GENERAL GAME PLAYING

Michael Genesereth Michael Thielscher
Computer Science Department School of Computer Science
Stanford University and Engineering

The University of New South Wales

Preface

Chapter 1 - Introduction

Chapter 2 - Game Description

Chapter 3 - Game Management

Chapter 4 - Game Playing

Chapter 5 - Small Single-Player Games

Chapter 6 - Small Multiple-Player Games

Chapter 7 - Heuristic Search

Chapter 8 - Probabilistic Search

Chapter 9 - Propositional Nets

Chapter 10 - General Game Playing With Propnets
Chapter 11 - Factoring With Propnets

Chapter 12 - Discovering Heuristics With Propnets
Chapter 13 - Logic

Chapter 14 - Analyzing Games With Logic
Chapter 15 - Solving Single-Player Games With Logic
Chapter 16 - Discovering Heuristics With Logic
Chapter 17 - Games with Incomplete Information
Chapter 18 - Games with Historical Constraints
Chapter 19 - Incomplete Game Descriptions
Chapter 20 - Advanced General Game Playing
References

Index

file:///ggp/chapters/preface.html
file:///ggp/chapters/chapter_01.html
file:///ggp/chapters/chapter_02.html
file:///ggp/chapters/chapter_03.html
file:///ggp/chapters/chapter_04.html
file:///ggp/chapters/chapter_05.html
file:///ggp/chapters/chapter_06.html
file:///ggp/chapters/chapter_07.html
file:///ggp/chapters/chapter_08.html
file:///ggp/chapters/chapter_09.html
file:///ggp/chapters/chapter_10.html
file:///ggp/chapters/chapter_11.html
file:///ggp/chapters/chapter_12.html
file:///ggp/chapters/chapter_13.html
file:///ggp/chapters/chapter_14.html
file:///ggp/chapters/chapter_15.html
file:///ggp/chapters/chapter_16.html
file:///ggp/chapters/chapter_17.html
file:///ggp/chapters/chapter_18.html
file:///ggp/chapters/chapter_19.html
file:///ggp/chapters/chapter_20.html
file:///ggp/chapters/references.html

Preface

General game players are computer systems able to play strategy games based solely on formal
game descriptions supplied at "runtime". (In other words, they don't know the rules until the game
starts.) Unlike specialized game players, such as Deep Blue, general game players cannot rely on
algorithms designed in advance for specific games; they must discover such algorithms
themselves. General game playing expertise depends on intelligence on the part of the game player
and not just intelligence of the programmer of the game player.

GGP is an interesting application in its own right. It is intellectually engaging and more than a
little fun. But it is much more than that. It provides a theoretical framework for modeling discrete
dynamic systems and for defining rationality in a way that takes into account problem
representation and complexities like incompleteness of information and resource bounds. It has
practical applications in areas where these features are important, e.g. in business and law. More
fundamentally, it raises questions about the nature of intelligence and serves as a laboratory in
which to evaluate competing approaches to artificial intelligence.

This book is an elementary introduction to General Game Playing (GGP). (1) It presents the theory
of General Game Playing and leading GGP technologies. (2) It shows how to create GGP
programs capable of competing against other programs and humans. (3) And it offers a glimpse of
some of the real world applications of General Game Playing.

Although the book is elementary, it does assume some basic background. (1) First of all, readers
should be familiar with Symbolic Logic. Game descriptions are written in the language of
Symbolic Logic, and it helps to be able to read and write such descriptions. (2) Second, readers
should be familiar the concepts of computer programming. At the very least, they should be able
to read and understand program fragments written in modern programming languages. We use
Javascript in all of our examples. Javascript is fairly simple. If readers are familiar with languages
like Java and C, they should be able to read Javascript without any further training.

Before getting started, we want to acknowledge the contributions of various people. First of all,
there are the various students who over the years helped to craft the course - notably Nathaniel
Love, David Haley, Eric Schkufza, Evan Cox, Alex Landau, Peter Pham, Mirela Spasova, and
Bertrand Decoster. Special mention goes to Sam Schreiber for maintaining the GGP configurable
player and the Java code base used by many students. He is also the creator and maintainer or
ggp.org, a website for all things GGP.

And thanks as well to the students who over the years have had to endure early versions of this
material, in many cases helping to get it right by suffering through experiments that were not
always successful. It is a testament to the intelligence of these students that they seem to have
learned the material despite multiple bumbling mistakes on our part. Their patience and
constructive comments were invaluable in helping us to understand what works and what does not.

CHAPTER 1

Introduction

1.1 Introduction

Games of strategy, such as chess, couple intellectual activity with competition. We can exercise
and improve our intellectual skills by playing such games. The competition adds excitement and
allows us to compare our skills to those of others. The same motivation accounts for interest in
Computer Game Playing as a testbed for Artificial Intelligence. Programs that think better should
be able to win more games, and so we can use competitions as an evaluation technique for
intelligent systems.

Unfortunately, building programs to play specific games has limited value in Al (1) To begin
with, specialized game players are very narrow. They can be good at one game but not another.
Deep Blue may have beaten the world Chess champion, but it has no clue how to play checkers.
(2) A second problem with specialized game playing systems is that they do only part of the work.
Most of the interesting analysis and design is done in advance by their programmers. The systems
themselves might as well be tele-operated.

All is not lost. The idea of game playing can be used to good effect to inspire and evaluate good
work in Artificial Intelligence, but it requires moving more of the design work to the computer
itself. This can be done by focussing attention on General Game Playing.

General game players are systems able to accept descriptions of arbitrary games at runtime and
able to use such descriptions to play those games effectively without human intervention. In other
words, they do not know the rules until the games start.

Unlike specialized game players, such as Deep Blue, general game players cannot rely on
algorithms designed in advance for specific games. General game playing expertise must depend
on intelligence on the part of the game player and not just intelligence of the programmer of the
game player. In order to perform well, general game players must incorporate results from various
disciplines, such as knowledge representation, reasoning, and rational decision making; and these
capabilities have to work together in a synergistic fashion.

Moreover, unlike specialized game players, general game players must be able to play different
kinds of games. They should be able to play simple games (like Tic Tac Toe) and complex games
(like Chess), games in static or dynamic worlds, games with complete and partial information,
games with varying numbers of players, with simultaneous or alternating play, with or without
communication among the players, and so forth.

1.2 Games

Despite the variety of games treated in General Game Playing, all games share a common abstract
structure. Each game takes place in an environment with finitely many states, with one

distinguished initial state and one or more terminal states. In addition, each game has a fixed,
finite number of players; each player has finitely many possible actions in any game state, and
each state has an associated goal value for each player. The dynamic model for general games is
synchronous update: all players move on all steps (although some moves could be "no-ops"), and
the environment updates only in response to the moves taken by the players.

Given this common structure, we can think of a game as a state graph, like the one shown here. In
this case, we have a game with one player, with eight states (named sy, ... , sg), with one initial

state (sq), with two terminal states (s4 and sg). The numbers associated with each state indicate the

values of those states. The arcs in this graph capture the transition function for the game. For
example, if the game is in state s; and the player does action a, the game will move to state s,. If

the player does action b, the game will move to state ss.

0 50 50 100

Figure 1.1 - State Graph for a single-player game

In the case of multiple players with simultaneous moves, the arcs become multi-arcs, with one arc
for each combination of the players' actions. Here is an example of a simultaneous move game
with two players. If in state s both players perform action a, we follow the arc labelled a / a. If the

first player does b and the second player does a, we follow the b / a arc. We also have different
goals for the different players. For example, in state s, player 1 gets 100 points whereas player 2

get 0 points; and, in state sg, the situation is reversed.

0/0 50/50 50/50 100/0

ala ala ala
ﬁ -« e—— ——
b/a'lla/b b/allla/b bla .a/b b/a'l.a/h
ala ala ala
0/0 25/25 25/25 0/100

Figure 1.2 - State Graph for a two-player game

This conceptualization of games is an alternative to the traditional extensive normal form

definition of games in game theory. While extensive normal form is more appropriate for certain
types of analysis, the state-based representation has advantages in General Game Playing.

In extensive normal form, a game is modeled as a game tree. In a game tree, each node is linked to
successors by arcs corresponding to the actions legal in the corresponding game state. While
different nodes often correspond to different states, it is possible for different nodes to correspond
to the same game state. (This happens when different sequences of actions lead to the same state.)

In state-based representation, a game is modeled as a graph in which nodes are in 1-1
correspondence with states. Moreover, all players' moves are synchronous. (With extensions,
extensive normal form can also represent simultaneous move games but with some added cost of
complexity.) Additionally, state-based representation makes it possible to describe games more
compactly, and it makes it easier for players to play games efficiently.

1.3 Game Description

Since all of the games that we are considering are finite, it is possible, in principle, to describe
such games in the form of state graphs. Unfortunately, such explicit representations are not
practical in all cases. Even though the numbers of states and actions are finite, these sets can be
extremely large; and the corresponding graphs can be larger still. For example, in chess, there are

thousands of possible moves and more than 1030 states.

In the vast majority of games, states and actions have composite structure that allows us to define
a large number of states and actions in terms of a smaller number of more fundamental entities. In
Chess, for example, states are not monolithic; they can be conceptualized in terms of pieces,
squares, rows and columns and diagonals, and so forth.

By exploiting this structure, it is possible to encode games in a form that is more compact than
direct representation. Game Description Language (GDL) supports this by relying on a
conceptualization of game states as databases and by relying on logic to define the notions of
legality and so forth.

As an example of GDL, let us look at the rules for the game of Tic-Tac-Toe. Note that this
example is intended as a brief glimpse at GDL, not a rigorous introduction to the language. Full
details of the language are given in the next chapter.

We begin with an enumeration of roles. There are two players - white and black.

role(white)
role(black)

Next, we characterize the initial state. In this case, all cells are blank.

init(cell(1l,1,b))
init(cell(1l,2,b))
init(cell(1,3,b))
init(cell(2,1,b))
init(cell(2,2,b))
init(cell(2,3,b))
init(cell(3,1,b))
init(cell(3,2,b))
init(cell(3,3,b))

init(control(white))

Next, we define legality. A player may mark a cell if that cell is blank and it has control.
Otherwise, so long as there is a blank cell, the only legal action is noop, 1.e. non-action. In GDL,
symbols that begin with capital letters are variables, while symbols that begin with lower case
letters are constants. The : - operator is read as "if" - the expression to its left is true if the
expressions that follow it are true.

legal(W,mark(X,Y)) :-
true(cell(X,Y,b)) &
true(control (W))

legal (white,noop) :-
true(cell(X,Y,b)) &
true(control(black))

legal (black,noop) :-
true(cell(X,Y,b)) &
true(control (white))

Next, we look at the update rules for the game. A cell is marked with an x or an o if the
corresponding player marks that cell. If a cell contains a mark, it retains that mark on the
subsequent state. If a cell is blank and is not marked on that move, then it remains blank. Finally,
control alternates on each play.

next(cell(M,N,X)) :-
does (white,mark(M,N)) &
true(cell(M,N,b))

next(cell(M,N,0)) :-
does(black,mark(M,N)) &
true(cell(M,N,b))

next(cell(M,N,W)) :-
true(cell(M,N,W)) &
distinct(W,b)

next(cell(M,N,b)) :-
does (W, mark(J,K)) &
true(cell(M,N,W)) &
distinct(M,J)

next(cell(M,N,b)) :-
does (W, mark(J,K)) &
true(cell(M,N,W)) &
distinct(N,K)

next (control(white)) :-
true(control(black))

next (control(black)) :-
true(control (white))

Goals. White gets a score of 100 points if there is a line of x's, and otherwise it gets O points. Black
gets a score of 100 points if there is a line of o's and otherwise it gets O points. The line relation is

defined below.

goal(white,100) :- line(x)
goal(white,0) :- ~line(x)

goal(black,100) :- line(o)
goal(black,0) :- ~line(o0)

Supporting concepts. A line is a row of marks of the same type or a column or a diagonal. A row
of marks mean thats there three marks all with the same first coordinate. The column and diagonal
relations are defined analogously.

line(X) :- row(M,X)
line(X) :- column(M,X)
line(X) :- diagonal(X)

row(M,X) :-
true(cell(M,1,X)) &
true(cell(M,2,X)) &
true(cell (M, 3,X))

column(M,X) :-
true(cell(1l,N,X)) &
true(cell(2,N,X)) &
true(cell(3,N,X))

diagonal(X) :-
true(cell(1,1,X)) &
true(cell(2,2,X)) &
true(cell(3,3,X))

diagonal(X) :-
true(cell(1,3,X)) &
true(cell(2,2,X)) &
true(cell(3,1,X))

Termination. A game terminates whenever there is a line of marks of the same type or if the game
is no longer open, i.e. there are no blank cells.

terminal :- line(x)
terminal :- line(o0)
terminal :- ~open

open :- true(cell(M,N,b))

Note that, under the full information assumption, any of these relations can be assumed to be false
if it is not provably true. Thus, we have complete definitions for the relations legal, next, goal,
and terminal in terms of true and does. The true relation starts out identical to init and on
each step is changed to correspond to the extension of the next relation on that step.

Although GDL is designed for use in defining complete information games, it can be extended to
partial information games relatively easily. Unfortunately, the resulting descriptions are more
verbose and more expensive to process.

1.4 Game Management

Game Management is the process of administering a game in a general game playing setting. More
properly, it should be called match management, as the issue is how to manage individual matches
of games, not the games themselves. However, everyone seems to use the phrase Game
Management, and so we are stuck with it.

The process of running a game goes as follows. Upon receiving a request to run a match, the
Game Manager's first sends a start message to each player to initiate the match. Once game play
begins, it sends play messages to each player to get their plays and simulates the results. This part
of the process repeats until the game is over. The Manager then sends stop messages to each
player.

The start message lists the name of the match, the role the player is to assume (e.g. white or
black in chess), a formal description of the associated game (in GDL), and the start clock and play
clock associated with the match. The start clock determines how much time remains before play
begins. The play clock determines how much time each player has to make each move once play
begins.

Upon receiving a start message, each player sets up its data structures and does whatever
analysis it deems desirable in the time available. It then replies to the Game Manager that it is
ready for play.

Having sent the start message, the game manager waits for replies from the players. Once it has
received these replies OR once the start clock is exhausted, the Game Manager commences play.

On each step, the Game Manager sends a play message to each player. The message includes
information about the actions of all players on the preceding step. (On the first step, the argument
iSnil.)

On receiving a play message, players spend their time trying to decide their moves. They must
reply within the amount of time specified by the match's play clock.

The Game Manager waits for replies from the players. If a player does not respond before the play
clock is exhausted, the Game manager selects an arbitrary legal move. In any case, once all players
reply or the play clock is exhausted, the Game manager takes the specified moves or the legal
moves it has determined for the players and determines the next game state. It then evaluates the
termination condition to see if the game is over. If the game is not over, the game manager sends
the moves of the players to all players and the process repeats.

Once a game is determined to be over, the Game Manager sends a stop message to each player
with information about the last moves made by all players. The stop message allows players to
clean up any data structures for the match. The information about previous plays is supplied so
that players with learning components can profit from their experience.

Having stopped all players, the Game manager then computes the rewards for each player, stores
this information together with the play history in its database, and ceases operation.

1.5 Game Playing

Having a formal description of a game is one thing; being able to use that description to play the

game effectively is something else. In this section, we examine some of the problems of building
general game players and discuss strategies for dealing with these difficulties.

Let us start with automated reasoning. Since game descriptions are written in logic, it is obviously
necessary for a game player to do some degree of automated reasoning.

There are various choices here. (1) A game player can use the game description interpretively
throughout a game. (2) It can map the description to a different representation and use that
interpretively. (3) It can use the description to devise a specialized program to play the game. This
is effectively automatic programming.

The good news is that there are powerful reasoners for Logic freely available. The bad news is that
such reasoners do not, in and of themselves, solve the real problems of general game playing,
which are the same whatever representation for the game rules is used, viz. dealing with
indeterminacy and resource bounds.

The simplest sort of game is one in which there is just one player and the number of states and
actions is not too large. For such cases, traditional Al planning techniques are ideal. Depending on
the shape of the search space, the player can search either forward or backward to find a sequence
of actions / plays that convert the initial state into an acceptable goal state. Unfortunately, not all
games are so simple.

To begin with, there is the indeterminacy that arises in games with multiple players. Recall that the
succeeding state at each point in a game depends on the actions of all players, and remember that
no player knows the actions of the other players in advance. Of course, in some cases, it s
possible for a player to find sequences of actions guaranteed to achieve a goal state. However, this
1s quite rare. More often, it is necessary to create conditional plans in which a player's future
actions are determined by its earlier actions and those of the other players. For such cases, more
complex planning techniques are necessary.

Unfortunately, even this is not always sufficient. In some cases, there may be no guaranteed plan
at all, not even a conditional plan. Tic-Tac-Toe is a game of this sort. Although it can be won,
there is no guaranteed way to win in general. It is not really clear what to do in such situations.
The key to winning is to move and hope that the moves of the other players put the game into a
state from which a guaranteed win is possible. However, this strategy leaves open the question of
which moves to make prior to arrival at such a state. One can fall back on probabilistic reasoning.
However, this is not wholly satisfactory since there is no justifiable way of selecting a probability
distribution for the actions of the other players. Another approach, of primary use in directly
competitive games, is to make moves that create more search for the other players so that there is a
chance that time limitations will cause those players to err.

Another complexity is the existence of resource bounds. In Tic-Tac-Toe, there are approximately

5000 distinct states. This is large but manageable. In Chess there are more than 1070 states. A state
space of this size, being finite, is fully searchable in principle but not in practice. Moreover, the
time limit on moves in most games means that players must select actions without knowing for

sure whether they are any good.

In such cases, the usual approach is to conduct partial search of some sort, examining the game
tree to a certain depth, evaluating the possible outcomes at that point, and choosing actions
accordingly. Of course, this approach relies on the availability of an evaluation function for non-
terminal states that is roughly monotonic in the actual probability of achieving a goal. While, for

specific games, such as chess, programmers are able to build in evaluation functions in advance,
this is not possible for general game playing, since the structure of the game is not known in
advance. Rather, the game player must analyze the game itself in order to find a useful evaluation
function.

Another approach to dealing with size is abstraction. In some cases, it is possible to reformulate a
state graph into a more abstract state graph with the property that any solution to the abstract
problem has a solution when refined to the full state graph. In such cases, it may be possible to
find a guaranteed solution or a good evaluation function for the full graph. Various researchers
have proposed techniques along these lines, but more work is needed.

1.6 Discussion

While general game playing is a topic with inherent interest, work in this area has practical value
as well. The underlying technology can be used in a variety of other application areas, such as
business process management and computational law. In fact, many games used in competitions
are drawn from such areas.

General Game Playing is a setting within which Al is the essential technology. It certainly
concentrates attention on the notion of specification-based systems (declarative systems, self-
aware systems, and, by extension, reconfigurable systems, self-organizing systems, and so forth).
Building systems of this sort dates from the early years of Al.

It was in 1958 that John McCarthy invented the concept of the "advice taker". The idea was
simple. He wanted a machine that he could program by description. He would describe the
intended environment and the desired goal, and the machine would use that information in
determining its behavior. There would be no programming in the traditional sense. McCarthy
presented his concept in a paper that has become a classic in the field of Al.

The main advantage we expect the advice taker to have is that its behavior will be
improvable merely by making statements to it, telling it about its environment and
what is wanted from it. To make these statements will require little, if any, knowledge
of the program or the previous knowledge of the advice taker.

An ambitious goal! But that was a time of high hopes and grand ambitions. The idea caught the
imaginations of numerous subsequent researchers -- notably Bob Kowalski, the high priest of logic
programming, and Ed Feigenbaum, the inventor of knowledge engineering. In a paper written in
1974, Feigenbaum gave his most forceful statement of McCarthy's ideal.

The potential use of computers by people to accomplish tasks can be "one-
dimensionalized" into a spectrum representing the nature of the instruction that must
be given the computer to do its job. Call it the what-to-how spectrum. At one extreme
of the spectrum, the user supplies his intelligence to instruct the machine with
precision exactly how to do his job step-by-step. ... At the other end of the spectrum is
the user with his real problem. ... He aspires to communicate what he wants done ...
without having to lay out in detail all necessary subgoals for adequate performance.

Some have argued that the way to achieve intelligent behavior is through specialization. That may
work so long as the assumptions one makes in building such systems are true. For general
intelligence, however, general intellectual capabilities are needed, and such systems shoud be
capable of performing well in a wide variety of tasks. To paraphrase the words of Robert Heinlein.

A human being should be able to change a diaper, plan an invasion, butcher a hog,
conn a ship, design a building, write a sonnet, balance accounts, build a wall, set a
bone, comfort the dying, take orders, give orders, cooperate, act alone, solve
equations, analyze a new problem, pitch manure, program a computer, cook a tasty
meal, fight efficiently, die gallantly. Specialization is for insects.

It is our belief that general game playing offers an interesting application area within which
general Al can be investigated.

Problems

Problem 1.1: Consider the following games. (Information about the games can be found on
Wikipedia.)

Rubik's Cube Go Fish
Minesweeper Rock Paper Scissors
Diplomacy Speed (card game)
World of Warcraft Chess

Bughouse Chess Stratego

For each of the following combinations of features, select a game from this list that manifests
those features. (The classifications are not perfect in all cases.)

Players Information @ Moves Communication

Single Complete N/A N/A

Single Partial N/A N/A
Multiple Complete Simultaneous Yes
Multiple Complete Simultaneous No
Multiple Complete Alternating Yes
Multiple Complete Alternating No
Multiple Partial ~ Simultaneous Yes
Multiple Partial ~ Simultaneous No
Multiple Partial Alternating Yes
Multiple Partial Alternating No

Problem 1.2: Connect to Gamemaster at http://gamemaster.stanford.edu using your favorite
browser. Click the Games link and look at some of the games recorded there. Play a match of one
of the games. The point of the exercise is to become familiar with the practice of learning and
playing new games.

file:///ggp/problems/problem_01_01.html
http://en.wikipedia.org/wiki/Rubik
http://en.wikipedia.org/wiki/Minesweeper_(video_game)
http://en.wikipedia.org/wiki/Diplomacy_(game)
http://en.wikipedia.org/wiki/World_of_Warcraft
http://en.wikipedia.org/wiki/Bughouse_chess
http://en.wikipedia.org/wiki/Go_Fish
http://en.wikipedia.org/wiki/Rock-paper-scissors
http://en.wikipedia.org/wiki/Speed_(card_game)
http://en.wikipedia.org/wiki/Chess
http://en.wikipedia.org/wiki/Stratego
file:///ggp/problems/problem_01_02.html

