N) & ~line(o,N)
  goal(white,0,N) :- line(o,N)

  goal(black,100,N) :- line(o,N)
  goal(black,50,N) :- ~line(x,N) & ~line(o,N)
  goal(black,0,N) :- line(x,N)

  terminal(N) :- line(W,N)
  terminal(N) :- step(N) & ~open(N)

And that's it. Everything is pretty much the same as before. We have just made explicit the
Markov character of the game description.

18.4 Example - Chess

In order to see how we can use SDL to encode non-Markov constraints, let's look at the game of
Chess and, in particular, the legality conditions for castling and en passant captures. While it is
possible to describe these conditions in GDL, that description requires that we include some base
propositions specifically for this purpose. In SDL, we can describe the conditions directly, without
these additional base propositions.

As in our description of Tic Tac Toe, we begin with a description of the structural elements of the
game - roles, base propositions, percepts (again none), actions, and steps. Here, we have limited
the game to 100 steps.

  role(white)
  role(black)

  base(cell(I,J,W)) :-
    file(I) &
    rank(J) &
    filler(W)

  base(control(W)) :-
    role(W)

  input(W,move(I,J,K,L)) :-
    role(W) &
    file(I) &
    rank(J) &
    file(K) &
    rank(L)

  input(W,castleshort) :-
    role(W)

  input(W,castlelong) :-
    role(W)

  input(W,noop) :-
    role(W)

  file(a)
  file(b)
  file(c)
  file(d)



  file(e)
  file(f)
  file(g)
  file(h)

  rank(1)
  rank(2)
  rank(3)
  rank(4)
  rank(5)
  rank(6)
  rank(7)
  rank(8)

  filler(wk)
  filler(wq)
  filler(wb)
  filler(wn)
  filler(wr)
  filler(wp)
  filler(bk)
  filler(bq)
  filler(bb)
  filler(bn)
  filler(br)
  filler(bp)
  filler(b)

  step(1)
  step(2)
    ...
  step(99)
  step(100)

  successor(1,2)
  successor(2,3)
    ...
  successor(98,99)
  successor(99,100)

There two types of castling in Chess - castling on the king side (castleshort) and castling on the
queen side (castlelong). In either case, the corresponding rook is moved to the cell adjacent to
the king, and the king is placed on the other side of the rook.

Castling is a very useful move in many situations. However, it can only be done if certain
conditions are met. First, the king and the rook must be in their original positions and must not
have been previously moved. Second, the spaces between the king and the rook must be clear.
Third, the spaces from the initial position of the king to the final position must not be under attack.

Let's formalize the first of these conditions in the case of white castling on the king side. (The
other conditions pose no special difficulties; and, for the sake of simplicity, we ignore them.)

The corresponding definition of legality for white to castleshort is shown below. The move is
legal provided that the king and the rook are on their initial squares and the squares in between are
empty and neither the king nor the rook have been moved.

  legal(white,castleshort,N) :-
    true(cell(e,1,wk),N) &



    true(cell(f,1,b),N) &
    true(cell(g,1,b),N) &
    true(cell(h,1,wr),N) &
    ~moved(wk,N) &
    ~moved(wr,N)

The white king has been moved on step N if there was any move from cell e1 on that step or any
preceding step. The king-side white rook has been moved on step N if there was any move from
cell h1 on that step or any preceding step. Finally, a piece has been moved on a step if it was
moved on any preceding step.

  moved(wk,N) :-
    does(W,move(e,1,K,L),N)

  moved(wr,N) :-
    does(W,move(h,1,K,L),N)

  moved(P,N) :-
    moved(P,M) &
    successor(M,N)

This definition of legality guarantees that, if either the white king or the king-side white rook have
been moved, then castling on the king side is not legal. Significantly, the condition is stated using
just the state of the board and the history of moves, without any extraneous propositions in the
state description.

Now, on to en passant captures. If a pawn has not been moved, a player has the option of
advancing the pawn either one or two steps forward. If it chooses to advance its pawn two steps, it
may move through a cell which is threatened by an opposing pawn. In this case, the opponent has
the option of taking the pawn even though it is no longer on a threatened square.

The conditions for en passant captures are strict. The player must have moved the pawn for the
first time, and it must have made that move on the preceding step. We can formalize these
conditions in SDL as shown below. Here, for simplicity, we have shown the conditions for the
black player to make the en passant capture, and we have shown only the case of a pawn move on
the e file and a capture from the f file. (Expanding this for the general case is messy but
straightforward.)

  legal(black,move(f,4,e,3),N) :-
    does(white,move(e,2,e,4),M) &
    successor(M,N)

Although, in this example, the rule concerns only two states, it still requires SDL because it
defines legality in one state on the basis of a move in the preceding state rather than on conditions
in the current state, as in GDL.

This definition guarantees the desired legality conditions; and, as with the preceding example, the
condition is stated using just the state of the board and the history of moves, without any
extraneous propositions in the state description.
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Incomplete Game Descriptions

19.1 Introduction

In our discussion of General Game Playing thus far, we have assumed that game descriptions are
complete. This does not mean that players have full information. For example, in multiple player
games, they do not know the moves of other players before they make those moves; and, in the
case of imperfect information games, they do not even know the exact state of the world, only
what they can perceive of it. However, in our work thus far, we have assumed that the game rules
are complete - they completely define the initial state, legality, percepts, update, goals, and
termination in terms of states and actions.

Unfortunately, in real world settings, complete information is not always available. In some cases,
agents do not know all of the effects of their actions; they may not even know exactly which
actions are legal or what their rewards are or when a game is over.

Incomplete Game Description Language (or IGDL) is a variant of GDL designed to facilitate the
encoding of incomplete game descriptions. In place of rules that define concepts exactly, IGDL
has logical sentences that constrain concepts in more or less detail. (Spoiler for those with
background in Logic and Logic Programming - the essential difference between GDL and IGDL is
that, in IGDL, there is no negation as failure.)

In this chapter, we define IGDL and illustrate its use in writing incomplete descriptions of various
sorts. In the next section, we introduce Relational Logic, which is the logical basis for IGDL. In
the section after that, we define IGDL in Relational Logic in much the same way that we defined
GDL in terms of Logic Programming. We then show how to use IGDL in the context of some
examples. Finally, we talk about game management and game play.

19.2 Relational Logic

The basic elements of Relational Logic are the same as those of Logic Programming. We have the
same vocabulary - object constants, function constants, relation constants, and variables. We
define terms in exactly the same way - as object constants, variables, and functional terms. And
we define atomic sentences and literals in the same way as well.

The main difference between the language of Relational Logic and the language of Logic
Programming is that, in Relational Logic, we write (1) logical sentences and (2) quantified
sentences instead of rules.

There are five types of logical sentences in Relational Logic - negations, conjunctions,
disjunctions, implications, and equivalences.

A negation consists of the negation operator ~ and a simple or compound sentence, called the
target. For example, given the sentence p(a), we can form the negation of p(a) as shown below.



(~p(a))

A conjunction is a sequence of sentences separated by occurrences of the & operator and enclosed
in parentheses, as shown below. The constituent sentences are called conjuncts. For example, we
can form the conjunction of p(a) and q(a) as follows.

(p(a) & q(a))

A disjunction is a sequence of sentences separated by occurrences of the | operator and enclosed
in parentheses. The constituent sentences are called disjuncts. For example, we can form the
disjunction of p(a) and q(a) as follows.

(p(a) | q(a))

An implication consists of a pair of sentences separated by the => operator and enclosed in
parentheses. The sentence to the left of the operator is called the antecedent, and the sentence to
the right is called the consequent. The implication of p(a) and q(a) is shown below.

(p(a) => q(a))

A biconditional, is a combination of an implication and a reverse implication. For example, we
can express the biconditional of p(a) and q(a) as shown below.

(p(a) <=> q(a))

Note that the constituent sentences within any compound sentence can be either simple sentences
or compound sentences or a mixture of the two. For example, the following is a legal compound
sentence.

((p(a) | q(a)) => r(a))

A quantified sentence in Relational Logic is formed from a quantifier, a variable, and an
embedded sentence. The embedded sentence is called the scope of the quantifier. There are two
types of quantified sentences in Relational Logic, viz. universally quantified sentences and
existentially quantified sentences.

A universally quantified sentence is used to assert that all objects have a certain property. For
example, the following expression is a universally quantified sentence asserting that, if p holds of
an object, then q holds of that object and itself.

(AX:(p(X) => q(X,X))

An existentially quantified sentence is used to assert that some object has a certain property. For
example, the following expression is an existentially quantified sentence asserting that there is an
object that satisfies p and, when paired with itself, satisfies q as well.

(EX:(p(X) & q(X,X))

Note that quantified sentences can be nested within other sentences. For example, in the first
sentence below, we have quantified sentences inside of a disjunction. In the second sentence, we
have a quantified sentence nested inside of another quantified sentence.

(AX:p(X)) | (EX:q(X,X))



(AX:(EY:q(X,Y)))

One disadvantage of our notation, as written, is that the parentheses tend to build up and need to
be matched correctly. It would be nice if we could dispense with parentheses, e.g. simplifying the
preceding sentence to the one shown below.

p(a) | q(a) => r(a)

Unfortunately, we cannot do without parentheses entirely, since then we would be unable to render
certain sentences unambiguously. For example, the sentence shown above could have resulted
from dropping parentheses from either of the following sentences.

(p(a) | q(a)) => r(a) 
 p(a) | (q(a) => r(a))

The solution to this problem is the use of operator precedence. The following table gives a
hierarchy of precedences for our operators. The ~ operator has higher precedence than &; & has
higher precedence than |; and | has higher precedence than => and <=>.

~
&
|

=> <=>

In unparenthesized sentences, it is often the case that an expression is flanked by operators, one on
either side. In interpreting such sentences, the question is whether the expression associates with
the operator on its left or the one on its right. We can use precedence to make this determination.
In particular, we agree that an operand in such a situation always associates with the operator of
higher precedence. When an operand is surrounded by operators of equal precedence, the operand
associates to the right.

As with Logic Programming, the Herbrand base for Relational Logic language is the set of all
ground relational sentences that can be formed from the constants of the language. Said another
way, it is the set of all sentences of the form r(t1,...,tn), where r is an n-ary relation constant and t1,
... , tn are ground terms.

A truth assignment for a Relational Logic language is a function that maps each ground relational
sentence in its Herbrand base to a truth value. For example, the truth assignment defined below is
an example for the case of the language mentioned a few paragraphs above.

p(a) → 1
p(b) → 0
q(a,a)→ 1
q(a,b)→ 0
q(b,a)→ 1
q(b,b)→ 0

Once we have a truth assignment for the ground relational sentences of a language, the semantics
of our operators prescribes a unique extension of that assignment to the complex sentences of the
language. A truth assignment satisfies a negation ~φ if and only if it does not satisfy φ. A truth



assignment satisfies a conjunction (φ1 & ... & φn) if and only if it satisfies every φi. A truth
assignment satisfies a disjunction (φ1 | ... | φn) if and only if it satisfies at least one φi. A truth
assignment satisfies an implication (φ => ψ) if and only if it does not satisfy φ or does satisfy ψ. A
truth assignment satisfies an equivalence (φ <=> ψ) if and only if it satisfies both φ and ψ or it
satisfies neither φ nor ψ.

In order to define satisfaction of quantified sentences, we need the notion of instances. An
instance of an expression is an expression in which all variables have been consistently replaced
by ground terms. Consistent replacement here means that, if one occurrence of a variable is
replaced by a ground term, then all occurrences of that variable are replaced by the same ground
term.

A universally quantified sentence is true for a truth assignment if and only if every instance of the
scope of the quantified sentence is true for that assignment. An existentially quantified sentence is
true for a truth assignment if and only if some instance of the scope of the quantified sentence is
true for that assignment.

As an example of these definitions, consider the sentence AX:(p(X) => q(X,X)). What is the truth
value under the truth assignment shown above? According to our definition, a universally
quantified sentence is true if and only if every instance of its scope is true. For this language, with
object constants a and b and no function constants, there are just two instances. See below.

p(a) => q(a,a)

p(b) => q(b,b)

We know that p(a) is true and q(a,a) is true, so the first instance is true. q(b,b) is false, but so is
p(b) so the second instance is true as well. Since both instances are true, the original quantified
sentence is true.

Now let's consider a case with nested quantifiers. Is AX:EY:q(X,Y) true or false for the truth
assignment shown above? As before, we know that this sentence is true if every instance of its
scope is true. The two possible instances are shown below.

EY:q(a,Y)

EY:q(b,Y)

To determine the truth of the first of these existential sentences, we must find at least one instance
of the scope that is true. The possibilities are shown below. Of these, the first is true; and so the
first existential sentence is true.

q(a,a)

q(a,b)

Now, we do the same for the second existentially quantified. The possible instances follow. Of
these, again the first is true; and so the second existential sentence is true.

q(b,a)

q(b,b)

Since both existential sentences are true, the original universally quantified sentence must be true
as well.



We say that a truth assignment satisfies a sentence with free variables if and only if it satisfies
every instance of that sentence. A truth assignment satisfies a set of sentences if and only if it
satisfies every sentence in the set.

19.3 Incomplete Game Description Language

IGDL is not so much a language as a family of languages. It has multiple dialects - one for each of
the various dialects of GDL. There is IGDL corresponding to GDL; there is IGDL-II,
corresponding to GDL-II; and there is ISDL, corresponding to SDL.

Given one of these dialects of GDL, the IGDL variant is obtained using the language of Relational
Logic in place of the language of Logic Programming. In other words, instead of writing rules, one
writes logical sentences. Everything else remains the same.

We make this more concrete in the following sections by looking at various descriptions of a
single game. First, we look at Buttons and Lights written in GDL. We then look at a complete
description of the game written in IGDL-II. And then we look at an incomplete description written
in IGDL-II. Finally, we discuss game management and game play with incomplete descriptions.

19.4 Buttons and Lights Revisited

In this section, we return to the game of Buttons and Lights. Recall that, in ordinary Buttons and
Lights, there are three base propositions (the lights) and three actions (the buttons). See below.
Pushing the first button in each group toggles the first light; pushing the second button in each
group interchanges the first and second lights; and pushing the third button in each group
interchanges the second and third lights. Initially, the lights are all off. The goal is to turn on all of
the lights in the middle group. The game terminates on step 7 (after 6 moves).

Figure 11.1 - Buttons and Lights

The ordinary GDL for this game is shown below. There is just one role, here called robot. There
are three base propositions, one percept, three actions, and seven steps (with the usual successor
relation). The robot can see proposition q whenever it is true. All three actions are legal in all
states. The update rules, goal, and termination are as just described.

  role(robot)

  base(p)
  base(q)
  base(r)

  percept(robot,q)

  input(robot,a)
  input(robot,b)
  input(robot,c)



  step(1)
  step(2)
  step(3)
  step(4)
  step(5)
  step(6)
  step(7)

  successor(1,2)
  successor(2,3)
  successor(3,4)
  successor(4,5)
  successor(5,6)
  successor(6,7)

  sees(q) :- true(q)

  legal(robot,a)
  legal(robot,b)
  legal(robot,c)

  next(p) :- does(robot,a) & ~true(p)
  next(p) :- does(robot,b) & true(q)
  next(p) :- does(robot,c) & true(p)
  next(q) :- does(robot,a) & true(q)
  next(q) :- does(robot,b) & true(p)
  next(q) :- does(robot,c) & true(r)
  next(r) :- does(robot,a) & true(r)
  next(r) :- does(robot,b) & true(r)
  next(r) :- does(robot,c) & true(q)

  goal(robot,100) :- true(p) & true(q) & true(r)
  goal(robot,0) :- ~true(p)
  goal(robot,0) :- ~true(q)
  goal(robot,0) :- ~true(r)

  terminal :- true(7)

In playing games with incomplete descriptions, the game manager starts with a complete
description, typically encoded in GDL, like the one shown here. However, the players are given
only partial descriptions. These partial descriptions are written in IGDL or IGDL-II or ISDL. In
the next section, we look at a complete description of Buttons and Lights written in IGDL-II; and
in the section after that we look at an incomplete description.

19.5 Complete Description of Buttons and Lights

The first step in writing an IGDL-II description is the same as for GDL or GDL-II or SDL - we
enumerate the structural components of the game - roles, base propositions, percepts, actions, and
steps. In almost all cases, these descriptions are complete, as in this case.

The IGDL-II description of these structural components is shown below. The main difference here
is that we have written negative sentences for each relation to tell us what is not true. In Logic
Programming, this is not necessary, since anything that is not known to be true there is assumed to
be false. In incomplete descriptions, we cannot make this assumption - If we do not know
something, it is not necessarily false; we just do not know whether it is true or false. So, we need
to be explicit about the things we know to be false.



  role(robot)
  X!=robot => ~role(X)

  base(p)
  base(q)
  base(r)
  X!=p & X!=q & X!=r => ~base(X)

  percept(robot,q)
  X!=robot | Y!=q => ~percept(X,Y)

  input(robot,a)
  input(robot,b)
  input(robot,c)
  X!=robot | Y!=a & Y!=b & Y!=c => ~input(X,Y)

  step(1)
  step(2)
  step(3)
  step(4)
  step(5)
  step(6)
  step(7)
  X!=1 & X!=2 & X!=3 & X!=4 & X!=5 & X!=6 & X!=7 => ~step(X)

  successor(1,2)
  successor(2,3)
  successor(3,4)
  successor(4,5)
  successor(5,6)
  successor(6,7)
  (X!=1 | Y!2) & ... & (X!=6 | Y!7) => ~successor(X,Y)

The other components of the game description can be formalized in the same way. See below. All
lights are off in the initial state. The player can see its single percept. All three actions are legal.
The update rules are the same. And the goal and termination rules are the same.

  ~init(X)

  true(q) <=> sees(q)
  X!=q => ~sees(X)

  legal(robot,a)
  input(robot,b)
  input(robot,c)
  X!=robot | Y!=a & Y!=b & Y!=c => ~legal(X,Y)

  next(p) <=>
    does(robot,a) & ~true(p) |
    does(robot,b) & true(q) |
    does(robot,c) & true(p)

  next(q) <=>
    does(robot,a) & true(q) |
    does(robot,b) & true(p) |
    does(robot,c) & true(r)

  next(r) <=>
    does(robot,a) & true(r) |
    does(robot,b) & true(r) |



    does(robot,c) & true(q)

  X!=p & X!=q & X!=r => ~next(X)

  goal(robot,100) <=> true(p) & true(q) & true(r)
  goal(robot,0) <=> ~true(p) | ~true(q) | ~true(r)
  X!=robot | (Y!100 & Y!=0) => ~goal(X,Y)

  terminal <=> true(7)

The sentences here are a little different from those in the GDL description. However, with a little
reflection on the semantics of GDL-II and IGDL-II, it is easy to see that they describe exactly the
same game.

19.6 Incomplete Description of Buttons and Lights

As a simple example of an incomplete description written in IGDL-II, consider a simple variation
of Buttons and Lights in which the players know everything except the initial state of the game.

To be more precise, we take all of the sentences from Section 19.5, with the exception of the
sentence asserting that none of the base propositions are true in the initial state. Removing this
sentence means that the player starts the game in any one of eight possible states.

Of course, once the player gets a percept, i.e. it sees whether q is true or false, this ambiguity is cut
down to just four states. Unfortunately, in this situation there is still no guaranteed solution in the
allowed number of steps. There are just too many cases to consider.

We can make things a little better by giving the player a bit more information. Let's say we tell the
player that proposition p and proposition q have the same initial value. This can be done by
augmenting the description with a sentence like the one shown below.

  init(p) <=> init(q)

With this additional information, the player knows that the game starts in one of four possible
states. Once it is given its initial percept, it can cut this down to just two initial states. And, by
clever play, it can then solve the problem despite the residual ambiguity, as described in the next
section.

19.7 Playing Buttons and Lights With an Incomplete Description

Game management and play with incomplete descriptions is a little different from management
and play with complete information.

First of all, the manager and the players typically have different descriptions of the game. The
manager has a complete description, like the one in Sections 19.4 and 19.5. This is necessary so
that it can simulate the game accurately. However, the players have only partial descriptions, like
the one in Section 19.6. In some cases, it is even possible for different players to have different
descriptions.

Second, our usual techniques for game play do not necessarily work. For example, with
incomplete descriptions, the players may not know the initial state exactly (as is the case in the
description of Section 19.6). Or they may know the initial state but not be able to determine a
unique successor state, given limited information about the update rules for the game. They may



not even know in all cases whether the game is over.

Dealing with limitations of these sorts means that players must keep open multiple options on state
(as in playing games in IGDL-II). Also, they must use the description in new and interesting ways
to extract as much information from the description as possible, possibly combining from multiple
time steps.

To illustrate these ideas, let's consider the sort of computation necessary in the context of the
incomplete game description given in Section 19.6.

When the game begins, the player is given its percept and learns that q is false. From this and the
partial constraint on init, it knows that p must also be false. It still does know whether r is true or
false, so there are two possible states to consider. See below.

Figure 11.2 - Possible states of Buttons and Lights on step 1

There are several ways to proceed in this situation. In one approach, the player presses the a button
to make p true, and then it presses the b button to interchange p and q. This makes p false and q
true.

Figure 11.3 - Possible states of Buttons and Lights on step 3

On the third step, it presses the c button to interchange q and r. This makes r true and gives q the
value of r.

Figure 11.4 - Possible states of Buttons and Lights on step 4

Now, if q is false after this operation, then the player knows that r was false in the initial state. In
this case, it needs to press a again, followed by b, followed by a to get all three lights on.

If q is true after interchanging with r, then the just needs to press a to make p true, at which point
all three lights are on. It can then press b or c a couple of times to get to step 7.

The challenge in building players for IGDL descriptions is making them able to use constraints
that can help it to infer as much information about the state as possible from their perceptual
inputs and the known constraints. In some cases, like this one, the job is easy. In other cases,
especially with ISDL, the constraints may involve reasoning about multiple time steps, and the



process can be extremely complex.
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Advanced General Game Playing

20.1 Introduction

Although we have looked at a few variations on traditional GGP, the variations have been
relatively minor. Over the years, researchers have proposed more extreme variants. In this chapter,
we briefly describe some of the more popular proposals, viz. Temporal General Game Playing,
Inductive General Game Playing, Really General Game Playing, and finally Enhanced General
Game Playing.

20.2 Temporal General Game Playing

In traditional General Game Playing, players are given two clocks - one for initialization and one
for game play; and they are both hard limits. Over the years, members of the community have
proposed other sorts of timing restrictions.

One possibility is to replace the hard time limits on each step with a cumulative clock, with the
idea that each player stops its clock as soon as it replies to the game manager's play request. This
way, players can conserve their time for portions of a match requiring more attention. The
downside of cumulative time is that players must decide for themselves how to allocate their time;
and this can add to the difficulty of building effective systems.

A different approach is to connect playing time with reward. For example, a player might get a
reward that depends not just on the game state but also on the amount of time spent computing its
moves. Again, this is a complication, but it allows us to model some real-world applications that
do not fit the fixed clock or cumulative time models.

Finally, some people have proposed making the world dynamic, so that the world state changes
while the players are contemplating their moves, placing emphasis on economy of deliberation and
careful timing of action.

20.3 Inductive General Game Playing

In traditional General Game Playing, the players are given game descriptions at runtime. Usually,
these game descriptions are complete; and, even then, the task of playing such games is difficult.
As we have seen, in some cases, the descriptions are incomplete; and this complicates the process
of playing games. Inductive General Game is a variant of General Game Playing that is even more
difficult.

In Inductive General Game Playing (IGGP), the players are given no rules at all. In the place of
rules, they are provided with a corpus of records for game matches. Given only this corpus of data,
they must figure out the rules of the game for themselves; and then, in traditional GGP fashion,
they must use these rules to play the games effectively.



One thing that makes the job a little easier is that there is no noise, i.e. no errors in the match
records. All matches are correctly played games. At the same time, the job is complicated by the
fact that there are no negative examples, i.e. match records that do not correspond to correctly
played games. Of course, both of these limitations can easily be rectified. It is simple to add in
some false positives and no problem at all in supply negative examples as well, with or without
false negatives.

20.4 Really General Game Playing

Really General Game Playing (RGGP) extends this progression of difficulty one step further. In
RGGP, players are given structural information about their games and a simple utility sensor but
that is all. They know the roles, the percepts and actions of each player; but that is all. They are
not even given samples of games.

In RGGP, players explore the world, reading their utility sensor. They must then develop theories
of how the world works and use those theories to optimize the readings of their utility sensors.

20.5 Enhanced General Game Playing

Finally, some have proposed a variant of GGP with more information rather than less. This is
often called Enhanced General Game Playing (EGGP).

The extra information in EGGP might included identity information about their opponents. With
this information, players can do meaningful opponent modeling and re-use that analysis from one
match to another.

The extra information in EGGP might also include tournament information, e.g. whether it is a
cumulative score tournament, a single elimination ladder, a double elimination ladder, and so
forth, so that it can strategize about how to proceed. For example, in a cumulative score
tournament, a player should try to maximize its return on every game, whereas in an elimination
ladder, all it needs to do is to beat its opponent.

In its most general form, EGGP is interesting because a player's decisions do not end when a
match is over. It is playing a bigger game, which can involve the multiple matches of a tournament
and even the results of multiple tournaments. For an EGGP player of this sort, its entire existence
constitutes one big game.
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