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ABSTRACT
General game players are computer systems able to play strategy games based solely on formal
game descriptions supplied at “runtime”. (In other words, they don’t know the rules until the game
starts.) Unlike specialized game players, such as Deep Blue, general game players cannot rely on
algorithms designed in advance for specific games; theymust discover such algorithms themselves.
General game playing expertise depends on intelligence on the part of the game player and not
just intelligence of the programmer of the game player.

GGP is an interesting application in its own right. It is intellectually engaging and more
than a little fun. But it is much more than that. It provides a theoretical framework for model-
ing discrete dynamic systems and defining rationality in a way that takes into account problem
representation and complexities like incompleteness of information and resource bounds. It has
practical applications in areas where these features are important, e.g., in business and law. More
fundamentally, it raises questions about the nature of intelligence and serves as a laboratory in
which to evaluate competing approaches to artificial intelligence.

is book is an elementary introduction to General Game Playing (GGP). (1) It presents
the theory of General Game Playing and leading GGP technologies. (2) It shows how to create
GGP programs capable of competing against other programs and humans. (3) It offers a glimpse
of some of the real-world applications of General Game Playing.
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Preface
General game players are computer systems able to play strategy games based solely on formal
game descriptions supplied at “runtime”. (In other words, they don’t know the rules until the game
starts.) Unlike specialized game players, such as Deep Blue, general game players cannot rely on
algorithms designed in advance for specific games; theymust discover such algorithms themselves.
General game playing expertise depends on intelligence on the part of the game player and not
just intelligence of the programmer of the game player.

General Game Playing (GGP) is an interesting application in its own right. It is intellec-
tually engaging and more than a little fun. But it is much more than that. It provides a theoretical
framework for modeling discrete dynamic systems and for defining rationality in a way that takes
into account problem representation and complexities like incompleteness of information and re-
source bounds. It has practical applications in areas where these features are important, e.g., in
business and law. More fundamentally, it raises questions about the nature of intelligence and
serves as a laboratory in which to evaluate competing approaches to artificial intelligence.

is book is an elementary introduction toGeneralGamePlaying. (1) It presents the theory
of GGP and leading GGP technologies. (2) It shows how to create GGP programs capable of
competing against other programs and humans. (3) It offers a glimpse of some of the real world
applications of General Game Playing.

Although the book is elementary, it does assume some basic background. First of all, readers
should be familiar with Symbolic Logic. Game descriptions are written in the language of Sym-
bolic Logic, and it helps to be able to read and write such descriptions. Second, readers should
be familiar with the concepts of computer programming. At the very least, they should be able
to read and understand program fragments written in modern programming languages. We use
Javascript in all of our examples. Javascript is fairly simple. If readers are familiar with languages
like Java and C, they should be able to read Javascript without any further training.

Before getting started, we want to acknowledge the contributions of various people. First of
all, there are the various students who over the years helped to craft the course, notably Nathaniel
Love, David Haley, Eric Schkufza, Evan Cox, Alex Landau, Peter Pham, Mirela Spasova, and
BertrandDecoster. Special mention goes to Sam Schreiber for maintaining theGGP configurable
player and the Java code base used by many students. He is also the creator and maintainer or
ggp.org, a website for all things GGP.

And thanks as well to the students who over the years have had to endure early versions
of this material, in many cases helping to get it right by suffering through experiments that were
not always successful. It is a testament to the intelligence of these students that they seem to
have learned the material despite multiple bumbling mistakes on our part. eir patience and
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constructive comments were invaluable in helping us to understand what works and what does
not.

Michael Genesereth and Michael ielscher
March 2014
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Introduction
1.1 INTRODUCTION

Games of strategy, such as Chess, couple intellectual activity with competition. We can exercise
and improve our intellectual skills by playing such games. e competition adds excitement and
allows us to compare our skills to those of others. e same motivation accounts for interest
in Computer Game Playing as a testbed for Artificial Intelligence. Programs that think better
should be able to win more games, and so we can use competitions as an evaluation technique for
intelligent systems.

Unfortunately, building programs to play specific games has limited value in AI. (1) To
begin with, specialized game players are very narrow. ey can be good at one game but not
another. Deep Blue may have beaten the world Chess champion, but it has no clue how to play
checkers. (2) A second problem with specialized game playing systems is that they do only part
of the work. Most of the interesting analysis and design is done in advance by their programmers.
e systems themselves might as well be tele-operated.

All is not lost. e idea of game playing can be used to good effect to inspire and evalu-
ate good work in Artificial Intelligence, but it requires moving more of the design work to the
computer itself. is can be done by focussing attention on General Game Playing.

General game players are systems able to accept descriptions of arbitrary games at runtime
and able to use such descriptions to play those games effectively without human intervention. In
other words, they do not know the rules until the games start.

Unlike specialized game players, such as Deep Blue, general game players cannot rely on
algorithms designed in advance for specific games. General game playing expertise must depend
on intelligence on the part of the game player and not just intelligence of the programmer of the
game player. In order to perform well, general game players must incorporate results from various
disciplines, such as knowledge representation, reasoning, and rational decision making; and these
capabilities have to work together in a synergistic fashion.

Moreover, unlike specialized game players, general game players must be able to play dif-
ferent kinds of games. ey should be able to play simple games (like Tic-Tac-Toe) and complex
games (like Chess), games in static or dynamic worlds, games with complete and partial infor-
mation, games with varying numbers of players, with simultaneous or alternating play, with or
without communication among the players, and so forth.



2 1. INTRODUCTION

1.2 GAMES

Despite the variety of games treated in General Game Playing, all games share a common ab-
stract structure. Each game takes place in an environment with finitely many states, with one
distinguished initial state and one or more terminal states. In addition, each game has a fixed,
finite number of players; each player has finitely many possible actions in any game state, and
each state has an associated goal value for each player. e dynamic model for general games is
synchronous update: all players move on all steps (although some moves could be “no-ops”), and
the environment updates only in response to the moves taken by the players.

Given this common structure, we can think of a game as a state graph, like the one shown
in Figure 1.1. In this case, we have a game with one player, with eight states (named s1, : : : , s8),
with one initial state (s1), with two terminal states (s4 and s8). e numbers associated with each
state indicate the values of those states. e arcs in this graph capture the transition function for
the game. For example, if the game is in state s1 and the player does action a, the game will move
to state s2. If the player does action b, the game will move to state s5.

Figure 1.1: State graph for a single-player game.

In the case of multiple players with simultaneous moves, the arcs become multi-arcs, with
one arc for each combination of the players’ actions. Figure 1.2 gives an example of a simultaneous
move game with two players. If in state s1 both players perform action a, we follow the arc labeled
a/a. If the first player does b and the second player does a, we follow the b/a arc. We also have
different goals for the different players. For example, in state s4, player 1 gets 100 points whereas
player 2 get 0 points; and, in state s8, the situation is reversed.

is conceptualization of games is an alternative to the traditional extensive normal form
definition of games in game theory. While extensive normal form is more appropriate for certain
types of analysis, the state-based representation has advantages in General Game Playing.
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Figure 1.2: State graph for a two-player game.

In extensive normal form, a game is modeled as a game tree. In a game tree, each node is
linked to successors by arcs corresponding to the actions legal in the corresponding game state.
While different nodes often correspond to different states, it is possible for different nodes to
correspond to the same game state. (is happens when different sequences of actions lead to the
same state.)

In state-based representation, a game is modeled as a graph in which nodes are in 1-1
correspondence with states. Moreover, all players’ moves are synchronous. (With extensions, ex-
tensive normal form can also represent simultaneous move games but with some added cost of
complexity.) Additionally, state-based representation makes it possible to describe games more
compactly, and it makes it easier for players to play games efficiently.

1.3 GAMEDESCRIPTION
Since all of the games that we are considering are finite, it is possible, in principle, to describe such
games in the form of state graphs. Unfortunately, such explicit representations are not practical
in all cases. Even though the numbers of states and actions are finite, these sets can be extremely
large; and the corresponding graphs can be larger still. For example, in Chess, there are thousands
of possible moves and more than 1030 states.

In the vast majority of games, states and actions have composite structure that allows us to
define a large number of states and actions in terms of a smaller number of more fundamental
entities. In Chess, for example, states are not monolithic; they can be conceptualized in terms of
pieces, squares, rows and columns and diagonals, and so forth.

By exploiting this structure, it is possible to encode games in a form that is more compact
than direct representation. Game Description Language (GDL) supports this by relying on a con-
ceptualization of game states as databases and by relying on logic to define the notions of legality
and so forth.
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As an example of GDL, let us look at the rules for the game of Tic-Tac-Toe. Note that
this example is intended as a brief glimpse at GDL, not a rigorous introduction to the language.
Full details of the language are given in the next chapter.

We begin with an enumeration of roles. ere are two players: white and black.

role(white)
role(black)

Next, we characterize the initial state. In this case, all cells are blank.

init(cell(1,1,b))
init(cell(1,2,b))
init(cell(1,3,b))
init(cell(2,1,b))
init(cell(2,2,b))
init(cell(2,3,b))
init(cell(3,1,b))
init(cell(3,2,b))
init(cell(3,3,b))
init(control(white))

Next, we define legality. A player may mark a cell if that cell is blank and it has control.
Otherwise, so long as there is a blank cell, the only legal action is noop, i.e., non-action. In
GDL, symbols that begin with capital letters are variables, while symbols that begin with lower
case letters are constants. e :- operator is read as “if ” - the expression to its left is true if the
expressions that follow it are true.

legal(W,mark(X,Y)) :-
true(cell(X,Y,b)) &
true(control(W))

legal(white,noop) :-
true(cell(X,Y,b)) &
true(control(black))

legal(black,noop) :-
true(cell(X,Y,b)) &
true(control(white))

Next, we look at the update rules for the game. A cell is marked with an x or an o if
the corresponding player marks that cell. If a cell contains a mark, it retains that mark on the
subsequent state. If a cell is blank and is not marked on that move, then it remains blank. Finally,
control alternates on each play.
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next(cell(M,N,x)) :-
does(white,mark(M,N)) &
true(cell(M,N,b))

next(cell(M,N,o)) :-
does(black,mark(M,N)) &
true(cell(M,N,b))

next(cell(M,N,W)) :-
true(cell(M,N,W)) &
distinct(W,b)

next(cell(M,N,b)) :-
does(W,mark(J,K)) &
true(cell(M,N,b)) &
distinct(M,J)

next(cell(M,N,b)) :-
does(W,mark(J,K)) &
true(cell(M,N,b)) &
distinct(N,K)

next(control(white)) :-
true(control(black))

next(control(black)) :-
true(control(white))

White gets a score of 100 points if there is a line of x’s and no line of o’s. It gets 0 points
if there is a line of o’s and no line of x’s. Otherwise, it gets 50 points. e rewards for Black are
analogous. e line relation is defined below.

goal(white,100) :- line(x) & ~line(o)
goal(white,50) :- ~line(x) & ~line(o)
goal(white,0) :- ~line(x) & line(o)

goal(black,100) :- ~line(x) & line(o)
goal(black,50) :- ~line(x) & ~line(o)
goal(black,0) :- line(x) & ~line(o)
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Supporting concepts. A line is a row of marks of the same type or a column or a diagonal.
A row of marks mean that’s there three marks all with the same first coordinate. e column and
diagonal relations are defined analogously.

line(Z) :- row(M,Z)
line(Z) :- column(M,Z)
line(Z) :- diagonal(Z)

row(M,Z) :-
true(cell(M,1,Z)) &
true(cell(M,2,Z)) &
true(cell(M,3,Z))

column(N,Z) :-
true(cell(1,N,Z)) &
true(cell(2,N,Z)) &
true(cell(3,N,Z))

diagonal(Z) :-
true(cell(1,1,Z)) &
true(cell(2,2,Z)) &
true(cell(3,3,Z))

diagonal(Z) :-
true(cell(1,3,Z)) &
true(cell(2,2,Z)) &
true(cell(3,1,Z))

Termination. A game terminates whenever there is a line of marks of the same type or if
the game is no longer open, i.e., there are no blank cells.

terminal :- line(x)
terminal :- line(o)
terminal :- ~open

open :- true(cell(M,N,b))

Note that, under the full information assumption, any of these relations can be assumed
to be false if it is not provably true. us, we have complete definitions for the relations legal,
next, goal, and terminal in terms of true and does. e true relation starts out identical to
init and on each step is changed to correspond to the extension of the next relation on that step.
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Although GDL is designed for use in defining complete information games, it can be
extended to partial information games relatively easily. Unfortunately, the resulting descriptions
are more verbose and more expensive to process.

1.4 GAMEMANAGEMENT

Game Management is the process of administering a game in a general game playing setting.
More properly, it should be called match management, as the issue is how to manage individual
matches of games, not the games themselves. However, everyone seems to use the phrase Game
Management, and so we are stuck with it.

e process of running a game goes as follows. Upon receiving a request to run a match,
the Game Manager’s first sends a startmessage to each player to initiate the match. Once game
play begins, it sends playmessages to each player to get their plays and simulates the results. is
part of the process repeats until the game is over. e Manager then sends stop messages to each
player.

e startmessage lists the name of the match, the role the player is to assume (e.g., white
or black in Chess), a formal description of the associated game (in GDL), and the start clock and
play clock associated with the match. e start clock determines how much time remains before
play begins. e play clock determines how much time each player has to make each move once
play begins.

Upon receiving a start message, each player sets up its data structures and does whatever
analysis it deems desirable in the time available. It then replies to the Game Manager that it is
ready for play.

Having sent the startmessage, the game manager waits for replies from the players. Once
it has received these replies OR once the start clock is exhausted, the Game Manager commences
play.

On each step, the Game Manager sends a play message to each player. e message in-
cludes information about the actions of all players on the preceding step. (On the first step, the
argument is nil.)

On receiving a play message, players spend their time trying to decide their moves. ey
must reply within the amount of time specified by the match’s play clock.

e Game Manager waits for replies from the players. If a player does not respond before
the play clock is exhausted, the Game Manager selects an arbitrary legal move. In any case, once
all players reply or the play clock is exhausted, the Game manager takes the specified moves or
the legal moves it has determined for the players and determines the next game state. It then
evaluates the termination condition to see if the game is over. If the game is not over, the game
manager sends the moves of the players to all players and the process repeats.

Once a game is determined to be over, the Game Manager sends a stop message to each
player with information about the last moves made by all players. e stopmessage allows players
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to clean up any data structures for the match. e information about previous plays is supplied so
that players with learning components can profit from their experience.

Having stopped all players, the Game Manager then computes the rewards for each player,
stores this information together with the play history in its database, and ceases operation.

1.5 GAMEPLAYING
Having a formal description of a game is one thing; being able to use that description to play the
game effectively is something else. In this section, we examine some of the problems of building
general game players and discuss strategies for dealing with these difficulties.

Let us start with automated reasoning. Since game descriptions are written in logic, it is
obviously necessary for a game player to do some degree of automated reasoning.

ere are various choices here. (1) A game player can use the game description interpretively
throughout a game. (2) It can map the description to a different representation and use that
interpretively. (3) It can use the description to devise a specialized program to play the game. is
is effectively automatic programming.

e good news is that there are powerful reasoners for Logic freely available. e bad news
is that such reasoners do not, in and of themselves, solve the real problems of general game play-
ing, which are the same whatever representation for the game rules is used, viz. dealing with
indeterminacy and resource bounds.

e simplest sort of game is one in which there is just one player and the number of states
and actions is not too large. For such cases, traditional AI planning techniques are ideal. Depend-
ing on the shape of the search space, the player can search either forward or backward to find a
sequence of actions / plays that convert the initial state into an acceptable goal state. Unfortu-
nately, not all games are so simple.

To begin with, there is the indeterminacy that arises in games with multiple players. Recall
that the succeeding state at each point in a game depends on the actions of all players, and remem-
ber that no player knows the actions of the other players in advance. Of course, in some cases, it
is possible for a player to find sequences of actions guaranteed to achieve a goal state. However,
this is quite rare. More often, it is necessary to create conditional plans in which a player’s future
actions are determined by its earlier actions and those of the other players. For such cases, more
complex planning techniques are necessary.

Unfortunately, even this is not always sufficient. In some cases, there may be no guaranteed
plan at all, not even a conditional plan. Tic-Tac-Toe is a game of this sort. Although it can be won,
there is no guaranteed way to win in general. It is not really clear what to do in such situations.
e key to winning is to move and hope that the moves of the other players put the game into a
state from which a guaranteed win is possible. However, this strategy leaves open the question of
which moves to make prior to arrival at such a state. One can fall back on probabilistic reasoning.
However, this is not wholly satisfactory since there is no justifiable way of selecting a probability
distribution for the actions of the other players. Another approach, of primary use in directly



1.6. DISCUSSION 9

competitive games, is to make moves that create more search for the other players so that there is
a chance that time limitations will cause those players to err.

Another complexity is the existence of resource bounds. In Tic-Tac-Toe, there are approx-
imately 5000 distinct states. is is large but manageable. In Chess there are more than 1030

states. A state space of this size, being finite, is fully searchable in principle but not in practice.
Moreover, the time limit on moves in most games means that players must select actions without
knowing for sure whether they are any good.

In such cases, the usual approach is to conduct partial search of some sort, examining the
game tree to a certain depth, evaluating the possible outcomes at that point, and choosing actions
accordingly. Of course, this approach relies on the availability of an evaluation function for non-
terminal states that is roughly monotonic in the actual probability of achieving a goal. While, for
specific games, such as Chess, programmers are able to build in evaluation functions in advance,
this is not possible for general game playing, since the structure of the game is not known in
advance. Rather, the game player must analyze the game itself in order to find a useful evaluation
function.

Another approach to dealing with size is abstraction. In some cases, it is possible to re-
formulate a state graph into a more abstract state graph with the property that any solution to
the abstract problem has a solution when refined to the full state graph. In such cases, it may be
possible to find a guaranteed solution or a good evaluation function for the full graph. Various
researchers have proposed techniques along these lines, but more work is needed.

1.6 DISCUSSION
While general game playing is a topic with inherent interest, work in this area has practical value
as well. e underlying technology can be used in a variety of other application areas, such as
business process management and computational law. In fact, many games used in competitions
are drawn from such areas.

General Game Playing is a setting within which AI is the essential technology. It certainly
concentrates attention on the notion of specification-based systems (declarative systems, self-
aware systems, and, by extension, reconfigurable systems, self-organizing systems, and so forth).
Building systems of this sort dates from the early years of AI.

It was in 1958 that John McCarthy invented the concept of the “advice taker”. e idea
was simple. He wanted a machine that he could program by description. He would describe
the intended environment and the desired goal, and the machine would use that information in
determining its behavior. ere would be no programming in the traditional sense. McCarthy
presented his concept in a paper that has become a classic in the field of AI.

emain advantage we expect the advice taker to have is that its behavior will be improv-
able merely by making statements to it, telling it about its environment andwhat is wanted
from it. To make these statements will require little, if any, knowledge of the program or
the previous knowledge of the advice taker.



10 1. INTRODUCTION

An ambitious goal! But that was a time of high hopes and grand ambitions. e idea caught
the imaginations of numerous subsequent researchers—notably Bob Kowalski, the high priest
of logic programming, and Ed Feigenbaum, the inventor of knowledge engineering. In a paper
written in 1974, Feigenbaum gave his most forceful statement of McCarthy’s ideal.

e potential use of computers by people to accomplish tasks can be “one-dimensionalized”
into a spectrum representing the nature of the instruction that must be given the computer
to do its job. Call it the what-to-how spectrum. At one extreme of the spectrum, the user
supplies his intelligence to instruct the machine with precision exactly how to do his job step-
by-step. : : : At the other end of the spectrum is the user with his real problem. : : :He aspires
to communicate what he wants done : : : without having to lay out in detail all necessary
subgoals for adequate performance.

Some have argued that the way to achieve intelligent behavior is through specialization.
at may work so long as the assumptions one makes in building such systems are true. For
general intelligence, however, general intellectual capabilities are needed, and such systems should
be capable of performing well in a wide variety of tasks. To paraphrase the words of Robert
Heinlein.

A human being should be able to change a diaper, plan an invasion, butcher a hog, conn a
ship, design a building, write a sonnet, balance accounts, build a wall, set a bone, comfort
the dying, take orders, give orders, cooperate, act alone, solve equations, analyze a new
problem, pitchmanure, program a computer, cook a tastymeal, fight efficiently, die gallantly.
Specialization is for insects.

It is our belief that general game playing offers an interesting application area within which
general AI can be investigated.

PROBLEMS
Problem 1.1: Consider the following games. (Information about the games can be found on
Wikipedia.)

Rubik’s Cube Go Fish
Minesweeper Rock Paper Scissors
Diplomacy Speed (card game)
World of Warcraft Chess
Bughouse Chess Stratego

For each of the following combinations of features, select a game from this list that manifests
those features. (e classifications are not perfect in all cases.)

http://arrogant.stanford.edu/ggp/problems/problem_01_01.html
http://en.wikipedia.org/wiki/Rubik
http://en.wikipedia.org/wiki/Go_Fish
http://en.wikipedia.org/wiki/Minesweeper_(video_game)
http://en.wikipedia.org/wiki/Rock-paper-scissors
http://en.wikipedia.org/wiki/Diplomacy_(game)
http://en.wikipedia.org/wiki/Speed_(card_game)
http://en.wikipedia.org/wiki/World_of_Warcraft
http://en.wikipedia.org/wiki/Chess
http://en.wikipedia.org/wiki/Bughouse_chess
http://en.wikipedia.org/wiki/Stratego
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Players Information Moves Communication
Single Complete N/A N/A
Single Partial N/A N/A

Multiple Complete Simultaneous Yes
Multiple Complete Simultaneous No
Multiple Complete Alternating Yes
Multiple Complete Alternating No
Multiple Partial Simultaneous Yes
Multiple Partial Simultaneous No
Multiple Partial Alternating Yes
Multiple Partial Alternating No

Problem 1.2: Connect to Gamemaster at using your favorite browser. Click the Games link and
look at some of the games recorded there. Play a match of one of the games. e point of the
exercise is to become familiar with the practice of learning and playing new games.

http://arrogant.stanford.edu/ggp/problems/problem_01_02.html
http://gamemaster.stanford.edu
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GameDescription
2.1 INTRODUCTION
e most significant characteristic of General Game Playing is that players do not know the rules
of games before those games begin. Game rules are communicated at runtime, and the players
must be able to read and understand the descriptions they are given in order to play legally and
effectively.

In general, game playing, information about games is typically communicated to players in
a formal language called Game Description Language, or GDL. is chapter is an introduction to
GDL and the issues that arise in using it to describe games.

We start the chapter with a review of Logic Programs. After this, we introduce the game
model underlying GDL, define the language, look at a sample game description, and look at the
use of this description in simulating a match of the game. We then talk about additional features
of games that ensure that they are interesting. Finally, we summarize the prefix syntax for GDL
used in most GGP competitions.

2.2 LOGIC PROGRAMS
GDL is a logic programming language. It is similar to other logic programming languages, such as
Prolog; but there are some important differences. (1) e semantics of GDL is purely declarative
(there are no procedural constructs like assert, retract, and cut). (2) GDL has restrictions that
assure that all questions of logical entailment are decidable. (3) ere are some reserved words
(described below), which tailor the language to the task of defining games.

Logic Programs are built up from four disjoint classes of symbols, viz. object constants, func-
tion constants, relation constants, and variables. In what follows, we write such symbols as strings
of letters, digits, and a few non-alphanumeric characters (e.g., “_”). Constants must begin with
a lower case letter or digit. Examples include a, b, 123, comp225, and barack_obama. Variables
must begin with an uppercase letter. Examples include X, Y, Z, Age14, and so forth.

A term is either an object constant, a variable, or a functional term, i.e., an expression
consisting of a function constant and n simpler terms. In what follows, we write functional terms
in traditional mathematical notation—the function constant followed by its arguments enclosed
in parentheses and separated by commas. For example, if f is a function constant, if a is an object
constant, and if Y is a variable, then f(a,Y) is a term. Functional terms can be nested within
other functional terms. For example, if f(a,Y) is a functional term, then so is f(f(a,Y),Y).
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An atom is an expression formed from a relation constant and n terms. As with functional
terms, we write atoms in traditional mathematical notation—the relation constant followed by
its arguments enclosed in parentheses and separated by commas. For example, if r is a relation
constant, if f is a function constant, if a is an object constant, and if Y is a variable, then r(a,Y)
is a term and so is r(a,f(a,Y)). Although functional terms can be used within functional terms
and within atoms, the reverse is not true—atoms cannot be nested inside of other atoms or inside
of functional terms.

A literal is either an atom or a negation of an atom. A simple atom is called a positive literal,
the negation of an atom is called a negative literal. In what follows, we write negative literals using
the negation sign ~. For example, if p(a,b) is an atom, then ~p(a,b) denotes the negation of
this atom.

A rule is an expression consisting of a distinguished atom, called the head, and a conjunction
of zero or more literals, called the body. e literals in the body are called subgoals. In what follows,
we write rules as in the example shown below. Here, q(X,Y) is the head; p(X,Y) & ~r(Y) is the
body; and p(X,Y) and ~r(Y) are subgoals.

q(X,Y) :- p(X,Y) & ~r(Y)

A logic program is a finite set of atoms and rules of this form. In order to simplify our
definitions and analysis, we occasionally talk about infinite sets of rules. While these sets are
useful, they are not themselves logic programs.

Note: e following few paragraphs provide additional details about the syntax and seman-
tics of logic programs. Readers who do not care about these technicalities at this point may want
to jump ahead to the example of computing the minimal model of a logic program later in this
section.

A rule in a logic program is safe if and only if every variable that appears in the head or
in any negative literal in the body also appears in at least one positive literal in the body. A logic
program is safe if and only if every rule in the program is safe.

e dependency graph for a logic program is a directed graph in which the nodes are the
relations in the program and in which there is an arc from one node to another if and only if the
former node appears in the body of a rule in which the latter node appears in the head. A program
is recursive if and only if there is a cycle in the dependency graph.

A negation in a logic program is said to be stratified if and only if there is no recursive
cycle in the dependency graph involving a negation. A logic program is stratified with respect to
negation if and only if there are no unstratified negations.

e recursion in a set of rules is said to be stratified if and only if every variable in every
subgoal relation (including the recursive relation) occurs in a subgoal involving a relation at a
lower stratum, i.e., either it is not recursive or its recursive cycle does not include the relation in
the head of the rule in which it occurs as a subgoal.
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In GDL, we concentrate exclusively on logic programs that are both safe and stratified with
respect to negation and recursion. While it is possible to extend the results here to programs that
are not safe and stratified, such extensions are beyond the scope of this work.

e Herbrand universe for a logic program is the set of all terms that can be formed from
the constants in the program’s schema. Said another way, it is the set of all objects constants and
all functional terms of the form f .t1; : : : ; tn/, where f is an n-ary function constant and t1; : : : ; tn
are elements of the Herbrand universe.

e Herbrand base for a logic program is the set of all atoms that can be formed from the
constants in the program’s schema. Said another way, it is the set of all sentences of the form
r.t1; : : : ; tn/, where r is an n-ary relation constant and t1; : : : ; tn are elements of the Herbrand
universe.

A dataset for a logic program is an arbitrary subset of the Herbrand base for the program.
A model of a logic program is a dataset that satisfies the program (as defined below).

An instance of a rule in a logic program is a rule in which all variables have been consistently
replaced by terms from the program’s Herbrand universe. Consistent replacement means that, if
one occurrence of a variable is replaced by a given term, then all occurrences of that variable are
replaced by the same term.

A dataset D satisfies a logic program P if and only if D satisfies every ground instance of
every sentence in P . e notion of satisfaction is defined recursively. An interpretationD satisfies
a ground atom p if and only if p is in D. D satisfies a negative ground literal ~p if and only if
p is not in D. D satisfies a ground rule pW �p1&:::&pn if and only if D satisfies p whenever it
satisfies p1; : : : ; pn.

In general, a logic program can have more than one model, which means that there can be
more than one way to satisfy the rules in the program. In order to eliminate ambiguity, we adopt
the minimal model approach to logic program semantics, i.e., we define the meaning of a safe
and stratified logic program to be its minimal model.

A modelD of a logic program P is minimal if and only if no proper subset ofD is a model
for P . A logic program that does not contain any negations has one and only one minimal model.
A logic program with negation may have more than one minimal model; however, if the program
is stratified, then once again there is only one minimal model. In general, models can be infinitely
large. However, if the program has stratified recursion, then it is guaranteed to be finite.

Computing the minimal model for a logic program is conceptually easy. We initialize our
dataset to the ground atoms in the program. We then look at the rules in the program. If there
is an instance of a rule whose body is satisfied by the atoms in our dataset, then we add the
corresponding instance of the head to the dataset.is process continues until it reaches a fixpoint,
i.e., there are no additional ground atoms added by any rule. It can be shown that this process
computes the unique minimal model for every logic program so long as it is safe and stratified
with respect to negation and recursion.



16 2. GAMEDESCRIPTION

As an example, consider the following logic program. We have a few facts about the parent
relation; we have a rule defining the grandparent relation in terms of parent; and we have two
rules defining ancestors in terms of parents.

parent(art,bob)
parent(art,bud)
parent(bob,cal)
parent(bob,coe)
parent(cal,dan)

grandparent(X,Z) :- parent(X,Y) & parent(Y,Z)

ancestor(X,Y) :- parent(X,Y)
ancestor(X,Z) :- ancestor(X,Y) & ancestor(Y,Z)

We start the computation by initializing our dataset to the five facts about parent.

parent(art,bob)
parent(art,bud)
parent(bob,cal)
parent(bob,coe)
parent(cal,dan)

Looking at the grandparent rule and matching its subgoals to the data in our dataset in all
possible ways, we see that we can add the following data.

grandparent(art,cal)
grandparent(art,coe)
grandparent(bob,dan)

Looking at the ancestor rule and matching its subgoals to the data in our dataset in all
possible ways, we get the following data.

ancestor(art,bob)
ancestor(art,bud)
ancestor(bob,cal)
ancestor(bob,coe)
ancestor(cal,dan)

With these additions, we can derive the following additional data.

ancestor(art,cal)
ancestor(art,coe)
ancestor(bob,dan)
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However, we are not done. Using the ancestor rule again, we can derive the following
additional datum.

ancestor(art,dan)

At this point, none of the rules when applied to this collection of data produces any results
that are not already in the set, and so the process terminates. e resulting collection of 17 facts
is the minimal model.

Logic programs as just defined are closed in that they fix the meaning of all relations in
the program. In open logic programs, some of the relations (the inputs) are undefined, and other
relations (the outputs) are defined in terms of these. e same program can be used with different
input relations, yielding different output relations in each case.

Formally, an open program is a logic program together with a partition of the relation con-
stants into two types—base relations (also called input relations) and view relations (also called
output relations). View relations can appear anywhere in the program, but base relations can ap-
pear only in the subgoals of rules, not in their heads.

e input base for an open logic program is the set of all atoms that can be formed from
the base relations of the program and the entities in the program’s domain. An input model is an
arbitrary subset of its input base.

e output base for an open logic program is the set of all atoms that can be formed from
the view relations of the program and the entities in the program’s domain. An output model is an
arbitrary subset of its output base.

Given an open logic program P and an input model D, we define the overall model cor-
responding to D to be the minimal model of P [D. e output model corresponding to D is
the intersection of the overall model with the program’s output base; in other words, it consists
of those sentences in the overall model that mention the output relations.

Finally, we define the meaning of an open logic program to be a function that maps each
input model for the program into the corresponding output model.

2.3 GAMEMODEL
eGDL model of games starts with entities and relations.Entities represent objects presumed or
hypothesized to exist in the game. Relations represent properties of those objects or relationships
among them.

In our examples here, we refer to entities and relations using strings of letters, digits, and
a few non-alphanumeric characters (e.g., “_”). For reasons described below, we prohibit strings
beginning with upper case letters; all other combinations are acceptable. Examples include x, o,
123, and white_king.

e set of all entities that can be used in a game is called the domain of the game. e set
of all relations in a game is called the signature of the game. In GDL, domains and signatures are
always finite (albeit in some cases very, very large).
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e arity of a relation is the number of objects involved in any instance of that relation.
Arity is an inherent property of a relation and never changes.

A game schema consists of a domain, a signature, and an assignment of arities for each of
the relations in the signature.

Given a game schema, we define a proposition to be a structure consisting of an n-ary relation
from the signature and n objects from the domain. In what follows, we write propositions using
traditional mathematical notation. For example, if r is a binary relation and a and b are entities,
then r(a,b) is a proposition.

e propositional base for a game is the set of all propositions that can be formed from the
relations and the entities in the game’s schema. For a schema with entities a and b and relations
p and q where p has arity 1 and q has arity 2, the propositional base is f p(a), p(b), q(a,a),
q(a,b), q(b,a), q(b,b) g.

InGDL, propositions are usually partitioned into disjoint classes, viz. base propositions and
effectory propositions (more commonly called actions). Base propositions represent conditions
that are true in the state of a game, and effectory propositions represent actions performed by
game players. (Later, in order to deal with partial information, we add sensory propositions (or
percepts) to this partition. For now, we ignore percepts.)

Before proceeding, let’s look at these concepts in the context of a specific game, viz. Tic-
Tac-Toe. As entities, we include white and black (the roles of the game), 1, 2, 3 (indices of rows
and columns on the Tic-Tac-Toe board), and x, o, b (meaning blank).

We use the ternary relation cell together with a row index and a column index and a mark
to designate the proposition that the cell in the specified row and column contains the specified
mark. For example, the datum cell(2,3,o) asserts that there is an o in the cell in row 2 and
column 3. We use the unary relation control to say whose turn it is to mark a cell. For example,
the proposition control(white) asserts that it is white’s turn.

In Tic-Tac-Toe, there only two types of actions a player can perform—it can mark a cell or
it can do nothing (which is what a player does when it is not his turn to mark a cell). e binary
relation mark together with a row m and a column n designates the action of placing a mark in
row m and column n. e mark placed there depends on who does the action. e 0-ary relation
noop refers to the act of doing nothing.

A state of a game is an arbitrary subset of the game’s base propositions. e propositions in
a state are assumed to be true whenever the game in is that state, and all others are assumed to be
false. For example, we can describe the Tic-Tac-Toe state shown below on the left with the set
of propositions shown on the right.

cell(1,1,x)
cell(1,2,b)
cell(1,3,b)
cell(2,1,b)
cell(2,2,o)
cell(2,3,b)
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cell(3,1,b)
cell(3,2,b)
cell(3,3,b)
control(white)

On each time step, each role in a game has one or more legal actions it can perform. e
actions on the left below are the legal moves for white in the state shown above. In this state,
black has only one legal action, viz. noop, as shown on the right.

mark(1,2)
mark(1,3)
mark(2,1)
mark(2,3)
mark(3,1)
mark(3,2)
mark(3,3)

noop

A move in a game corresponds to a list of actions, one for each role. As a move is per-
formed, some base propositions become true and others become false, leading to a new set of true
propositions and, consequently, a new state and possibly a new set of legal actions.

For every state and every move in a game, there is a unique next state. For example, starting
in the state shown below on the left, if the players perform the actions shown on the arrow, the
game will move to the state shown on the right.

cell(1,1,x) cell(1,1,x)
cell(1,2,b) cell(1,2,b)
cell(1,3,b) cell(1,3,b)
cell(2,1,b) cell(2,1,b)
cell(2,2,o) mark(3,3) cell(2,2,o)
cell(2,3,b) ) cell(2,3,b)
cell(3,1,b) noop cell(3,1,b)
cell(3,2,b) cell(3,2,b)
cell(3,3,b) cell(3,3,x)
control(white) control(black)

Every game is assumed to have a unique initial state and one or more terminal states. Every
state is also assumed to have a value for each player—the number of points the player gets if the
game terminates in that state. For example, the state on the right above is worth 100 points to
white and 0 points to black.
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A game starts in the initial state. e players select and execute legal actions in that state.
e game then moves on to the next state (based on the players’ actions). is process repeats
until the game enters a terminal state, at which point the game stops and the players are awarded
the number of points associated with the terminal state.

2.4 GAMEDESCRIPTIONLANGUAGE
In GDL, we fix the meanings of some words in the language for all games (the game-independent
vocabulary) while at the same time allowing game authors to use their own words for individual
games (the game-specific vocabulary).

ere are 101 game-independent object constants inGDL, viz. the base ten representations
of the integers from 0–100, inclusive, i.e., 0; 1; 2; : : : ; 100. ese are included for use as utility
values for game states, with 0 being low and 100 being high. GDL has no game-independent
function constants. However, there are ten game-independent relation constants, viz. the ones
shown below.

role(a) means that a is a role in the game.

input( r; a) means that a is a feasible action for role r .

base(p) means that p is a base proposition in the game.

init(p) means that the proposition p is true in the initial state.

true(p) means that the proposition p is true in the current state.

does(r,a) means that role r performs action a in the current state.

next(p) means that the proposition p is true in the next state.

legal(r,a) means it is legal for role r to play action a in the current state.

goal(r,n) means that player the current state has utility n for player r .

terminal means that the current state is a terminal state.

A GDL description is an open logic program with the following input and output relations.
(1) A GDL game description must give complete definitions for role, base, input, init. (2) It
must define legal and goal and terminal in terms of an input true relation. (3) It must define
next in terms of input true and does relations. Since does and true are treated as inputs, there
must not be any rules with either of these relations in the head.

We can describe these concepts abstractly. However, experience has shown that most people
learn their meaning more easily through examples. In the next section, we look at a definition of
one particular game, viz. Tic-Tac-Toe.
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2.5 GAMEDESCRIPTIONEXAMPLE
We begin with an enumeration of roles. In this case, there are just two roles, here called x and o.

role(white)
role(black)

We can characterize the propositions of the game as shown below.

base(cell(M,N,x)) :- index(M) & index(N)
base(cell(M,N,o)) :- index(M) & index(N)
base(cell(M,N,b)) :- index(M) & index(N)

base(control(white))
base(control(black))

We can characterize the feasible actions for each role in similar fashion.

input(R,mark(M,N)) :- role(R) & index(M) & index(N)
input(R, noop) :- role(R)

index(1)
index(2)
index(3)

Next, we characterize the initial state by writing all relevant propositions that are true in
the initial state. In this case, all cells are blank; and the x player has control.

init(cell(1,1,b))
init(cell(1,2,b))
init(cell(1,3,b))
init(cell(2,1,b))
init(cell(2,2,b))
init(cell(2,3,b))
init(cell(3,1,b))
init(cell(3,2,b))
init(cell(3,3,b))
init(control(white))

Next, we define legality. A player may mark a cell if that cell is blank and it has control.
Otherwise, the only legal action is noop.

legal(W,mark(X,Y)) :-
true(cell(X,Y,b)) &
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true(control(W))

legal(white,noop) :-
true(control(black))

legal(black,noop) :-
true(control(white))

Next, we look at the update rules for the game. A cell is marked with an x or an o if the
appropriate player marks that cell. If a cell contains a mark, it retains that mark on the subsequent
state. If a cell is blank and is not marked on that step, then it remains blank. Finally, control
alternates on each play.

next(cell(M,N,x)) :-
does(white,mark(M,N)) &
true(cell(M,N,b))

next(cell(M,N,o)) :-
does(black,mark(M,N)) &
true(cell(M,N,b))

next(cell(M,N,W)) :-
true(cell(M,N,W)) &
distinct(W,b)

next(cell(M,N,b)) :-
does(W,mark(J,K))
true(cell(M,N,b)) &
distinct(M,J)

next(cell(M,N,b)) :-
does(W,mark(J,K))
true(cell(M,N,b)) &
distinct(N,K)

next(control(white)) :-
true(control(black))

next(control(black)) :-
true(control(white))
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Goals. e white player gets 100 points if there is a line of x marks and no line of o marks.
If there are no lines of either sort, white gets 50 points. If there is a line of o marks and no line
of x marks, then white gets 0 points. e rewards for black are analogous. e line relation is
defined below.

goal(white,100) :- line(x) & ~line(o)
goal(white,50) :- ~line(x) & ~line(o)
goal(white,0) :- ~line(x) & line(o)

goal(black,100) :- ~line(x) & line(o)
goal(black,50) :- ~line(x) & ~line(o)
goal(black,0) :- line(x) & ~line(o)

Supporting concepts. A line is a row of marks of the same type or a column or a diagonal.
A row of marks mean that’s there three marks all with the same first coordinate. e column and
diagonal relations are defined analogously.

line(Z) :- row(M,Z)
line(Z) :- column(M,Z)
line(Z) :- diagonal(Z)

row(M,Z) :-
true(cell(M,1,Z)) &
true(cell(M,2,Z)) &
true(cell(M,3,Z))

column(N,Z) :-
true(cell(1,N,Z)) &
true(cell(2,N,Z)) &
true(cell(3,N,Z))

diagonal(Z) :-
true(cell(1,1,Z)) &
true(cell(2,2,Z)) &
true(cell(3,3,Z)) &

diagonal(Z) :-
true(cell(1,3,Z)) &
true(cell(2,2,Z)) &
true(cell(3,1,Z)) &
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Termination. A game terminates whenever either player has a line of marks of the appro-
priate type or if the board is not open, i.e., there are no cells containing blanks.

terminal :- line(W)
terminal :- ~open

open :- true(cell(M,N,b))

2.6 GAMESIMULATIONEXAMPLE
As an exercise in logic programming and GDL, let’s look at the outputs of the ruleset defined in
the preceding section at various points during an instance of the game.

To start, we can use the ruleset to compute the roles of the game. is is simple in the case
of Tic-Tac-Toe, as they are contained explicitly in the ruleset.

role(white)
role(black)

Similarly, we can compute the possible propositions. Remember that this gives a list of all
such propositions; only a subset will be true in any particular state.

base(cell(1,1,x)) base(cell(1,1,o)) base(cell(1,1,b))
base(cell(1,2,x)) base(cell(1,2,o)) base(cell(1,2,b))
base(cell(1,3,x)) base(cell(1,3,o)) base(cell(1,3,b))
base(cell(2,1,x)) base(cell(2,1,o)) base(cell(2,1,b))
base(cell(2,2,x)) base(cell(2,2,o)) base(cell(2,2,b))
base(cell(2,3,x)) base(cell(2,3,o)) base(cell(2,3,b))
base(cell(3,1,x)) base(cell(3,1,o)) base(cell(3,1,b))
base(cell(3,2,x)) base(cell(3,2,o)) base(cell(3,2,b))
base(cell(3,3,x)) base(cell(3,3,o)) base(cell(3,3,b))
base(control(white))
base(control(black))

We can also compute the relevant actions of the game. e extension of the input relation
in this case consists of the 20 sentences shown below.

input(white,mark(1,1))
input(white,mark(1,2))
input(white,mark(1,3))
input(white,mark(2,1))
input(white,mark(2,2))
input(white,mark(2,3))
input(white,mark(3,1))
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input(white,mark(3,2))
input(white,mark(3,3))
input(white,noop)

input(black,mark(1,1))
input(black,mark(1,2))
input(black,mark(1,3))
input(black,mark(2,1))
input(black,mark(2,2))
input(black,mark(2,3))
input(black,mark(3,1))
input(black,mark(3,2))
input(black,mark(3,3))
input(black,noop)

e first step in playing or simulating a game is to compute the initial state. We can do this
by computing the init relation. As with roles, this is easy in this case, since the initial conditions
are explicitly listed in the program.

init(cell(1,1,b))
init(cell(1,2,b))
init(cell(1,3,b))
init(cell(2,1,b))
init(cell(2,2,b))
init(cell(2,3,b))
init(cell(3,1,b))
init(cell(3,2,b))
init(cell(3,3,b))
init(control(white))

Once we have these conditions, we can turn them into a state description for the first step
by asserting that each initial condition is true.

true(cell(1,1,b))
true(cell(1,2,b))
true(cell(1,3,b))
true(cell(2,1,b))
true(cell(2,2,b))
true(cell(2,3,b))
true(cell(3,1,b))
true(cell(3,2,b))
true(cell(3,3,b))
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true(control(white))

Taking this input data and the logic program, we can check whether the state is terminal.
In this case, it is not.

We can also compute the goal values of the state; but, since the state is non-terminal, there
is not much point in doing that. However, the description does give us the following values.

goal(white,50)
goal(black,50)

More interestingly, using this state description and the logic program, we can compute legal
actions in this state (see below). e x player has nine possible actions (all marking actions), and
the o player has just one (noop).

legal(white,mark(1,1))
legal(white,mark(1,2))
legal(white,mark(1,3))
legal(white,mark(2,1))
legal(white,mark(2,2))
legal(white,mark(2,3))
legal(white,mark(3,1))
legal(white,mark(3,2))
legal(white,mark(3,3))
legal(black,noop)

Let’s suppose that the x player chooses the first legal action and the o player chooses its
sole legal action. is gives us the following dataset for does.

does(white,mark(1,1))
does(black,noop)

Now, combing this dataset with the state description above and the logic program, we can
compute what must be true in the next state.

next(cell(1,1,x))
next(cell(1,2,b))
next(cell(1,3,b))
next(cell(2,1,b))
next(cell(2,2,b))
next(cell(2,3,b))
next(cell(3,1,b))
next(cell(3,2,b))
next(cell(3,3,b))
next(control(black))
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To produce a description for the resulting state, we substitute true for next in each of
these sentences and repeat the process. is continues until we encounter a state that is terminal,
at which point we can compute the goals of the players in a similar manner.

2.7 GAMEREQUIREMENTS

e definitions in Section 2.4 constrain GDL to game descriptions from which it is possible to
compute the legal actions of all players for each state and from which it is possible to compute the
next state for each state from the actions of all players. However, there are additional constraints
that limit the scope of GDL to avoid problematic games.

Termination. A game description in GDL terminates if all infinite sequences of legal moves
from the initial state of the game reach a terminal state after a finite number of steps.

Playability. A game description in GDL is playable if and only if every role has at least one
legal move in every non-terminal state reachable from the initial state.

Winnability. A game description in GDL is strongly winnable if and only if, for some role,
there is a sequence of individual actions of that role that leads to a terminal state of the game
where that role’s goal value is maximal no matter what the other players do. A game description
in GDL is weakly winnable if and only if, for every role, there is a sequence of joint actions of all
roles that leads to a terminal state where that role’s goal value is maximal.

Well-formedness. A game description in GDL is well-formed if it terminates and is both
playable and weakly winnable.

In general, game playing, all well-formed single player games should be strongly winnable.
Clearly, it is possible to generate game descriptions in GDL which are not well formed. Checking
game descriptions to see if they are well formed can certainly be done in general by using brute-
force methods (exploring the entire game tree); and, for some games, faster algorithms may exist.
Game descriptions used in GGP competitions are always well-formed. However, in this book,
we occasionally look at games that are not well formed for reasons of simplicity or pedagogy.

2.8 PREFIXGDL

e version of GDL presented here uses traditional infix syntax. However, this is not the only
version of the language. ere is also a version that uses prefix syntax.

Although some general game playing environments support Infix GDL, it is not universal.
On the other hand, all current systems support Prefix GDL. Fortunately, there is a direct rela-
tionship between the two syntaxes, and it is easy to convert between them. ere are just a few
issues to worry about.

e first issue is the spelling of constants and variables. Prefix GDL is case-independent,
so we cannot use capital letters to distinguish the two. Constants are spelled the same in both
versions; but, in prefix GDL, we distinguish variables by beginning with the character ‘?’. us,
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the constant a is the same in both languages while the variable X in Infix GDL is spelled ?x or
?X in Prefix GDL.

e second issue in mapping between the formats is syntax of expressions. In Prefix GDL,
all expressions are lists of components separated by spaces and enclosed in parentheses. Also,
logical operators are spelled out. e following tables illustrates the mapping.

Infix GDL Prefix GDL
p(a,Y) (p a ?y)
~p(a,Y) (not (p a ?y))
p(a,Y) & p(Y,c) (and (p a ?y) (p ?y c))
q(Y) :- p(a,Y) & p(Y,c) (<= (q ?y) (and (p a ?y) (p ?y c)))
q(Y) :- p(a,Y) & p(Y,c) (<= (q ?y) (p a ?y) (p ?y c))

Finally, just to be clear on this, in Prefix GDL white space (spaces, tabs, carriage returns,
line feeds, and so forth) can appear anywhere other than in the middle of constants, variables, and
operator names. us, there can be multiple spaces between the components of an expression;
there can be spaces after the open parenthesis of an expression and before the operator or relation
constant or function constant; and there can be spaces after the last component of an expression
and the closing parenthesis.

PROBLEMS
Problem 2.1: Consider the game description shown below.
role(white) next(p) :- does(white,a) ~true(p)
role(black) next(p) :- ~does(white,a) & true(p)

next(q) :- does(white,b) & true(p)
base(p) next(q) :- does(white,c) & true(r)
base(q) next(q) :- ~does(white,b) ~does(white,c) & true(q)
base(r) next(r) :- does(white,c) & true(q)
base(s) next(r) :- ~does(white,c) & true(r)

action(a) goal(white,100) :- terminal
action(b) goal(white,0) :- ~terminal
action(c) goal(black,100) :- terminal
action(d) goal(black,0) :- ~terminal

init(s) terminal :- true(p) & true(q) & true(r)

legal(white,a)
legal(white,b)
legal(white,c)

http://arrogant.stanford.edu/ggp/problems/problem_02_01.html
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legal(black,d)

(a) How many roles are there?

(b) How many propositions are there?

(c) How many feasible actions are there?

(d) How many actions are legal for white in the initial state?

(e) How many propositions are true in the initial state?

(f ) How many are true in the state that results from white performing action a and black per-
forming action d in the initial state?

(g) What is the minimum number of steps this game can take to terminate?

Problem 2.2: More questions about the game in Problem 2.1.

(a) Does the game always terminate?

(b) Is the game playable?

(c) Is the game strongly winnable for white?

(d) Is the game weakly winnable for white?

(e) Is the game strongly winnable for black?

(f ) Is the game weakly winnable for black?

Problem 2.3: For each of the following pairs of expressions, say whether the expression on the
second line is a faithful translation of the expression on the first line into Prefix GDL.

(a) r(a,b) :- p(a) & q(b)
(<= (r a b) (and (p a) (q b)))

(b) r(a,b) :- p(a) & q(b)
(<= (r a b) (p a) (q b))

(c) r(x,y) :- p(x) & q(y)
(<= (r ?x ?y) (p ?x) (q ?y))

(d) r(X,Y) :- p(X) & q(Y)
(<= (r ?x ?y) (p ?x) (q ?y))

http://arrogant.stanford.edu/ggp/problems/problem_02_02.html
http://arrogant.stanford.edu/ggp/problems/problem_02_03.html
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C H A P T E R 3

GameManagement
3.1 INTRODUCTION
is chapter is an overview of game management. More properly, it should be called match man-
agement, as the issue is how to manage individual matches of games, not the games themselves.
We start with an overview of the General Game Playing ecosystem and the central role of the
Game Manager. We then discuss the General Game Playing communication protocol. Finally,
we see how it is used in a sample game.

3.2 GAMEMANAGEMENT
A diagram of a typical general game playing ecosystem is shown below. At the center of the
ecosystem is the game manager. e game manager maintains a database of game descriptions
andmatch records, and it maintains some temporary state for matches while they are running.e
game manager communicates with game players. It also provides a user interface for users who
want to schedule matches, and it provides graphics for spectators watching matches in progress.

Graphics for 
Spectators

Game Manager

Player

Temporary
State Data

Game
Descriptions

Match
Records

Tcp/ip
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3.3 GAMECOMMUNICATIONLANGUAGE
Communication between the Game Manager and game players takes place through HTTP
connections. e communication model assumes that each player is running on an Internet-
connected host listening on a particular port. HTTP messages sent to players have the standard
HTTP header, with content type text/acl.

In the current GGP communication language, there are five types of messages used for
communication between the Game Manager and game players.

(1) An infomessage is used to confirm that a player is up and running. e general form is shown
below.

info()

Upon receipt of an info message, a player is expected to return available if it is ready to
receive messages. Otherwise, it should return busy. It may also return arbitrary information about
itself as a sequence of pairs of type and value, e.g., [[name,egghead],[status,available]].

(2) A start message is used to initialize an instance of a game. e general form of a start
message is shown below. e message begins with the keyword start, and this is followed by
five arguments, viz. a match identifier (a sequence of alphanumeric characters beginning with
a lowercase letter), a role for the player to play (chosen from the roles mentioned in the game
description), a list of game rules (written as sentences in GDL), a start clock (in seconds), and a
play clock (also in seconds).

start(id, role, description, startclock, playclock)

Upon receipt of a start message, a player should prepare itself to play the match. Once
it is done, it should reply ready to tell the Game Manager that it is ready to begin the match.
e GGP protocol requires that the player reply before startclock seconds have elapsed. If the
Game Manager has not received a reply by this time, it will proceed on the assumption that the
player is ready.

(3) A playmessage is used to request a move from a player. e general form of the playmessage
is shown below. It includes an identifier for the match and a record of the moves of all players on
the preceding step. e order of the moves in the record is the same as the order of roles in the
game description. On the first request, where there is no preceding move, the move field is nil.

play(id, move)

Upon receipt of a play message, a player uses the move information to update its state as
necessary. It then computes its next move and returns that as answer. e GGP protocol requires
that the player reply before playclock seconds have elapsed. If the Game Manager has not
received a reply by this time, it substitutes an arbitrary legal move.
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(4) A stopmessage is used to tell a player that a match has reached completion. e general form
of the stop message is shown below.

stop(id, move)

Upon receipt of a stop message, a player can clean up after playing the match. e move is
sent along in case the player wants to know the move that terminated the game. After finishing
up, the player should return done.

(5) An abort message is used to tell a player that a match is terminating abnormally. It differs
from a stop message in that the match need not be in a terminal state.

abort(id)

Upon receipt of an abort message, a player can eliminate any data structures and return to
a ready state. Once it is finished, it should return done.

3.4 GAMEPLAY
e process of running a match goes as follows. Upon receiving a request to run a match, the
Game Manager first sends a start message to each player to initiate the match. Once game play
begins, the manager sends play messages to each player to get their plays; and it then simulates
the results. is part of the process repeats until the game is over. e Manager then sends a stop
message to each player.

Here is a sample of messages for a quick game of Tic-Tac-Toe. e game manager initiates
the match by sending a start message to all of the players, each with a different role. e players
then respond with ready. ey can respond immediately or they can wait until the start clock is
exhausted before responding.

Game Manager to Player x: start(m23,x,[role(x),role(o),...],10,10)
Game Manager to Player y: start(m23,y,[role(x),role(o),...],10,10)
Player x to Game Manager: ready
Player y to Game Manager: ready

Play begins after all of the players have responded or after the start clock has expired,
whichever comes first. e manager initiates play by sending a play message to all of the players.
Since this is the first move and there are no previous moves, the move argument in the play
message is nil. In this case, the first player responds with the action mark(1,1), one of its nine
legal actions; and the second player responds with noop, its only legal action.

Game Manager to Player x: play(m23,nil)
Game Manager to Player y: play(m23,nil)
Player x to Game Manager: mark(1,1)
Player y to Game Manager: noop
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e Game Manager checks that these actions are legal, simulates their effects, updates the
state of the game, and then sends play messages to the players to solicit their next actions. e
second argument in the play message this time is a list of the actions received in response to the
preceding play message. On this step, the first player responds with noop, its only legal action;
and the second player responds with mark(1,2). is is a legal move, but it is not a wise move,
as the game is now strongly winnable by the first player.

Game Manager to Player x: play(m23,[mark(1,1),noop])
Game Manager to Player y: play(m23,[mark(1,1),noop])
Player x to Game Manager: noop
Player y to Game Manager: mark(1,2)

Again, theGameManager checks legality, simulates themove, updates its state, and sends a
playmessage requesting the players’ next actions. e first player takes advantage of the situation
and plays mark(2,2) while the second player does noop.

Game Manager to Player x: play(m23,[noop,mark(1,2)])
Game Manager to Player y: play(m23 [noop,mark(1,2)])
Player x to Game Manager: mark(2 2)
Player y to Game Manager: noop

ere is not much the second player can do in this situation to save itself. Instead of staving
off the immediate loss, it plays mark(1,3), while the first player does noop.

Game Manager to Player x: play(m23,[mark(2,2),noop])
Game Manager to Player y: play(m23,[mark(2,2),noop])
Player x to Game Manager: noop
Player y to Game Manager: mark(1,3)

e Game Manager again simulates, updates, and requests a move. In this case, the first
player goes in for the kill, playing mark(3,3).

Game Manager to Player x: play(m23,[noop,mark(1,3)])
Game Manager to Player y: play(m23,[noop,mark(1,3)])
Player x to Game Manager: mark(3,3)
Player y to Game Manager: noop

With this move, the game is over. As usual, in such cases, theManager lets the players know
by sending a suitable stop message. It then stores the results in its database for future reference
and terminates.
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Game Manager to Player x: stop(m23,[mark(3,3),noop])
Game Manager to Player y: stop(m23,[mark(3,3),noop])
Player x to Game Manager: done
Player y to Game Manager: done

Note that the Game Manager sends slightly different startmessages to the different play-
ers. Everything is the same except for the role that each player is asked to play. In all other ways,
the messages sent to the players are identical. In advanced versions of the General Game Playing
protocol, this symmetry is broken. e Game Manager can send different game descriptions to
different players. And it can tell different players different information in the play and stop
messages.

PROBLEMS

Problem 3.1: Consider the game of Tic-Tac-Toe given in the preceding chapter. Assume that
a Game Manager has sent start messages to the players of a match with name m23 and with
the rules from the preceding chapter as game description; and assume that the players have just
replied that they are ready to play. Which of the following is the correct message for the Manager
to send to the players next?

(a) play()
(b) play(m23)
(c) play(m23,nil)
(d) play(m23,noop)
(e) play(m23,[mark(1,1),noop])

Problem 3.2: Consider the game of Tic-Tac-Toe given in the preceding chapter. Assume that the
game is in the state shown on the left below, and assume that the manager has just received the
action mark(2,2) from the first player and the action noop from the second player. Which of
the messages shown on the right is the correct message to send to the first player?

(a) play()
(b) play(m23)
(c) play(m23,mark(2,2))
(d) play(m23,noop)
(e) play(m23,[mark(2,2),noop])

Problem 3.3: Consider the game of Tic-Tac-Toe given in the preceding chapter. Assume that the
game is in the state shown on the left below, and assume that the manager has just received the

http://arrogant.stanford.edu/ggp/problems/problem_03_01.html
http://arrogant.stanford.edu/ggp/problems/problem_03_02.html
http://arrogant.stanford.edu/ggp/problems/problem_03_03.html
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action mark(2,2) from the first player and the action noop from the second player. Which of
the messages shown on the right is a correct message to send to the first player.

(a) play(m23)
(b) play(m23,[mark(2,2),noop])
(c) play(m23,[mark(1,3),noop])
(d) stop(m23,[mark(2,2),noop])
(e) abort(m23)
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C H A P T E R 4

Game Playing
4.1 INTRODUCTION

e simplest sort of general game player is one that explores the game tree implicit in a game
description. In this chapter, we talk about some infrastructure that frames the problem more
precisely. We then consider a couple of search-free uses of this infrastructure, viz. legal players and
random players. In Chapters 5–8, we look at complete search techniques (which are appropriate
for small game trees) as well as incomplete search techniques (which are necessary for very large
game trees). In Chapters 9–12, we examine some game playing techniques based on properties
of states. Finally, in Chapters 13–16, we show ways that game descriptions can be used to deduce
general properties of games without explicitly enumerating states or properties.

4.2 INFRASTRUCTURE

A game player is typically implemented as a web service. e service receives messages from a
Game Manager and replies appropriately. Building a player means writing event handlers for the
different types of messages in the GGP communication protocol.

To make things concrete, let us assume that we have at our disposal a code base that (1) in-
cludes a listener to call these event handlers on receipt of messages from a Game Manager and
(2) includes subroutines for processing game descriptions and match data. Our job in building
a player is to use the available subroutines to implement event handlers for the various GGP
messages.

Once running, the listener enters a loop listening for messages from a Game Manager.
Upon receipt of amessage, the listener calls the appropriate handler.When the handler is finished,
the listener sends the returned value to the Game Manager. e handlers called by the listener
are listed below.

info()

start(id, role, rules, startclock, playclock)

play(id, move)

stop(id, move)

abort(id)



38 4. GAMEPLAYING

In order to facilitate the implementation of thesemessage handlers, we assume that our code
base contains definitions for the subroutines described below.ere are subroutines for computing
most of the components of a match.

findroles(game) - returns a sequence of roles.

findpropositions(game) - returns a sequence of propositions.

findactions(role, game) - returns a sequence of actions for a specified role.

findinits(game) - returns a sequence of all propositions that are true in the initial state.

findlegalx(role, state, game) - returns the first action that is legal for the specified role in the
specified state.

findlegals(role, state, game) - returns a sequence of all actions that are legal for the specified
role in the specified state.

findnext(roles, move, state, game) - returns a sequence of all propositions that are true in the
state that results from the specified roles performing the specified move in the specified state.

findreward(role, state, game) - returns the goal value for the specified role in the specified
state.

findterminalp(state, game) - returns a boolean indicating whether the specified state is ter-
minal.

at’s it. As mentioned above, our job is to use these subroutines to write the handlers
called by the listener. In the remainder of this chapter, we look at a couple of simple approaches
to doing this.

4.3 CREATINGALEGALPLAYER

A legal player is the simplest form of game player. In each state, a legal player selects an action
based solely on its legality, without consideration of the consequences. Typically, the choice of
action is consistent—it selects the same action every time it finds itself in the same state. (In this
way, a legal player differs from a random player, which selects different legal actions on different
occasions.)

Legal play is not a particularly good general game playing strategy. However, it is a worth-
while exercise to build a legal player (and a random player) just to get familiar with the concepts
described above and to have a basis of comparison for more intelligent players.

Using the basic subroutines provided in the GGP starter pack, building a legal player is
very simple. We start by setting up some global variables to maintain information while a match
is in progress. (Properly, we should create a data structure for each match; and we should attach
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these values to this data structure. However, we are striving for simplicity of implementation in
these notes. is does not mean that you should do the same.)

var game;
var role;
var roles;
var state;

Next, we define a handler for each type of message.e info handler simply returns ready.

function info ()
{return 'ready'}

e start event handler assigns values to game and role based on the incoming start
message; it initializes state; and it then returns ready, as required by the GGP protocol.

function start (id,player,rules,sc,pc)
{game = rules;
role = player;
roles = findroles(game);
state = findinits(game);
return 'ready'}

e play event handler takes a match identifier and a move as arguments. It first uses
the simulate subroutine to compute the current state. If the move is nil, then this is the initial
state, and the player uses findinits to compute the state based on the initial conditions supplied
in the game description. Otherwise, it uses findnexts to compute the state resulting from the
preceding state and the actions supplied in the move. Once our player has the latest state, it uses
findlegalx to compute a legal move.

function play (id,move)
{state = simulate(move,state);
return findlegalx(role,state,game)}

function simulate (move,state)
{if (move == 'nil') {return state};
return findnexts(roles,move,state,game)}

e stop event handler for our legal player does nothing. It ignores the inputs and simply
returns done as required by the GGP protocol.
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function stop (id,move)
{return 'done'}

Like the stopmessage handler, the abortmessage handler for our player also does nothing.
It simply returns done.

function abort (id)
{return 'done'}

Just to be clear on how this works, let’s work through a short Tic-Tac-Toe match. When a
player is initialized, it sets up data structures to hold the game description, the role, and the state.
ese are initially empty.

Let’s assume that our player receives a start message from a Game Manager of the sort
shown below. e match identifier is m23. Our player is asked to be the x player. ere are the
usual axioms of Tic-Tac-Toe. e start clock and play clock are both 10 s.

start(m23, white, [role(white),role(black),...], 10, 10)

On receipt of this message, our listener calls the start handler.is sets the global variables
accordingly. e returned value ready is then sent back to the Game Manager.

Once the Game Manager is ready, it sends a suitable playmessage to all players. See below.
Here we have a request for each player to choose an action for match m23. e argument nil
signifies that this is the first step of the match.

play(m23,nil)

On receipt of this message, our listener invokes the play handler with the arguments passed
to it by theGameManager. Since the move is nil, our player computes the current state by calling
findinits on the game description. is results in the dataset shown below.

true(cell(1,1,b))
true(cell(1,2,b))
true(cell(1,3,b))
true(cell(2,1,b))
true(cell(2,2,b))
true(cell(2,3,b))
true(cell(3,1,b))
true(cell(3,2,b))
true(cell(3,3,b))
true(control(white))
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Using this state, together with the role and game description associated with this match,
our player then computes the first legal move, i.e., mark(1,1) and returns that as answer.

e Game Manager checks that the actions of all players are legal, simulates their effects
and updates the state of the game, and then sends play messages to the players to solicit their
next actions. In this case, our player would receive the message shown below.

play(m23,[mark(1,1),noop])

Again, our player invokes its play handler with the arguments passed to it by the Game
Manager. is time, the move is not nil, and so our player uses findnexts to compute the next
state. is results in the dataset shown below.

true(cell(1,1,x))
true(cell(1,2,b))
true(cell(1,3,b))
true(cell(2,1,b))
true(cell(2,2,b))
true(cell(2,3,b))
true(cell(3,1,b))
true(cell(3,2,b))
true(cell(3,3,b))
true(control(black))

Using this state, our player then computes the first legal move, its only legal move, viz.
noop, and returns that as answer.

is process then repeats until the end of the game, at which point our player receives a
message like the one shown below.

stop(m23,[mark(3,3),noop])

While some players are able to make use of the information in a stop message, our legal
player simply ignores this information and returns done, terminating its activity on this match.

4.4 CREATINGARANDOMPLAYER
A random player is similar to a legal player in that it selects an action for a state based solely on its
legality, without consideration of the consequences. A random player differs from a legal player in
that it does not simply take the first legal move it finds but rather selects randomly from among
the legal actions available in the state, usually choosing a different move on different occasions.
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e implementation of a random player is almost identical to the implementation of a legal
player. e only difference is in the play handler. In selecting an action, our player first computes
all legal moves in the given state and then randomly selects from among these choices (using the
randomelement subroutine). One way of writing the code for the play handler is shown below.

function play (id,move)
{state = simulate(move,state);
var actions=findlegals(role,state,game);
return randomelement(actions)}

Random players are no smarter than legal players. However, they often appear more in-
teresting because they are unpredictable. Also, they sometimes avoid traps that befall consistent
players like legal, which can sometimes maneuver themselves into a corner and be unable to
escape. ey are also used as standards to show that general game players or specific methods
perform better than chance.

A random player consumes slightly more compute time than a legal player, since it must
compute all legal moves rather than just one. For most games, this is not a problem; but for games
with a large number of possible actions, the difference can be noticeable.
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C H A P T E R 5

Small Single-Player Games
5.1 INTRODUCTION
We start our tour of general game playing by looking at single-player games. In the game-playing
community, these are often called puzzles rather than games; and the process of solving such
puzzles is often called problem-solving rather than game-playing.

Puzzles are simpler than multiple-player games because everything is under the control of
the single player. e world is static, except when the player acts; and changes to the world are
determined entirely by the current state and the actions of the player.

In this chapter, as in most of this book, we assume that the player has complete information
about the game. We assume that it knows the initial state; it knows all of its legal actions in every
state; it knows the effects of its actions in every state; for every state, it knows its reward; and, for
every state, it knows whether or not it is terminal.

In this chapter, we also assume the games are small, i.e., they are small enough so that there
is sufficient time for the player to search the entire game tree. is guarantees that the player can
find optimal actions to perform. at said, as we shall see, it is sometimes possible to find optimal
actions even without searching the entire game tree.

Despite these strong assumptions (just one player, complete information, and the avail-
ability of adequate time to search the game tree), the study of single player games is a good place
to start our look at general game playing. First of all, many real-world problems can be cast as
single-player games with these same restrictions. More importantly for us, as we shall see, the
techniques we examine later can be viewed as more elaborate versions of the basic techniques
introduced here.

We begin this chapter with an example of a single-player game that we use throughout the
chapter. We then look at two different approaches to single-player game playing.

5.2 8-PUZZLE
e 8-puzzle is a sliding tile puzzle. e game board is a 3 � 3 square with numbered tiles in all
but one of the cells. See the example shown below.
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e state of the game is modified by sliding numbered tiles into the empty space from
adjacent cells, thus moving the empty space to a new location. ere are four possible moves—
moving the empty space up, down, left, or right. Obviously, not all moves are possible in all states.
e states shown on the left and right below illustrate the possible moves from the state shown
in the center.

4 1 3

2 5

7 8 6

down

1 3

4 2 5

7 8 6

right

1 3

4 2 5

7 8 6

e ultimate object of the game is to place the tiles in order and position the empty square
in the lower right cell. See below.

1 2 3

4 5 6

7 8

e game terminates after eight moves or when all of the tiles are in the right positions,
whichever comes first. Partial credit is given for states that approximate the ultimate goal, with
10 points being allocated for each numbered tile in the correct position and 20 points being
allocated for having the empty tile in the correct position. For example, the initial state shown
above, the one in the middle, is worth 40 points; and the goal state is worth 100 points.
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5.3 COMPULSIVEDELIBERATION

CompulsiveDeliberation is a particularly simple approach to game playing.On each step, the player
examines the then-current game tree to determine its best move for that step; and it makes this
move. It repeats this process on the next step and so forth until the end of the game.

In pure compulsive deliberation, each step of the computation is independent of every other
step. No data computed during any step is accessible on subsequent steps. e player treats each
step as if it were a new game. is is obviously wasteful, but it does not hurt so long as there is
enough time to do the repeated calculations. We start with this method because it is simple to
understand and at the same time serves as a template for the more sophisticated, less wasteful
methods to come.

e following procedure is a simple implementation of compulsive deliberation. On receipt
of a play message, the player simulates the specified move as usual. It then computes all of its legal
actions in this new state and iterates through these actions comparing the score of each to the best
score found so far. If it ever finds an action that guarantees a reward of 100, it stops and returns
that action. Otherwise, it retains the highest score and action and returns the corresponding action
when it is done.

function play (id,move)
{state = simulate(move,state);
return bestmove(role,state)}

function bestmove (role, state)
{var actions = findlegals(role,state,game);
var action = actions[0];
var score = 0;
for (var i=0; i<actions.length; i++)

{var result = maxscore(role,simulate([actions[i]]),state));
if (result==100) {return actions[i]};
if (result>score) {score = result; action = actions[i]}};

return action}

Recall that every game has a unique reward for each player in each state. e reward is
a perfect measure of utility for terminal states. Unfortunately, in general, the rewards for non-
terminal states do not always correlate with the rewards for terminal states; and so they are not
necessarily useful in defining the scores of non-terminal states.

State utility is a measure of utility that is relevant for both terminal states and non-terminal
states. By definition, the utility of a state for a player is defined as being the best reward the player
can guarantee for itself by any sequence of legal moves starting in the given state.
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One way to determine the utility of a state is by computing all sequences of legal actions
that lead from the given state to a terminal state and taking the maximum reward for the terminal
state resulting from each such sequence.

e following procedure computes the same score in a slightly simpler manner. e pro-
cedure takes a player and a state as arguments and returns the corresponding utility as score. e
procedure computes the score via a recursive exploration of the game tree. If the state supplied as
argument is terminal, the output is just the player’s reward for that state. Otherwise, the output is
the maximum of the utilities of the states resulting from executing any of the player’s legal actions
in the given state.

function maxscore (role,state)
{if (findterminalp(state,game))

{return findreward(role,state,game)};
var actions = findlegals(role,state,game);
var score = 0;
for (var i=0; i<actions.length; i++)

{var result = maxscore(role,simulate([actions[i]],state));
if (result>score) {score = result}};

return score}

Since all games in GGP competitions terminate, this procedure always halts; and it is easy
to see that it produces the utility for the specified role in the specified state.

5.4 SEQUENTIAL PLANNING
Compulsive deliberation is wasteful in that computations are repeated unnecessarily.Once a player
is able to find a path to a terminal state with maximal reward, it should not have to repeat that
computation on every step. Sequential planning is the antithesis of compulsive deliberation in
which no work is repeated. Once a sequential planner finds a good path, it simply saves the
sequence of actions along that path and then executes the actions step by step until the game is
done without any further deliberation.

A sequential plan for a single player game is any sequence of feasible actions. A sequential
plan is legal if and only if every action in the sequence is legal in the state in which that action is
performed. A plan is complete if and only if it leads from the initial state of the game to a terminal
state. A plan is minimal if and only if none of the intermediate states is terminal.

Consider the 8-puzzle game described above. e sequential plans shown below are all
legal, complete, and minimal. e actions in the sequences shown are all legal. Each leads from
the initial state to a terminal state. And none of the intermediate states produced during the
execution is terminal.



5.4. SEQUENTIAL PLANNING 47

[right,down,right,down]
[right,down,left,right,right,down]
[right,down,left,right,left,right,right,down]

Note that this definition does not require that the sequence of actions produces the best
possible result. is allows us to compare good plans and bad plans. We say that one sequential
plan is better than another if and only if the reward associated with the first plan is greater than
the reward associated with the second plan; and we define a sequential plan to be optimal if and
only if there is no better sequential plan.

e table below shows that rewards associated with the plans shown above. Clearly, the
second plan is better than the first, and the last three plans are optimal.

[right,left,right,left,right,left,right,left] 40
[right,right,left,right,left,right,left,right] 50
[right,down,right,down] 100
[right,down,left,right,right,down] 100
[right,down,left,right,left,right,right,down] 100

Sequential planning is the process of finding sequential plans. A sequential planner is said
to be admissible if and only if it returns an optimal sequential plan.

A sequential planning player is one that produces an optimal sequential plan and then ex-
ecutes the steps of that plan during game play. e planning is usually done during the start-up
period of the game, but it can also be done during regular game play. It is also possible to mix
sequential planning with other techniques. For example, in the case of large games, a player might
play randomly during the initial part of a game and then switch to sequential planning once the
game tree becomes small enough. Of course, in this last case, the player’s ability to succeed de-
pends on the strategy used before sequential planning commences.

Definitions for the basic methods for pure sequential planning are shown below. e start
method invokes a procedure, called bestplan, to produce a sequential plan and stores this plan
for later use. On each play of the game, the player performs the corresponding action in the plan.
e stop and abort methods are the same as for the other players we have seen thus far.

var plan;
var step;

function start (id,player,rules,start,play)
{game = rules;
role = player;
roles = findroles(game);
state = findinits(game);



48 5. SMALL SINGLE-PLAYERGAMES

plan = bestplan(role,state)[1];
step = 0;
return `ready'}

function play (id,move)
{var action = plan[step];
step = step + 1;
return action}

A depth-first search is conceptually the simplest approach to sequential planning. e pro-
cedure takes a player and a state as arguments and returns the corresponding utility and plan as
value. e procedure takes the form of a recursive exploration of the game tree. If the state sup-
plied as argument is terminal, the output is just the player’s reward for that state and the empty
plan. Otherwise, the output is the maximum of the utilities of the states resulting from executing
any of the player’s legal actions in the given state and the corresponding plan.

function bestplan (role,state)
{if (terminalp(state)) {return seq(findreward(role,state,game),[])};
var actions = findlegals(role,state,game);
var result = bestplan(role,findnext(roles,[actions[0]],state,game));
var score = result[0];
var plan = result[1];
plan[plan.length] = actions[0];
for (var i=1; i<actions.length; i++)
{var result = bestplan(role,findnext(roles,[actions[i]],state,game));

if (result[0]>score}
{score = result[0];
plan = result[1];
plan[plan.length] = actions[i]};

return seq(score,plan)}

Note that this procedure may not produce the shortest plan. However, it is guaranteed to
produce an optimal plan as defined above.
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PROBLEMS

Problem 5.1: What is the reward associated with each of the 8-Puzzle states shown below?

(a)

1 2

3 4 5

6 7 8

 (b)

1 2 3

4 5

6 7 8

(c)

1 3

4 2 5

7 8 6

 (d)

1 2 3

4 5 6

7 8

Problem 5.2: Consider the 8-puzzle with the initial state shown below, and assume that there are
exactly two steps left in the game, i.e., the game ends after exactly two additional actions.

1 2 3

4 5 6

7 8

(a) What is the player’s reward in this state?

(b) What is the utility of this state?

(c) How many nodes are in the game tree?

(d) How many distinct states are in the game tree?

(e) What is the maximum number of nodes examined by compulsive deliberation?

http://arrogant.stanford.edu/ggp/problems/problem_05_01.html
http://arrogant.stanford.edu/ggp/problems/problem_05_02.html
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Problem 5.3: Consider the 8-puzzle introduced in the notes. e initial state of the game is shown
below on the left, and the ideal arrangement is shown on the right.

1 3

4 2 5

7 8 6

1 2 3

4 5 6

7 8

Recall that there are 4 feasible actions—up, down, left, right—and any of these actions is
legal so long as the empty tile remains within the 3 � 3 grid. e reward for a state is the sum
of rewards for each tile, with 10 points being awarded for each numbered tile in its ideal position
and 20 points being awarded if the empty cell is in its proper position.

(a) Which of the following sequential plans are legal?

[right,right,down,down]
[right,right,right,down]
[right,down,right,down,left,up,right,down]
[right,down,right,left,right,left,right,down]

(b) Which of the following sequential plans are complete?

[right,right,down,down]
[right,down,right,left,right,left,right,left]
[right,down,right,left,right,left,right,down]
[right,down,right,down,left,up,right,down]}

(c) Which of the following sequential plans are minimal?

[right,right,down,down]
[right,down,right,left,right,left,right,left]
[right,down,right,left,right,left,right,down]
[right,down,right,down,left,up,right,down]

(d) Which of the following sequential plans are optimal?

[right,down,right,down]
[right,down,right,left,right,left,right,left]
[right,down,right,left,right,left,right,down]

http://arrogant.stanford.edu/ggp/problems/problem_05_03.html
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C H A P T E R 6

SmallMultiple-Player Games
6.1 INTRODUCTION
Having dealt with small single-player games, we turn now to small multiple-player games. In
most cases, the other players are general game playing programs or humans. However, in some
cases, the other players represent uncertainty in the game itself. For example, it is common to
model some card games by representing a randomly shuffled deck of cards as an additional player
in the game, one that deals or reveals cards as the game progresses.

Multiple-player games are more complicated than single-player games because the state
resulting from a player’s actions can depend on the actions of the other players. No player can
directly control the actions of other players; and so, in making its choices, a player must consider
all possible actions of the other players.

Before proceeding, it is worth emphasizing that games need not be fixed sum. In a fixed sum
game, the total number of points is fixed. (When this number is zero, such games are usually said
to be zero-sum.) In order for one player to get more points, some other player must lose points.
For this reason, fixed sum games are necessarily competitive. In general, game playing, there is
no such restriction. Some games are competitive; but others are cooperative—it may be that the
only way for one player to get a higher reward is to help the other players get higher rewards as
well.

While it is possible, in some multiple-player games, to find sequential plans that produce
maximal rewards, this is rarely the case. In order to achieve an optimal reward, it is frequently
necessary for a player to conditionalize its actions on the state of the game. is is a situation
where compulsive deliberation works well.

In this chapter, as in the preceding chapter, we look at settings in which there is suffi-
cient time for players to search the game tree entirely. at said, as in single-player games, it is
sometimes possible to find optimal actions even without searching the entire game tree.

We begin this chapter with a procedure called Minimax, and we then consider a more
efficient variation called Bounded Minimax. We then turn to an even more efficient procedure
called Alpha-Beta Search, which produces the same results but eliminates some of the needless
computation of minimax.

6.2 MINIMAX
In general game playing, a player may choose to make assumptions about the actions of the other
players. For example, a player might want to assume that the other players are behaving rationally.
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By eliminating irrational actions on the part of the other players, a player can decrease the number
of possibilities it needs to consider.

Unfortunately, in general game playing, as currently constituted, no player knows the iden-
tity of the other players. e other players might be irrational or they might behave the same as
the player itself. Since there is no information about the other players, many general game players
take a pessimistic approach—they assume that the other players will perform the worst possible
actions. is pessimistic approach is the basis for a game-playing technique called Minimax.

In the case of a one-step game, Minimax chooses an action such that the value of the
resulting state for any opponent action is greater than or equal to the value of the resulting state
for any other action. In the case of a multiple-step game, Minimax goes to the end of the game
and backs up values.

We can think about Minimax as search of a bipartite tree consisting of alternating max
nodes and min nodes. See the example in Figure 6.1. e max nodes (shown in beige) represent
the choices of the player while the min nodes (shown in grey) represent the choices of the other
players.

Note that, although we have separated the choices of the player and its opponents, this does
not mean that play alternates between the opponents or that the opponents know the player’s
action. e player and its opponents make their choices simultaneously, without knowledge of
each other’s choices.

e value of a max node for a player is either the utility of that state if it is terminal or the
maximum of all values for the min nodes that result from its legal actions. e value of a min
node is the minimum value that results from any legal opponent action.

e following game tree in Figure 6.2 illustrates this. e nodes at the bottom of the tree
are terminal states, and the values are the player’s goal values for those states. e values shown
in the other nodes are computed according to the rules just stated. For example, the value of the
minnode at the lower left is 1 because that is the minimum of the values of its maxnodes below
it, viz. 1 and 2. e value of the minnode next to that minnode is 3 because that is the value of
the two maxnodes below it, viz. 3 and 4. e value of the maxnode above these two minnodes
is 3 because that is the maximum of the values of the two minnodes. And so forth.

e following procedure is a simple implementation of a player that uses minimax to evalu-
ate states. e implementation is similar to that of the compulsive deliberation player introduced
in the preceding chapter. e start handler merely records relevant information in the player’s
global variables. e play handler simulates the previous move to obtain the current state and
then finds the best action for it to perform in that state. In this case, it uses the bestmove sub-
routine to obtain this action.
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function start (id,player,rules,sc,pc)
{game = rules;
role = player;
roles = findroles(game)
state = findinits(game);
startclock = sc;
playclock = pc;
return `ready'}

function play (id,move)
{state = simulate(move,state);
return bestmove(role,state)}

e main difference between the bestmove subroutine for single-player games and the
bestmove for multiple-player games is the way scores are computed. Rather than comparing
subsequent states, it compares min nodes as described above.

function bestmove (role,state)
{var actions = findlegals(role,state,game);
var action = actions[0];
var score = 0;
for (var i=0; i<actions.length; i++)

{var result = minscore(role,actions[i],state);
if (result>score) {score = result; action = actions[i]}};

return action}

e minscore subroutine takes a role, an action of that role, and a state as arguments and
produces the minimum values for the given role associated with the given action for any of the
opponent’s legal actions in the given state. (e findopponent subroutine here uses the game
description to compute the other player in a two-player game.)

function minscore (role,action,state)
{var opponent = findopponent(role,game);
var actions = findlegals(opponent,state,game);
var score = 100;
for (var i=0; i<actions.length; i++)

{var move;
if (role==roles[0]) {move = [action,actions[i]]}

else {move = [actions[i],action]}
var newstate = findnext(move,state,game);
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var result = maxscore(role,newstate);
if (result<score) {score = result}};

return score}

e maxscore subroutine, which is called by minscore, takes a role and a state as argu-
ments. It conducts a recursive exploration of the game tree below the given state. If the state is
terminal, the output is just the role’s reward for that state. Otherwise, the output is the maximum
of the utilities of the min nodes associated with the player’s legal actions in the given state.

function maxscore (role,state)
{if (findterminalp(state,game)) {return findreward(role,state,game)};
var actions = findlegals(role,state,game);
var score = 0;
for (var i=0; i<actions.length; i++)

{var result = minscore(role,actions[i],state);
if (result>score) {score = result}};

return score}

6.3 BOUNDEDMINIMAX SEARCH
One disadvantage of the Minimax procedure described in the preceding section is that it exam-
ines the entire game tree in all cases. While this is sometimes necessary, there are cases where
it is possible to get the same result without examining the entire game tree. For example, if in
processing a state the maxscore subroutine finds an action that produces 100 points, it does not
need to look at any additional actions since it cannot do better; and if the minscore subroutine
finds an action that produces 0 points, it does not need to look at any additional actions since it
cannot get the score any lower.

Bounded Minimax is just the Minimax procedure just discussed. Rather than processing all
actions on every node, it checks first for these bounds; and, if they occur on any node, it terminates
its examination and returns the corresponding value.

As an example of this, consider the game tree shown in Figure 6.3. e nodes with values
are those examined by Bounded Minimax. e other nodes are not examined at all and do not
need to be examined.

It is easy to adapt the basic Minimax code to do Bounded Minimax. All we need to do is to
put conditionals in the inner loops of bestmove and maxscore and minscore, as shown below.
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function bestmove (role,state)
{var actions = findlegals(role,state,game);
var action = actions[0];
var score = 0;
for (var i=0; i<actions.length; i++)

{var result = minscore(role,actions[i],state);
if (result==100) {return actions[i]};
if (result>score) {score = result; action = actions[i]}};

return action}

function minscore (role,action,state)
{var opponent = findopponent(role,game);
var actions = findlegals(opponent,state,game);
var score = 100;
for (var i=0; i<actions.length; i++)

{var move;
if (role==roles[0]) {move = [action,actions[i]]}

else {move = [actions[i],action]}
var newstate = findnext(move,state,game);
var result = maxscore(role,newstate);
if (result==0) {return 0};
if (result<score) {score = result}};

return score}

function maxscore (role,state)
{if (findterminalp(state,game)) {return findreward(role,state,game)};
var actions = findlegals(role,state,game);
var score = 0;
for (var i=0; i<actions.length; i++)

{var result = minscore(role,actions[i],state);
if (result==100) {return 100};
if (result>score) {score = result}};

return score}

Note that 100 and 0 are not the only values that can be used here. For example, if a player
is in a satisficing game, where it needs to get a certain minimum score, then it can use that
threshold rather than 100. If a player simply wants to win a fixed sum game, then it can use 51
as the threshold, knowing that if it gets this amount it has won the game.
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6.4 ALPHA-BETA SEARCH
While Bounded Minimax helps avoid some wasted work, we can do even better. Consider the
game tree on the next page.

In this case, unlike the examples seen earlier, there are many terminal values that are not 0
or 100. In determining its maximum score for the top node of this tree, a Minimax player, even
a Bounded Minimax player, would examine the entire tree. However, not all of this work is nec-
essary.

Alpha-Beta Search is a variation on Bounded Minimax that eliminates such wasted work by
computing bounds dynamically and passing them along as parameters. One bound, called alpha,
is the best score the player has seen thus far. e other bound, called beta, is the worst score the
player has seen. In examining new nodes, alpha-beta search uses these bounds to decide whether
to look at further nodes.

If the partial result at a min node is less than alpha, then there is no point in examining
other descendants of that node since it could only decrease this value and the player would not
take that choice given that it has a higher value elsewhere.

Analogously, if the partial result at a max node is greater than beta, then there is no point in
considering other options since they can only increase the score and the player’s opponents would
not allow that since they know they can keep the value to no more than beta.

e following is an implementation of maxscore and minscore for an alpha-beta player.
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function maxscore (role, state, alpha, beta)
{if (findterminalp(state,game)) {return findreward(role,state,game)};
var actions = findlegals(role,state,game);
for (var i=0; i<actions.length; i++)

{var result = minscore(role,actions[i],state,alpha,beta);
alpha = max(alpha,result);
if (alpha>=beta) then {return beta}};

return alpha}

function minscore (role, action, state,alpha,beta)
{var opponent = findopponent(role,game);
var actions = findlegals(opponent,state,game);
for (var i=0; i<actions.length; i++)

{var move;
if (role==roles[0]) {move = [action,actions[i]]}

else {move =[actions[i],action]}
var newstate = findnext(move,state,game);
var result = maxscore(role,newstate,alpha,beta);
beta = min(beta, result);
if (beta<=alpha) {return alpha}};

return beta}

Now let’s apply the maxscore procedure to the tree shown above with initial value 0 and 100
for alpha and beta. In the tree below, we have written in values produced by the alpha-beta pro-
cedure in this case, and we have left the other nodes blank (next page).

In this particular case, the improvement of Alpha-Beta over Minimax is modest. However,
in general, Alpha-Beta Search can save a significant amount of work over full Minimax. In the
best case, given a tree with branching factor b and depth d , Alpha-Beta Search needs to examine
at most O.bd=2/ nodes to find the maximum score instead of O.bd /. is means that an Alpha-
Beta player can look ahead twice as far as a Minimax player in the same amount of time. Looked
at another way, the effective branching factor of a game in this case is

p
b instead of b. It would

be the equivalent of searching a tree with just 5 moves instead of 25 moves.
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PROBLEMS
Problem 6.1: Fill in the minimax values for the non-terminal nodes in the game tree in Figure 6.6.
Max nodes are beige; min nodes are grey.

Problem 6.2: Assign the utility values 1, 2, : : :, 16 to the 16 terminal nodes in the game tree in
Figure 6.7 so that (1) no two terminal nodes have the same value and (2) the minimax value of
the top node is 8.

Problem 6.3: Fill in the alpha-beta values for the non-terminal nodes in the game tree in Fig-
ure 6.8. Put an X in any node that alpha-beta does not examine.

http://arrogant.stanford.edu/ggp/problems/problem_06_01.html
http://arrogant.stanford.edu/ggp/problems/problem_06_02.html
http://arrogant.stanford.edu/ggp/problems/problem_06_03.html
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C H A P T E R 7

Heuristic Search
7.1 INTRODUCTION

In the last two chapters, we looked at approaches to playing small games, i.e., games for which
there is sufficient time for a complete search of the game tree. Unfortunately, most games are
not so small, and complete search is usually impractical. In this chapter, we look at a variety
of techniques for incomplete search. We begin with Depth-Limited Search, then Fixed-Depth
Heuristic Search, and finally Variable-Depth Heuristic Search. In the next chapter, we examine
probabilistic methods for dealing with incomplete search.

7.2 DEPTH-LIMITEDSEARCH

e simplest way of dealing with games for which there is insufficient time to search the entire
game tree is to limit the search in some way. In Depth-Limited Search, the player explores the
game tree to a given depth. A legal player is a special case of Depth-Limited Search where the
depth is effectively zero.

e implementation of Depth-Limited Search is a simple variation of the implementation
of the minimax player described in the preceding chapter. See below. One difference is the ad-
dition of a level parameter to maxscore and minscore. is parameter is incremented on each
recursive call in minscore. If the player reaches the depth-limit at a non-terminal state, it simply
returns 0, a conservative lower bound on its utility.

function maxscore (role,state,level)
{if (findterminalp(state,game)) {return findreward(role,state,game)};
if (level>=limit) {return 0};
var actions = findlegals(role,state,game);
var score = 0;
for (var i=0; i<actions.length; i++)

{var result = minscore(role,actions[i],state,level);
if (result==100) {return 100};
if (result>score) {score = result}};

return score}
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function minscore (role,action,state,level)
{var opponent = findopponent(role,game);
var actions = findlegals(opponent,state,game);
var score = 100;
for (var i=0; i<actions.length; i++)

{var move;
if (role==roles[0]) {move = [action,actions[i]]}

else {move = [actions[i],action]}
var newstate = findnext(move,state,game);
var result = maxscore(role,newstate,level+1);
if (result==0) {return 0};
if (result<score) {score = result}};

return score}

e most obvious problem with Depth-Limited Search is that the conservative estimate
of utility for non-terminal states is not very informative. In the worst case, none of the states at
a given depth may be terminal, in which case the search provides no discriminatory value. We
discuss some ways of dealing with this problem in the next sections and the next chapter.

Another problem with Depth-Limited Search is that a player may not be able to determine
a suitable depth-limit in advance. Too low and the player will not search as much as it could. Too
high and the search may not terminate in time.

One solution to this problem is to use breadth-first search rather than depth-first search.
e downside of this is the amount of space that this consumes on very large trees, in many cases
exceeding the storage limits of the computer.

An alternative solution to this problem is to use an iterative deepening approach to game
tree exploration, exploring the game tree repeatedly at increasing depths until time runs out.
As usual with iterative deepening, this is wasteful in that portions of the tree may be explored
multiple times. However, as usual with iterative deepening, this waste is usually bounded by a
small constant factor.

7.3 FIXED-DEPTHHEURISTIC SEARCH
One way of dealing with the conservative nature of Depth-Limited Search is to improve upon
the arbitrary 0 value returned for nonterminal states. In fixed-depth heuristic search, this is ac-
complished by applying a heuristic evaluation function to non-terminal states. Such functions are
based on features of states, and so they can be computed without examining entire game tree.

Examples of such heuristic functions abound. For example, in Chess, we often use piece
count to compare states, with the idea that, in the absence of immediate threats, having more
material is better than having less material. Similarly, we sometimes use board control, with the
idea that having control of the center of the board is more valuable than controlling the edges or
corners.
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e downside of using heuristic functions is that they are not necessarily guaranteed to be
successful. ey may work in many cases but they can occasionally fail, as happens, for example in
Chess, when a player is checkmated even though it has more material and a better board control.
Still, games often admit heuristics that are useful in the sense that they work more often than
not.

While, for specific games, such as Chess, programmers are able to build in evaluation func-
tions in advance, this is unfortunately not possible for general game playing, since the structure of
the game is not known in advance. Rather, the game player must analyze the game itself in order
to find a useful evaluation function. In a later chapter, we discuss how to find such heuristics.

at said, there are some heuristics for game playing that have arguable merit across all
games. In this section, we examine some of these heuristics. We also show how to build game
players that utilize these general heuristics.

e implementation of a general game player based on fixed-depth heuristic search is a
simple variation of the fixed-depth search player just described. See below. e difference comes
in the maxscore procedure. Rather than returning 0 on non-terminal states, the procedure returns
the value of a subroutine evalfn, which gives a heuristic value for the state.

function maxscore (role,state,level)
{if (findterminalp(state,game)) {return findreward(role,state,game)};
if (level>=limit) {return evalfn(role,state)};
var actions = findlegals(role,state,game);
var score = 0;
for (var i=0; i<actions.length; i++)

{var result = minscore(role,actions[i],state,level);
if (result==100) {return 100};
if (result>score) {score = result}};

return score}

ere are various ways of defining evalfn. In the following paragraphs, we look at just a
few of these—mobility, focus, and goal proximity.

Mobility is a measure of the number of things a player can do. is could be the number
of actions available in the given state or n steps away from the given state. Or it could be the
number of states reachable within n steps. (is could be different from the number of actions
since multiple action sequences could lead to the same state. All roads lead to Rome.)

A simple implementation of the mobility heuristic is shown below. e method simply
computes the number of actions that are legal in the given state and returns as value the percentage
of all feasible actions represented by this set of legal actions.
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function mobility (role,state)
{var actions = findlegals(role,state,game);
var feasibles = findactions(role,game);
return (actions.length/feasibles.length * 100)}

Focus is a measure of the narrowness of the search space. It is the inverse of mobility.
Sometimes it is good to focus to cut down on search space. Often better to restrict opponents’
moves while keeping one’s own options open.

function focus (role,state)
{var actions = findlegals(role,state,game);
var feasibles = findactions(role,game);
return (100 - actions.length/feasibles.length * 100)}

Goal proximity is a measure of how similar a given state is to desirable terminal state. ere
are various ways this can be computed.

One common method is to count how many propositions that are true in the current state
are also true in a terminal state with adequate utility. e difficulty of implementing this method
is obtaining a set of desirable terminal states with which the current state can be compared.

Another alternative is to use the utility of the given state as a measure of progress toward
the goal, with the idea being that the higher utility, the closer the goal. Of course, this is not
always true. However, in many games the goal values are indeed monotonoic, meaning that values
do increase with proximity to the goal. Moreover, it is sometimes possible to compute this by a
simple examination of the game description, using methods we describe in later chapters.

None of these heuristics is guaranteed to work in all games, but all have strengths in some
games. To deal with this fact, some designers of GGP players have opted to use a weighted
combination of heuristics in place of a single heuristic. See the formula below. Here each fi is a
heuristic function, and wi is the corresponding weight.

f .s/ D w1 � f1.s/C : : :C wn � fn.s/

Of course, there is noway of knowing in advance what the weights should be, but sometimes
playing a few instances of a game (e.g., during the start clock) can suggest weights for the various
heuristics.

7.4 VARIABLEDEPTHHEURISTIC SEARCH
As we discussed in the preceding section, heuristic search is not guaranteed to succeed in all cases.
Failing is never good. However, it is particularly embarrassing in situations where just a little more
search would have revealed significant changes in the player’s circumstances, for better or worse.
In the research literature, this is often called a horizon problem.
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As an example of a horizon problem in Chess, consider a situation where the players are
exchanging piece, with white capturing black’s pieces and vice versa. Now imagine cutting off
the search at an arbitrary depth, say 2 captures each. At this point, white might believe it has an
advantage since it has more material. However, if the very next move by black is a capture of the
white queen, this evaluation could be misleading.

A common solution to this problem is to forego the fixed depth limit in favor of one that
is itself dependent on the current state of affairs, searching deeper in some areas of the tree and
searching less deep in other areas.

In Chess, a good example of this is to look for quiescence, i.e., a state in which there are
no immediate captures.

e following is an implementation of a variable-depth heuristic. is version of maxscore
differs from the fixed-depth version in that there is a subroutine (here called expfn) that is called
to determine whether the current state and/or depth meets an appropriate condition. If so, the
tree expansion terminates; otherwise, the player expands the state.

function maxscore (role,state,level)
{if (findterminalp(state,game)) {return findreward(role,state,game)};
if (!expfn(role,state,level)) {return evalfn(role,state)};
var actions = findlegals(role,state,game);
var score = 0;
for (var i=0; i<actions.length; i++)

{var result = minscore(role,actions[i],state,level);
if (result==100) {return 100};
if (result>score) {score = result}};

return score}

e challenge in variable-depth heuristic search is finding an appropriate definition for
expfn. One common technique is to focus on differentials of heuristic functions. For example,
a significant change in mobility or goal proximity might indicate that further search is warranted
whereas actions that do not lead to dramatic changes might be less important.

PROBLEMS
Problem 7.1: Consider the single-player game tree shown on the next page, and answer the ques-
tions that follow.

(a) What is the minimax value of the tree?

(b) What is the value returned by Depth-Limited Search with a depth limit of 3?

(c) How many nodes are examined by depth-first search with a depth-limit of 3, i.e., how many
times is maxscore called?

http://arrogant.stanford.edu/ggp/problems/problem_07_01.html
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(d) How many nodes are examined by breadth-first search with a depth-limit of 3, i.e., how
many times is maxscore called?

(e) How many nodes are examined by iterative-deepening search with a depth-limit of 3 and
a depth increment of 1, i.e., how many times is maxscore called?

1 2

3 4

5 6 7 8

Problem 7.2: Consider the two-player game tree shown below. e values on the max nodes are
actual goal values for the associated states as given in the game description, not state utilities
determined by game tree search.

(a) What is the state utility of the top of the tree (as determined, for example, by Minimax)?

(b) Now consider a player using fixed-depth heuristic search with depth limit 1. How many
max nodes are searched in evaluating the top node in this tree (i.e., how many times is
maxscore called)?

(c) Suppose the player uses a goal proximity heuristic with state reward as the heuristic value
for non-terminal states. What is the minimum final reward for this player in this game?

http://arrogant.stanford.edu/ggp/problems/problem_07_02.html
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C H A P T E R 8

Probabilistic Search
8.1 INTRODUCTION
In the preceding chapter, we examined various approaches to incomplete search of game trees. In
each approach, the evaluation of states is based on local properties of those states (i.e., properties
that do not depend on the game tree as a whole). In many games, there is no correlation between
these local properties and the likelihood of success in completing a game successfully.

In this chapter, we look at some alternative methods based on probabilistic analysis of game
trees. In the next section, we examine an approach based on Monte Carlo game simulation. In the
subsequent section, we look at a more sophisticated variation called Monte Carlo Tree Search.

8.2 MONTECARLOSEARCH
e basic idea of Monte Carlo Search (MCS) is simple. In order to estimate the value of a non-
terminal state, we make some probes from that state to the end of the game by selecting random
moves for the players. We sum up the total reward for all such probes and divide by the number
of probes to obtain an estimated utility for that state. We can then use these expected utilities in
comparing states and selecting actions.

Monte Carlo can be used in compulsive deliberation fashion to evaluate the immediate
successors of the current state. However, it can also be used as an evaluation function for heuristic
search. e former approach can then be seen as a special case of the latter where the depth limit
for expansion is set to 0. In the latter case, search takes the form of two phases of search: the
expansion phase and the probe phase.

e expansion phase of Monte Carlo is the same as bounded depth heuristic search. e
tree is explored until some fixed depth is reached. e tree shown below illustrates this process.
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e probe phase of Monte Carlo takes the form of exploration from each of the fringe
states reached in the expansion phase, for each making random probes from there to a terminal
state. See below.

100 0 0 0 0 0100 100 0 0 0 0 0100 100 100

e values produced by each probe are added up and divided by the number of probes for
each state to obtain an expected utility for that state. ese expected utilities are then compared
to determine the relative utilities of the fringe states produced at the end of the expansion phase.

100 0 0 0 0 0100 100 0 0 0 0 0100 100 100

25 50 0 75
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e following procedure is a simple implementation of the two-phase Monte Carlo
method, with 4 probes per state. e implementation is similar to that of the heuristic search
player introduced in the preceding chapter. e main difference is that the Monte Carlo method
is used to evaluate states rather than general heuristics.

function maxscore (role,state,level)
{if (findterminalp(state,game)) {return findreward(role,state,game)};
if (level>levels) {return montecarlo(state)};
var actions = findlegals(role,state,game);
var move = seq();
var score = 0;
for (var i=0; i<actions.length; i++)

{var result = minscore(role,actions[i],state,level);
if (result==100) {return 100};
if (result>score) {score = result}};

return score}

function maxscore (role,state,level)
{if (findterminalp(state,game)) {return findreward(role,state,game)};
if (level>levels) {return montecarlo(role,state,4)};
var actions = findlegals(role,state,game);
var score = 0;
for (var i=0; i<actions.length; i++)

{var result = minscore(role,actions[i],state,level);
if (result==100) {return 100};
if (result<score) {score = result}};

return score}

function montecarlo (role,state,count)
{var total = 0;
for (var i=0; i<count; i++)

{total = total + depthcharge(role,state)};
return total/count}

function depthchargescore (role,state)
{var total = 0;
for (var i=0; i<count; i++)

{total = total + depthcharge(role,state)};
return total/count}
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function depthcharge (role,state)
{if (findterminalp(state,game)) {return findreward(role,state,game)};
var move = seq();
for (var i=0; i<roles.length; i++)

{var options = findlegals(roles[i],state,game);
move[i] = randomelement(options)};

var newstate = simulate(move,state);
return depthcharge(role,newstate)}

Note that, in the probe phase of Monte Carlo, only one action is considered for each player
on each step. Also, there is no additional processing (e.g., checking whether states have been pre-
viously expanded). Consequently, making probes in Monte Carlo is fast, and this enables players
to make many such probes.

One downside on the Monte Carlo method is that it can be optimistic. It assumes the
other players are playing randomly when in fact it is possible that they know exactly what they
are doing. It does not help if most of the probes from a position in Chess lead to success if one
leads to a state in which one’s player is checkmated and the other player sees this. is issue is
addressed to some extent in the MCTS method described below.

Another drawback of the Monte Carlo method is that it does not take into account the
structure of a game. For example, it may not recognize symmetries or independencies that could
substantially decrease the cost of search. For that matter, it does not even recognize boards or
pieces or piece count or any other features that might form the basis of game-specific heuristics.
ese issues are discussed further in the chapters to follow.

Even with those drawbacks, the Monte Carlo method is quite powerful. Prior to its use,
general game players were at best interesting novelties. Once players started using Monte Carlo,
the improvement in game play was dramatic. Suddenly, automated general game players began
to perform at a high level. Using a variation of this technique, CadiaPlayer won the International
General Game Playing competition three times. Almost every general game playing program
today includes some version of Monte Carlo.

8.3 MONTECARLOTREE SEARCH
Monte Carlo Tree Search (MCTS) is a variation of Monte Carlo Search. Both methods build
up a game tree incrementally and both rely on random simulation of games; but they differ on
the way the tree is expanded. MCS uniformly expands the partial game tree during its expansion
phase and then simulates games starting at states on the fringe of the expanded tree. MCTS uses
a more sophisticated approach in which the processes of expansion and simulation are interleaved.

MCTS processes the game tree in cycles of four steps each. After each cycle is complete,
it repeats these steps so long as there is time remaining, at which point it selects an action based
on the statistics it has accumulated to that point.
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Selection. In the selection step, the player traverses the tree produced thus far to select an unex-
panded node of the tree, making choices based on visit counts and utilities stored on nodes in the
tree.

Expansion. e successors of the state chosen during the selection phase are added to the tree.

Simulation.e player simulates the game starting at the node chosen during the selection phase.
In so doing, it chooses actions at random until a terminal state is encountered.

Backpropagation. Finally, the value of the terminal state is propagated back along the path to
the root node and the visit counts and utilities are updated accordingly.

An implementation of the MCTS selection procedure is shown below. If the initial state
has not been seen (i.e., it has 0 visits), then it is selected. Otherwise, the procedure searches the
successors of the node. If any have not been seen, then one of the unseen nodes is selected. If
all of the successors have been seen before, then the procedure uses the selectfn subroutine
(described below) to find values for those nodes and chooses the one that maximizes this value.

function select (node)
{if (node.visits==0) {return node};
for (var i=0; i<node.children.length; i++)

{if (node.children[i].visits==0) {return node.children[i]}};
score = 0;
result = node;
for (var i=0; i<node.children.length; i++)

{var newscore = selectfn(node.children[i]);
if (newscore>score)

{score = newscore; result=node.children[i]}};
return select(result)}

One of the most common ways of implementing selectfn is UCT (Upper Confidence
bounds applied to Trees). A typical UCT formula is vi + c*sqrt(log np / ni). vi here is the average
reward for that state. c is an arbitrary constant. np is the total number of times the state’s parent
was picked. ni is the number of times this particular state was picked.

function selectfn(node)
{return node.utility+Math.sqrt(2*Math.log(node.visits)/

node.parent.visits)}

Of course, there are other ways that one can evaluate states. e formula here is based
on a combination of exploitation and exploration. Exploitation here means the use of results
on previously explored states (the first term). Exploration means expansion of as-yet unexplored
states (the second term).
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Expansion in MCTS is basically the same as that for MCS. An implementation for a
single-player game is shown below.

function expand (node)
{var actions = findlegals(role,node.state,game);
for (var i=0; i<actions.length; i++)

{var newstate = simulate(seq(actions[i]),state);
var newnode = makenode(newstate,0,0,node,seq());
node.children[node.children.length]=newnode};

return true}

On large games with large time bounds, it is possible that the space consumed in this process
could exceed the memory available to a player. In such cases, it is common to use a variation of
the selection procedure in which no additional states are added to the tree. Instead, the player
continues doing simulations and updating its numbers for already-known states.

Simulation forMCTS is essentially the same as simulation forMCS. So the same procedure
can be used for both methods.

Backpropagation is easy. At the selected node, the method records a visit count and a utility.
e visit count in this case is 1 since it was a newly processed state. e utility is the result of the
simulation. e procedure then propagates to ancestors of this node. In the case of a single player
game, the procedure adds 1 to the visit count of each ancestor and augments its total utility by
the utility obtained on the latest simulation. See below. In the case of a multiple-player game the
propagated value is the minimum of the values for all opponent actions.

function backpropagate (node,score)
{node.visits = node.visits+1;
node.utility = node.utility+score;
if (node.parent) {backpropagate(node.parent,score)};
return true}

Expanding the method to multiple-player games is tedious but poses no significant prob-
lems. Max nodes and min nodes must be differentiated. Expansion must create a bipartite tree,
alternating between max nodes and min nodes. And backpropagation must be adjusted accord-
ingly.



81

C H A P T E R 9

Propositional Nets
9.1 INTRODUCTION
In the Introduction, we saw that it is possible to think of the dynamics of a game as a state graph.
See, for example, the state graph in Fig. 9.1. A game is characterized by a finite number of states,
a finite number of players, each with a finite number of actions. At each point in time the game is
in one of the possible states; players choose from their possible actions; and, as the players perform
their chosen actions, the game changes from one state to another.
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Figure 9.1: State Machine for a simple game.

However, we rarely think of states as monolithic entities. In practice, we typically charac-
terize states in terms of propositions that are true in those states. As actions are performed, some
propositions become true and others become false. is suggests a conceptualization of games as
propositional nets rather than state machines. A propositional net is a graph in which proposi-
tions and actions are nodes rather than states and where these nodes are interleaved with nodes
representing logical connectives and transitions, as suggested by the example shown in Figure 9.2.

One of the benefits of formalizing games as propositional nets is compactness. A set of n
propositions corresponds to a set of 2n states (all different combinations of truth values for the n
propositions). us, it is often possible to characterize the dynamics of games with graphs that
are much smaller than the corresponding state machines. For example, the propnet in Fig. 9.2,
with just three propositions, corresponds to a state machine with eight states.
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p

q

r

Figure 9.2: Propositional Net for a simple game.

In this chapter, we start by formalizing propositional nets; we then show how to describe
games in this way and we talk about the properties of propositional nets. In the next chapter, we
see how to use propositional nets in game playing. And in the chapters after that, we see how
we can use propositional nets in recognizing structure in games and in discovering game-playing
heuristics of various sorts.

9.2 PROPOSITIONALNETS
A propositional net (propnet) is a directed bipartite hypergraph consisting of propositions alternat-
ing with connectives (inverters, and-gates, or-gates, and transitions). Propositions can be parti-
tioned into three classes: input propositions (those with no inputs); base propositions (those with
incoming arcs from transitions); and view propositions (those with incoming arcs from connectives
other than transitions).

e propnet in Fig. 9.3 is an example. In this case, there are six propositions (the nodes
labeled a, b, p, q, r, and s); and there are four connectives (the and-gate on the upper left, the
inverter on the upper right, the or-gate on the lower right, and the transition on the lower left).
Nodes a and b are input propositions; node s is a base proposition; and nodes p, q, and r are view
propositions.

An inputmarking is a function from the input propositions of a propositional net to boolean
values. A base marking is a function from the base propositions of a propositional net to boolean
values. A view marking is a function from the view propositions of a propositional net to boolean
values.

Given a propnet, an input marking and a base marking determine a unique view marking
for that propnet. is is based on the types of gates leading into the view propositions. e output
of an inverter is true if and only if its input is false. e output of an and-gate is true if and only
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Figure 9.3: Sample propositional net.

all of its inputs are true. e output of an or-gate is true if an only if at least one of its inputs is
true.

As an example, consider the propnet in Fig. 9.3. Suppose we had an input marking that
assigned a the value true and b the value false, and suppose we had a base marking that assigned
s the value true. en, the view marking for p would be true; the view marking for q would be
false; and the view marking for r would be false. At this point, we have values for all of the view
propositions in the propnet. See Fig. 9.4. Here we have written 1 for true and 0 for false.

Transitions are the basis for dynamics in a propnet. Consider a step in the operation of
a propnet. Let us assume that there is an input marking and a base marking. From these, we
can compute a view marking, as we have just seen. Importantly, this includes the inputs to the
transitions of the propnet. On the next step, a new input marking is imposed from without.
However, the new base marking is determined by the transitions. If the inputs to the transitions
are true, then the outputs of the transitions are true on the next step. In effect, a transition as a
mechanism for controlling the flow of information from one step to the next. It is a 1-step delay,
a flip-flop in digital circuitry.

As an example, once again consider the propnet in Fig. 9.3 with the marking illustrated in
Fig. 9.4. Now, let’s move on to the next step. Suppose the input marking for the second step is
the same as the first, i.e., a is true and b is false. What is s on this step? Since s is the output of a
transition, its value on this step is the same as the value of that transition’s input on the preceding
step. In this case, the transition’s input was false on the preceding step, and so s is false on this
new step. As before, we can compute the view marking corresponding to the input marking and
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Figure 9.4: One marking for a propositional net.

this new base marking. See Fig. 9.5. In this case, since the second input to the and-gate is false,
p is false and q is true and, therefore, r is true as well.
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Figure 9.5: Another marking.

From this input marking and the new base marking, we can compute a new view marking.
And we can then repeat. In this case, the value of proposition s will go on alternating between
true and false so long as input a is true and input b is false. If input a ever becomes false, it will
stop alternating. However, the alternation will begin again as soon as it is set to true again.
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9.3 GAMESAS PROPOSITIONALNETS
Propnets are an alternative to GDL for expressing the dynamics of games. With a few additional
provisions, it is possible to convert any GDL game description into a propositional net with the
same dynamics.

As an example of this, consider the simple game described below. ere is just one role.
ere is just one base proposition, and there are two actions. e two actions are always legal.
e player gets 100 points in any state in which s is true; otherwise, the player gets 0 points. e
game ends if q ever becomes true. (Note that termination here is defined indirectly in terms of
the action of the player. Properly, it should be defined entirely in terms of the state of the game
and nothing else. is shortcoming can be fixed in various ways, but doing so would complicate
the example.)

role(white)
base(s)
input(white,a)
input(white,b)
legal(white,a)
legal(white,b)
p :- does(white,a) & true(s)
q :- ~p
r :- q
r :- does(white,b)
next(s) :- r
goal(white,100) :- true(s)
goal(white,0) :- ~true(s)
terminal :- q

Now, let’s build a propnet for this game. e base propositions in the propnet consist of the
propositions defined by the base relation in the game description (viz. s). e input propositions
correspond to the actions defined by the input relation in the game description (viz. a and b).

We use the next relation to capture the dynamics of the game. Starting with the base and
input propositions, we add links for each rule (using inverters for negations, and-gates for multiple
conditions, and or-gates for multiple rules). In so doing, we augment the propnet with additional
view propositions as necessary. e result is the propnet shown in Fig. 9.3.

We model terminal in the propnet by adding a special node for termination. If necessary,
we can extend the propnet to include new view propositions, as we do for next. In this case,
terminal corresponds exactly to q, so we could just use q as our terminal node. However, for the
sake of clarity, we can add a new node t and insert a connection from q to t. See Fig. 9.6. Note
that we use a one-input and-gate here. We could equally well use a two-input and-gate with both
inputs supplied by q, but this is simpler. e behavior is the same.
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Figure 9.6: Propnet with terminal node.

Rewards are handled analogously. We create a new node for each reward value, and we use
the definitions for these values to extend the propnet further. In this case, goal(white,100)
corresponds exactly to s, so we do not need to add a new node for goal(white,100). However,
for clarity, in our example, we have added one node for each of the two goal values. See Fig. 9.7.
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Figure 9.7: Propnet with goal nodes.

Legality is the trickiest part. ere are various ways of doing this. e simplest method
conceptually is to add one legality propositions for each possible action and extend the propnet to
say when these nodes are true. In this case, we add two new propositions la and lb, corresponding
to actions a and b. In this case they are always true. To model this, we add a self-loop - a transition



9.3. GAMESAS PROPOSITIONALNETS 87

for each of these legality propositions—and we initialize to true. Because of the dynamics of
transitions, these propositions will remain true indefinitely.
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Figure 9.8: Propnet with legality nodes.

at’s it. Once this is done, we have a propnet that reflects the game described in the given
GDL. In the next chapter, we discuss how to use this propnet to play games.
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C H A P T E R 10

General Game PlayingWith
Propnets

10.1 INTRODUCTION

As we saw in Chapter 4, a game player is typically implemented as a web service that receives
messages from a Game Manager and replies appropriately. Building a player means writing event
handlers for the different types of messages in the GGP communication protocol using subrou-
tines for processing game descriptions and match data. Our job in building a player is to use the
available subroutines to implement event handlers for the various GGP messages.

Building a game player using a propnet is essentially the same. In fact, all of the methods we
have described so far still apply. e main difference is that we replace the subroutines that work
directly on game descriptions with subroutines that operate on propnets. For example, in place of
the findlegals subroutine we used earlier, we now use a proplegals subroutine that computes
legal actions using the propnet; in place of the findterminalp subroutine we used earlier, we
now use a propterminalp subroutine that computes whether or not a state is terminal using the
propnet; and so forth.

We begin this chapter by presenting a representation of propnets as data structures. We
then define the basic subroutines for marking propnets and reading marks on propnets. en we
use these subroutines to build up the General Game Playing subroutines needed by our players
(e.g., proplegals, propterminalp, and so forth).

10.2 PROPOSITIONALNETSASDATA STRUCTURES

Before we can define methods for processing propnets, we need a representation of those propnets
as data structures. In the simple approach taken here, we represent each propnet component as a
structured object with various components depending on the type of the object. e connectivity
of the propnet is captured by values of these components.

A propnet as a whole is represented by an object of the form shown below. e type is
propnet. e roles component is a sequence of the roles in the game. e inputs component
is a sequence of sequences of input nodes, one sequence for each role; the bases component is a
sequence of the base nodes in the game; and the view component is a sequence of the view nodes
in the game. e legals component is a sequence of sequences of legal nodes, one sequence for
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each role; the rewards component is a sequence of sequences of reward nodes; and the terminal
component is the terminal node of the game.

{type:'propnet',
roles:roles, inputs:inputs, bases:bases, views:views
legals:legals, rewards:rewards, terminal:terminal}

An input node is a structured object of the form shown below. e type component is
input; the name is the GDL representation of the input; and the mark is an indication of whether
the node is true or false in the current state (as determined by the input marking current at each
point in time).

{type:'input',name:name,mark:boolean }

A base node is a structured object of the form shown below. e type component is base;
the name is the GDL representation of the node; the source is the transition that leads to the base
node; and the mark is an indication of whether the node is true or false in the current state (as
determined by the base marking current at each point in time).

{type:'base',name:name,source:transition,mark:boolean}

A view node is a structured object of the form shown below. e type component is view;
the name is the GDL representation of the node; and the source is the connective that leads to
the view node.

{type:'view',name:name,source:connective}

A negation is a structured object of the form shown below. e type component is
negation, and the source is the proposition that leads to the connective.

{type:'negation',source:source}

A conjunction is a structured object of the form shown below. e type component is
conjunction, and the sources component is a sequence of propositions that leads to the connec-
tive.

{type:'conjunction',source:sources}

A disjunction is a structured object of the form shown below. e type component is
disjunction, and the sources component is a sequence of propositions that leads to the connec-
tive.

{type:'disjunction',sources:sources}

A transition is a structured object of the form shown below. e type component is
transitin, and the source is the proposition that leads to the transition.

{type:'transition',source:source}
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Figure 10.1: Propnet for a simple game.

As an example, consider the propnet presented in the preceding chapter. For convenience, it
appears here again as Figure 10.1. In what follows, we see how to assemble this propnet manually.
In a general game player, it would be automatically generated from the GDL game description.

First of all, we create input, base, and view nodes for the propositions in the propnet. Since
we do not yet have data structures for our connectives, we initialize the sources of our propositions
with null.

a = {type:'input',name:'a'} b = {type:'input',name:'b'}
p = {type:'view',name:'p',source:null,mark:false}
q = {type:'view',name:'q',source:null,mark:false}
r = {type:'view',name:'r',source:null,mark:false}
s = {type:'base',name:'s',source:null,mark:false}

la = {type:'base',name:'la',source:null,mark:false}
lb = {type:'base',name:'lb',source:null,mark:false}
g100 = {type:'view',name:'100',source:null,mark:false}
g0 = {type:'view',name:'0',source:null,mark:false}
t = {type:'view',name:'terminal',source:null,mark:false}

Next, we create connectives and insert the propositions as components.

a1 = {type:'conjunction',sources:[a,s]}
a2 = {type:'conjunction',sources:[q,q]}
a3 = {type:'conjunction',sources:[s,s]}
i1 = {type:'negation',source:p}
i2 = {type:'negation',source:g100}
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o1 = {type:'disjunction',sources:[q,b]}
t1 = {type:'transition',source:r}
t2 = {type:'transition',source:la}
t3 = {type:'transition',source:lb}

Now, we go back and insert the connectives into the proposition nodes.

p.source = a1
q.source = i1
r.source = o1
s.source = t1

la.source = t2
lb.source = t3
g100.source = a3
g0.source = i2
t.source = a2

Finally, we insert all of these things into the components of mypropnet.

mypropnet =
{type:'propnet',
inputs:[a,b],
bases:[s, la, lb],
views:[p,q,r],
rewards:[g100,g0],
terminal:t}

Once we have created our propnet, either manually or automatically from the GDL for a
game, we can access the components by simply naming the propnet and one of its components
and extracting the desired component. For example, to get a sequence of the base propositions
in mypropnet, we would ask for mypropnet.base; and to get the source of proposition r, we
would ask for r.source.

10.3 MARKINGANDREADINGPROPOSITIONALNETS
In our approach to General Game Playing using propnets, we use input markings in place of
moves and base markings in place of states. In order to compute the various attributes of a game
on a given step, we typically mark the input propositions and base propositions of the propnet
and then compute the corresponding view marking. We then read the view marking to compute
the desired attributes. In this section, we discuss the details of marking and reading propnets, and
in the next section we show how they are used.
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ere are two different approaches to marking and reading propnets. In the forward prop-
agation approach, we mark propositions and then propagate the values to compute the values of
view propositions dependent on those marks. To answer questions, we then just read the values of
the relevant view propositions. In the backward reasoning approach, we mark our base and input
propositions but do not propagate. Instead, when we need a value for a view proposition, we work
backward from the desired view proposition to determine that value. e forward method saves
redundant computation. e backward methods is a little simpler and not much slower. We show
the backward method here.

Marking propositions is easy. See the subroutines below. We simply iterate through the
base propositions or input propositions marking those nodes with values from the input or base
vectors of booleans.

function markbases (vector,propnet)
{var props = propnet.bases;
for (var i=0; i<props.length; i++)

{props[i].mark = vector[i]};
return true}

function markactions (vector,propnet)
{var props = propnet.actions;
for (var i=0; i<props.length; i++)

{props[i].mark = vector[i]};
return true}

function clearpropnet (propnet)
{var props = propnet.bases;
for (var i=0; i<props.length; i++)

{props[i].mark = false};
return true}

Computing the values of view propositions is accomplished by working backwards from
the propositions of interests. If the proposition is an input or base proposition, we simply return
the mark on that proposition. In the case of a view proposition, we compute the values of propo-
sitions for the inputs to the connective feeding the view proposition and combine those values in
accordance with the type of the connective.

function propmarkp (p)
{if (p.type=='base') {return p.mark};
if (p.type=='input') {return p.mark};
if (p.type=='view') {return propmarkp(p.source)};
if (p.type=='negation') {return propmarknegation(p)};
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if (p.type=='conjunction') {return propmarkconjunction(p)};
if (p.type=='disjunction') {return propmarkdisjunction(p)};
return false}

function propmarknegation (p)
{return !propmarkp(p.source)}

function propmarkconjunction (p)
{var sources = p.sources;
for (var i=0; i<sources.length; i++)

{if (!propmarkp(sources[i])) {return false}};
return true}

function propmarkdisjunction (p)
{var sources = p.sources;
for (var i=0; i<sources.length; i++)

{if (propmarkp(sources[i])) {return true}};
return false}

10.4 COMPUTINGGAMEPLAYINGBASICS
Now that we have some tools for marking and reading propnets, let’s see how we can use them to
define the basic subroutines used in the game playing methods we defined in previous chapters.

In order to compute the legal actions for a role in a given state using a propnet, we first
mark the base propositions of the propnet using the information in the given state. We then
check each of the legality nodes for the given role in the propnet. If the node is true, we put the
corresponding input node on the list. When we are done, we return the list of input nodes that we
have accumulated in this process. (Note that, to return one of these actions to a game manager,
we would need to extract the name component from the corresponding input node.)

function proplegals (role,state,propnet)
{markbases(state,propnet);
var roles = propnet.roles;
var legals = seq();
for (var i=0; i<roles.length; i++)

{if (role==roles[i]) {legals = propnet.legals[i]; break}};
var actions = seq();
for (var i=0; i<legals.length; i++)

{if (propmarkp(legals[i]))
{actions[actions.length]=legals[i]}};

return actions}
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e propnext subroutine shown below computes the next state for a given move and a
given state using a given propnet. (Note that the move here is assumed to be an input marking,
not just a sequence of actions. To simulate a move supplied by a game manager, we would need to
convert to an input marking before using propnext.) In executing the propnext subroutine, we
first mark the input propositions using the given move, and we mark the base propositions of the
propnet using the information in the given state. We then check each of the base propositions in
the propnet, collecting those that are true in the next state.

function propnext (move,state,propnet)
{markactions(move,propnet);
markbases(state,propnet);
var bases = propnet.bases;
var nexts = seq();
for (var i=0; i<bases.length; i++)

{nexts[i] = propmarkp(bases[i].source.source)};
return nexts}

To compute the reward for a given role in a given state using a propnet, we first mark the
base propositions as before. We then check each of the reward propositions for the given role until
we find one that is true.

function propreward (role,state,propnet)
{markbases(state,propnet);
var roles = propnet.roles;
var rewards = seq();
for (var i=0; i<roles.length; i++)

{if (role==roles[i]) {rewards = propnet.rewards[i]; break}};
for (var i=0; i<rewards.length; i++)

{if (propmarkp(rewards[i])) {return rewards[i].name}};
return 0}

Computing whether or not a state is terminal is particularly easy. We mark the base propo-
sitions as before and check the terminal node for the propnet.

function propterminalp (state,propnet)
{markbases(state,propnet);
return propmarkp(propnet.terminal)}
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C H A P T E R 11

Factoring
11.1 INTRODUCTION
A compound game is a single game consisting of two or more individual games. e state of a
compound game is a composition of the states of the individual games. On each step of a com-
pound game, the players perform actions in each of the individual games. A compound game is
over when either one or all of the individual games are over (depending on the type of compound
game).

As an example, consider Hodgepodge. One state of the game is illustrated below. Hodge-
podge is a combination of Chess and Go. On each step, a player makes a move on each board.

Figure 11.1: One state in Hodgepodge.

Using the techniques we have seen thus far, compound games can be quite expensive to
play. Unless a player recognizes that there are independent subgames, it is likely to search a game
tree that is far larger than it needs to be. If one subgame has branching factor a and a second has
branching factor b, then the branching factor of the joint game is a � b, and the fringe of the
game tree at depth d is likely to be something like .a � b/d . is is wasteful if the two subgames
are independent. In that case, there are two trees—one with branching factor a and one with
branching factor b—and the total size of the fringe of these trees at depth d should be only
ad C bd .

Factoring is the process of discovering independent games inside of larger games. Once
discovered, game players can use these factors to play the individual games independently of each
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other and thus cut down on the combinatoric cost of playing such games. It turns out that it is
often easier to discover independent subgames using the propnet representation of games rather
than the original GDL.

In this chapter, we look at some elementary techniques for factoring games using propnets.
In Section 11.2, we talk about discovering factors with completely independent subgames. In Sec-
tion 11.3, we talk about factoring with interdependent goals and rewards; and, in Section 11.4, we
talk about factoring with interdependent actions. Finally, in Section 11.5, we discuss conditional
factors, i.e., factors that appear only in certain states of games.

11.2 COMPOUNDGAMESWITH INDEPENDENT
SUBGAMES

We begin our discussion of factoring with the simple case of compound games consisting of
multiple completely independent subgames only one of which is relevant to the overall game.
Without factoring, a player is likely to consider actions in all subgames when only one of the
subgamesmatters.is is admittedly a very special case. It does not arise often, and it can be solved
by means other than factoring (though not by the methods we have seen thus far). Nevertheless,
it is worth considering because it prepares us for factoring more complicated games.

Multiple Buttons and Lights is an example of a game of this sort. See below. e overall
game consists of multiple copies of Buttons and Lights. In each copy of Buttons and Lights, there
are three base propositions (the lights) and three actions (the buttons). Pushing the first button in
each group toggles the first light; pushing the second button in each group interchanges the first
and second lights; and pushing the third button in each group interchanges the second and third
lights. Initially, the lights are all off. e goal is to turn on all of the lights in the middle group.
(e settings of the other lights are irrelevant.)

Figure 11.2: Multiple buttons and lights.

e GDL for this game is shown below. ere is just one role. ere are nine base propo-
sitions, and there are nine actions. All actions are legal at all times. Each a(i) toggles the corre-
sponding p(i). Each b(i) interchanges the values of p(i) to q(i). And each c(i) interchanges the
values of q(i) and r(i). e game ends when p(2) and q(2) and r(2) are true. In this case, the player
gets 100 points. (In violation of our rule about finiteness, there is no step counter, so this game
could, in principle, run forever.)
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role(white)

base(p(X)) :- index(X)
base(q(X)) :- index(X)
base(r(X)) :- index(X)

input(white,a(X)) :- index(X)
input(white,b(X)) :- index(X)
input(white,c(X)) :- index(X)

index(1)
index(2)
index(3)

legal(a(X)) :- index(X)
legal(b(X)) :- index(X)
legal(c(X)) :- index(X)

next(p(X)) :- does(white,a(X)) & ~true(p(X))
next(p(X)) :- does(white,b(X)) & true(q(X))
next(p(X)) :- does(white,c(X)) & true(p(X))
next(q(X)) :- does(white,a(X)) & true(q(X))
next(q(X)) :- does(white,b(X)) & true(p(X))
next(q(X)) :- does(white,c(X)) & true(r(X))
next(r(X)) :- does(white,a(X)) & true(r(X))
next(r(X)) :- does(white,b(X)) & true(r(X))
next(r(X)) :- does(white,c(X)) & true(q(X))

goal(white,100) :- terminal
goal(white,0) :- ~terminal

terminal :- true(p(2)) & true(q(2)) & true(r(2))

Figure 11.3 shows the propnet for Multiple Buttons and Lights. ere are three disjoint
parts of the propnet—one portion for the first group of buttons and lights, a second portion for
the second group, and a third portion for the third group. Note that the goal and termination
conditions are based entirely on the lights in the second group.

Looking at the propnet for this game, it is easy to see that the game has a very special
structure. e propnet consists of three completely disconnected subnets, one for each subgame.
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Figure 11.3: Propnet for multiple buttons and lights.

Finding factors in situations like this is easy—it can be computed in time that is polynomial in
the size of the propnet.

Note that this technique can be applied equally well to multi-player games. Consider, for
example, Multiple Tic-Tac-Toe, i.e., three games of Tic-Tac-Toe glued together in which only
the middle game matters. See below.

 

X

O  

Figure 11.4: Multiple Tic-Tac-Toe.

e propnet for Multiple Tic-Tac-Toe is similar to the propnet for Multiple Buttons and
Lights, and it is possible to find the structure for Multiple Tic-Tac-Toe just as easily as for Mul-
tiple Buttons and Lights.
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11.3 COMPOUNDGAMESWITH INTERDEPENDENT
TERMINATION

In this section, we consider compound games with interdependent termination. As with the games
discussed in the preceding section, actions are partitioned over distinct subgames and there are
no incoming connections between those subgames. e main difference is that the termination
condition for the overall game can depend on more than one and perhaps all of the subgames.

In games of this sort, the termination of the overall game can be defined as any boolean
combination of conditions in the individual subgames. In the case where the combination is a
disjunction, the game is said to have disjunctive termination. In the case where the combination
is a conjunction, the game is said to have conjunctive termination.

As a simple example of a factorable game with disjunctive goals, consider Best Buttons and
Lights. In Multiple Buttons and Lights, as defined in the preceding section, only one group of
buttons and lights matters. In Best Buttons and Lights, the compound game terminates whenever
any group terminates. is gives the player the freedom to play whichever subgame it likes and
rest assured that, if it succeeds on that subgame, it succeeds on the overall game with the same
score.

Figure 11.5 presents a sketch of the propnet for this game.
e good news is that we can extend the techniques discussed in the preceding section

to this case. Let’s consider the disjunctive case. If the connective leading to a termination is a
disjunction with its inputs in turn supplied by nodes in different subgames, then we simply cut
off that node and inputs to the or-gate termination nodes for the overall game. We repeat this
process so long as we encounter only disjunctions. If the game is truly disjunctive, this will lead
to a separable propnet. See Fig. 11.6.

If this process succeeds in factoring the propnet, then the player simply picks one of the
subgames and proceeds as with the case of independent subgames. Alternatively and better, the
player tries playing all of the subgames and picks the one with the best score. Or at least that is
the basic idea.

Unfortunately, it is not quite that simple.ere is a problem that does not arise in the case of
completely independent subgames.e player may choose a subgame, find a winning strategy, and
begin executing that strategy. Unfortunately, in the course of execution on the chosen subgame,
one of the other subgames may terminate, terminating the game as a whole before the strategy
in the chosen subgame is complete. is can lead to a lower score than the player might have
expected.

e solution to this problem is to check each of the subgames for termination when no
actions are played. We take the shortest time period and play each of the other subgames with
that as step limit and take the one that provides the best result. For the subgame with the shortest
termination, if there is no other game with that step limit, we try the next shortest step limit.

Although in this approach, the player searches all of the subgames more than once, this is
usually a lot less expensive that searching the game tree for the unfactored game because it is not
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Figure 11.5: Propnet for best buttons and lights.

cross multiplying the branching factors of the independent games as it would if it did not use the
game’s factors.

11.4 COMPOUNDGAMESWITH INTERDEPENDENT
ACTIONS

In this section, we look at compound games with interdependent actions. By interdependence
of actions, we mean that those actions have effects on more than one of the subgames of the
compound game.

On first blush, it might seem that games of this sort are not factorable. However, this is
not necessarily true. Under certain circumstances, even with interdependent actions, it is possible
to identify factors and use those factors to search the game tree more efficiently than without
considering these factors.

As an example, consider the game of Joint Buttons and Lights. See the illustration in
Fig. 11.7. As with the other Buttons and Lights variants that we have seen, the lights in this
game are organized into groups of three. However, unlike the previous variants, buttons are not
associated with specific groups. Instead, each button has effects on all groups. Button aaa toggles
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Figure 11.6: Modified propnet for best buttons and lights.

the first light in the first group and the first light in the second group and the first light in the
third group. Button aab toggles the first light in the first group and the first light in the second
group and interchanges the value of the first light and the second light in the third group. And
so forth.

Figure 11.7: Joint buttons and lights.

Although all of the buttons in this game affect all of the subgames, the game is still fac-
torable with just three actions per factor. e reason is that there is one button in the compound
game for each combination of actions in the other two subgames. us, the game trees for each
subgame can be searched independently of each other and the actions chosen can be reassembled
into overall actions of the compound game. For example, if action a is chosen in the first and
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second subgames and action c is chosen in the third subgame, then action aac can be performed
in the compound game.

Recognizing when this can be done is not easy, but it is doable. ere are two steps. In the
first step, the player groups actions into equivalence classes of actions for each subgame. In the
second step, the player determines whether these classes satisfy the lossless join property (defined
below).

Finding equivalence classes is done by looking at the propnet for each subgame. Two actions
are equivalent if they are used in the same way in the propnet for that subgame. For example, if
each action is input to an and-gate with the same other input and if the outputs are connected
by an or-gate, then the effects of one action cannot be distinguished from the effects of the other
action; hence they are equivalent.

e process of finding equivalence classes is repeated for each potential subgame. In general,
the equivalence classes for each subgame will be different. In fact, as we shall see, in order for the
game to be factorable, they must be different.

Once a player has equivalence classes for each potential subgame, it then checks whether
those equivalence classes are independent of each other. e criterion is simple. Each equivalence
class in one potential subgame must have a non-empty intersection with each equivalence class of
every other potential subgame. If this is true, then the partitions pass the lossless join criterion.

If a player finds equivalence classes for two potential subgames and they pass this lossless
join test, then the player can factor the game into subgames. In order to benefit from the fac-
toring, the player must modify each propnet so that the individual actions are replaced with the
equivalence classes of which they are members. is cuts down on the number of possible actions
to consider. Otherwise, the branching factor of the game trees for the subgames would be just as
large as the branching factor for the overall game.

Once this is done, the player can then search the game trees for the different subgames to
select actions to perform in each game. It can then find an action in the compound game for the
particular combination of subgame actions. is is always doable provided that the partitioning
of actions satisfies the lossless join property, which has already been confirmed. e player then
performs any action in the intersection of the equivalence classes chosen in this process.

11.5 CONDITIONAL INDEPENDENCE
We now consider the class of games that, over time, become factorable. For example, a game
might not initially be separable into independent games; but it may, after entering a certain state,
become separable.

Consider the following game, called Joint Tic-Tac-Toe - two games of Tic-Tac-Toe con-
nected by a single square that connects the two. e goal of the game for a player is to get a
line, a row, column or diagonal of that player’s mark, with at least two of the marks residing in a
specific Tic-Tac-Toe domain. Diagonals through the middle square do not count. On each turn,
the player in control can place two marks, either one in each distinct Tic-Tac-Toe domain or one
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mark in a Tic-Tac-Toe domain and one in the center square. Suppose that the state of the game
is as follows.

 

X O X O

 

Figure 11.8: Joint Tic-Tac-Toe.

Once it is not possible for either player to achieve a row utilizing the center square, the
only possible solutions lie in the domains of the Tic-Tac-Toe games that are joined by the center
square. e states of the two Tic-Tac-Toe games can be considered independently to find the
remaining optimal moves for the duration of the game. Only the game trees for each Tic-Tac-Toe
game, modulo the center square, need to be searched to determine the remaining optimal moves.
Given the current state, the game can be factored into two independent sub-games. However,
from the initial state, this game cannot be factored into independent games, because the shared
middle square intertwines the two domains as it is relevant to the satisfaction of goals in both
sub-games.

While this game is not factorable in general, it is factorable contingent upon entering a state
in which no row through the middle is possible for either player. We define the game as being
contingently factorable, since it reduces to independent simultaneous sub-games, given that it
enters a certain state. e raw computational benefit acquired from recognizing contingent factors
is less than that of recognizing initial factors, because it requires that the game be in a specific state.
However, the relative computational savings are still the same, because the number of accessible
fringe nodes reduces to the sum of the remaining accessible fringe nodes of the individual games
rather than the product.

At this point in time, there are no established techniques for discovering and exploiting
cases of conditional independence. However, it seems likely that some of the techniques just
discussed can be adapted to this case as well.





107

C H A P T E R 12

Discovery of Heuristics
12.1 INTRODUCTION
e biggest open problem in General Game Playing is the discovery of game-specific pruning
rules and/or evaluation functions. In many games, it is possible to find such heuristics. e chal-
lenge to find such heuristics without searching the entire game tree.

In this chapter, we look at just one technique of this sort. We start by defining latches and
inhibitors and discuss how to find them. en we show how the concepts work together in a
useful technique for removing states from the game tree and ordering states within the game tree.

12.2 LATCHES
A latch is a proposition that, once it becomes true (or, respectively, false), remains true (or, re-
spectively, false) no matter what the players do. A latch is not the same as a constant in that it
may change value during the game; but, once the value changes, it keeps the new value for all
remaining steps.

Almost all of the propositions in our usual description of Tic-Tac-Toe are latches. Once a
square is marked, it keeps that mark for the rest of the game; and once a cell ceases to be blank, it
can never again become blank. In other words, propositions like cell(1,2,x) and cell(2,3,o)
and cell(3,3,b) are all latches.

Given a propnet, it is straightforward to find latches. We enumerate values for all base
markings and check the value of the candidate proposition. If the value remains the same, then
the proposition is a latch.

One feature of this approach is that we do need to consider arbitrary action histories, only
possible combinations of actions. e downside is that we still need to cycle through all possible
states of the propnet as well. And thus the technique is prohibitively expensive in general.

A partial solution to this problem is to restrict one’s attention to those base and input
propositions that determine the proposition being checked. A set of base and input propositions
determine all and only the propositions in the propnet that are downstream from it, i.e., the
propositions themselves or the outputs of connectives for which they are the inputs and so forth.
In the worst case, this may be as bad as the full search just described, but in many cases it is much
less expensive.

Note that the idea of latches can be extended to groups of propositions.While no individual
proposition in the group is a latch, it is possible that the group as a whole might constitute a latch.
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Consider, for example, a game in which one of p or q is always true. en neither p nor q is a
latch but their disjunction does form a latch, even if that disjunction is not a node in the propnet.
Obviously, finding composite latches is more expensive than finding individual latches, but it may
be helpful in some games.

12.3 INHIBITORS
A proposition p inhibits a proposition q if and only if p must be false to achieve q or retain q. In
other words, whenever p is true in a state, q is false in the next state. When this occurs, we say
that p is an inhibitor of q.

Some inhibitors can be detected by a simple scan of the propnet for a game. If every path
from the base propositions and input propositions to q involve the negation of p, then p is an
inhibitor of q.

12.4 DEADSTATEREMOVAL
Dead state removal is the removal of dead states from a game tree, i.e., states that cannot lead to
satisfactory terminal states, i.e., those that can give a player an adequate score (e.g., 100 points,
points above a desired threshold, or a plurality of points in a zero sum game). Pruning the game
tree below dead states can save lots of computation.

In a propnet, if the truth (or falsity) of a proposition makes it a dead state, then we should
strive to ensure that the that proposition never becomes true (or, respectively, false). So the tech-
nique could equally well be called dead proposition detection.

e trick in dead state removal is to find such states without actually searching the game
tree starting with those states. Many ways of doing this have been proposed. In this section, we
examine one such technique based on the concepts of latches and inhibitors.

As an example, consider a game with the following behavioral rule. White gets 100 points
if both q and r are true. If we assume that this is the only way in which white can get 100 points,
then both q and r are goal inhibitors.

goal(white,100) :- true(q) & true(r)

Now let’s add in the rule shown below. If q ever becomes true, it remains true forever. In
other words, q is a latch. Obviously, in a situation like this, we would like to ensure that q never
becomes true or we lose the possibility of getting 100 points.

next(q) :- true(q)

Generalizing this gives us our rule for dead state removal / dead proposition setting—if a
latch inhibits the goal in a game, then we should not consider states in which that proposition is
set to true.

As an example of dead state removal in action, consider Untwisty Corridor. It is a single-
player game. ere are nine propositions: p and q1,..., q8. And there are four actions: a, b, c, and
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d. q1 is true in the initial state, and the goal is to turn on q8. Actions a, b, and c all turn on p.
If a q proposition is true, then action d turns on the next in sequence, provided that p is false;
otherwise it does nothing. ere is a step counter that terminates the game after seven steps.

e game tree for Untwisty Corridor has 349,525 states. However, most of those states are
dead states. Recognizing that p is a latch and a goal inhibitor allows us to prune all of these dead
states, leaving a total of 8 states to be considered, a considerable savings.

Note that this basic idea can be generalized in various ways. For example, we can look for
latches that inhibit 90 point states and latches that inhibit 80 point states and so forth; and we
can use our discoveries to order states depending on the values of the goals that are affected.
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C H A P T E R 13

Logic
13.1 INTRODUCTION
In the last few chapters we looked at propositional nets as an alternative to the Game Description
Language for encoding games. In this and the following chapters we return to GDL as the typical
language in which the rules of games are communicated in general game playing.

We first look at the task of computing logical consequences from a logic program. is
provides the background for implementing the basic functionality of a general game player to
generate legal moves, compute state update, and decide termination from a GDL game descrip-
tion (see Chapter 4).

As we will see, the ability to draw inferences from a logic program is also needed for con-
verting a GDL input into a propnet or any other data structure that is more efficient to compute
with. We will show how logic is used to find structure in GDL games such as symmetries, which
help improve the performance of a general game-playing system. We will look into how single-
player games can be solved in logic and how logic can be used to aid decision making through the
automatic construction of a goal-oriented evaluation function.

e basic type of inference we are concerned with can be formulated as queries that ask
whether a literal L, or a conjunction of literals L1 & L2 & : : : & Ln, follows from a set of
clauses. Often a query contains variables, and then we are interested in obtaining values for these
variables under which the query becomes true.

Suppose, for instance, that we want to infer a legal move for a player, say white, in a par-
ticular state of a game. We can formulate this as the query legal(white,L), which means to
determine for which L, if any, this is a logical consequence of the given rules.

Let’s use as an example the GDL description of a 2-player game known as Nim. Players
take turns removing one or more objects from one of several heaps. e game rules 1–10 below
define a legal move as reducing the size of a selected heap to a smaller value (Fig. 13.1). e facts
in lines 12–15 encode a randomly chosen current state.

13.2 UNIFICATION
e most basic step in computing a query to a logic program is called unification. It means the
process of replacing variables so that two logical expressions become similar. is is needed to
determine which rule from the program could provide an answer to an atomic query such as
legal(white,L).
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1 legal(P,reduce(X,N)) :-
2 true(control(P)) & true(heap(X,M)) & smaller(N,M)
3
4 smaller(X,Y) :- succ(X,Y)
5 smaller(X,Y) :- succ(X,Z) & smaller(Z,Y)
6 succ(0,1)
7 succ(1,2)
8 succ(2,3)
9 succ(3,4)

10 succ(4,5)
11
12 true(heap(a,2))
13 true(heap(b,0))
14 true(heap(c,5))
15 true(control(white))

Figure 13.1: A collection of rules from the game Nim along with facts encoding a given state.

Generally, speaking, a program fact A, or a program rule A W �B1 & …& Bm, can only
provide an answer to a query atom L if it is possible to replace the variables occurring in L and A
in such a way that the two atoms become similar.

Definition 13.1 A substitution is a finite set of replacements fx1=t1; : : : ; xn=tng such that

• n � 0;

• x1; : : : ; xn are pairwise distinct variables; and

• t1; : : : tn are terms (which may or may not contain variables).

e result SUBST.E; �/ of applying a substitution � D fx1=t1; : : : xn=tng to an expression
E is obtained by simultaneously replacing in E every xi by its replacement ti .

Definition 13.2 Two expressions E1 and E2 are unifiable if we can find a substitution � such
that SUBST.E1; �/ D SUBST.E2; �/. Any such � is called a unifier of E1 and E2.

Recalling the example from above, the atomic query legal(white,L) and the head,
legal(P,reduce(X,N)), of the first rule in Fig. 13.1, are unifiable. Indeed, there are many dif-
ferent unifiers for the two, including all of the following.
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�1 D {P/white,L/reduce(a,1),X/a,N/1}:
SUBST(legal(white,L), �1/ = legal(white,reduce(a,1))
SUBST(legal(P,reduce(X,N)), �1/ = legal(white,reduce(a,1))

�2 = {P/white,L/reduce(X,X),N/X}:
SUBST(legal(white,L), �2) = legal(white,reduce(X,X))
SUBST(legal(P,reduce(X,N)), �2/ = legal(white,reduce(X,X))

� = {P/white,L/reduce(X,N)}:
SUBST(legal(white,L), �) = legal(white,reduce(X,N))
SUBST(legal(P,reduce(X,N)), �) = legal(white,reduce(X,N))

Comparing the three substitutions, the last one, � , appears to be the most general way of
unifying our two atoms: While variable L is assigned a move of the form reduce(X,N) in all three
cases, unifier �1 additionally fixes specific values for X and N whereas �2 binds the two variables
together. But neither is necessary to unify legal(white,L) and legal(P,reduce(X,N)). is
leads to Definition 13.3 below, which refers to the composition of two substitutions �1 ı �2 as a
substitution that, for any expression E, satisfies

SUBST(E; �1 ı �2/ D SUBST(SUBST(E; �1/; �2)

Definition 13.3 A unifier � is more general than a unifier � if there is a third substitution � such
that � ı � D � .

A most general unifier for expressions E1 and E2 is one that is more general than any other
unifier of the two expressions.

It follows that indeed our unifier � from above is more general than both �1 and �2, as can
be seen from

�1 D � ı fX/a,N/1g

�2 D � ı fN/Xg

In fact, � is a most general unifier for our example. Fortunately it is a known fact that
whenever two atomic formulas are unifiable, then amost general unifier always exists and is unique
up to variable permutation.

Moreover, most general unifiers can be easily computed. e recursive algorithm below
takes as input two expressions and a partially computed unifier (which should be empty at the
first function call). It is assumed that expressions as well as partial unifiers are encoded as lists.
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For example, the function call
unify([legal,white,L],[legal,P,[reduce,X,N]],[])

returns the following most general unifier.

[[P,white],[L,[reduce,X,N]]]

e algorithm works by comparing the structure of the two expressions, argument by ar-
gument.

function unify (x,y,sigma)
{if (x == y) {return sigma};
if (is_variable(x)) {return unifyVariable(x,y,sigma)};
if (is_variable(y)) {return unifyVariable(y,x,sigma)};
if (! is_list(x))

{if (is_list(y) || x != y) {return fail}
else {return sigma}};

if (! is_list(y)) {return fail};
sigma = unify(head(x),head(y),sigma);
if (sigma == fail) {return fail}
else {return unify(tail(x),tail(y),sigma)}}

function unifyVariable(x,y,sigma)
{if (var z = replacement_for(x,sigma)) {return unify(z,y,sigma)};
if (var z = replacement_for(y,sigma)) {return unify(x,z,sigma)};
if (x != y && occurs_in(x,y)) {return fail}
else {return add_element([x,y],sigma)}}

Function replacement_for(x,sigma) is assumed to return the replacement for vari-
able x according to unifier sigma if such a replacement exists; and 0 otherwise. Function
occurs_in(x,y) should return true just in case variable x occurs anywhere inside the (possi-
bly nested) list y.

13.3 DERIVATIONSTEPS (WITHOUTNEGATION)
Backward-chaining is the standard technique for query answering in clausal logic. For this we
work our way backwards from the query, first by finding a rule that applies to the leading query
element and then proving that the condition of the rule, i.e., its body, holds.

A clause is applicable to atoms that can be unified with its head. ere is a small subtlety
though. Suppose we had formulated the search for legal moves of our player as legal(white,X)
instead of legal(white,L). We would then be unable to unify this query with the head of the
clause shown below.
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legal(P,reduce(X,N)) :- true(control(P)) & true(heap(X,M)) & smaller(N,M)

e reason is that no substitution � can possibly exist such that SUBST(legal(white,X),
�) = SUBST(legal(P,reduce(X,N)), �) because X cannot be equated with reduce(X,N).

But actually the scope of a variable never extends beyond the clause in which it appears. For
this reason, each application of a rule should be preceded by generating a “fresh” copy in which
the variables have been consistently replaced by new names that do not occur in the original query
or any other step in the same derivation.

For a single derivation step we then proceed as follows. Let’s first consider the case that
neither the query nor any of the program clauses contains a negated literal.

Given: Clauses G (without negation)
Query L1&L2& …&Ln (without negation), n � 1

Let: A W �B1&B2& …&Bm “fresh” variant of a clause in G;m � 0

� most general unifier of L1 and A

en: L1&L2& …&Ln ) SUBST(B1&B2& …&Bm&L2& …&Ln; �)

A derivation step thus replaces the leading element of the query by the body of a suitable
clause and applies the necessary variable bindings to all of the new query.

Here is an example that uses the first clause of Fig. 13.1.

legal(white,L) rule 1 with {P/white,L/reduce(X,N)}
) true(control(white))

& true(heap(X,M)) & smaller(N,M)

When the applied clause is a fact, i.e., a rule with empty body, then the respective query
element is removed without replacement, as in the following derivation step.

true(heap(X,M)) & smaller(N,M) rule 12 with {X/a,M/2}
) smaller(N,2)

13.4 DERIVATIONS
A complete derivation for a query is obtained by the repeated application of derivation steps until
all subgoals have been resolved. If the original query includes variables, then the computed answer
is determined by the variable bindings made along the way.

Definition 13.4 A series of derivation steps is called a derivation. A successful derivation is one
that ends with the empty query, denoted as “�”.
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e answer computed by a successful derivation is obtained by computing the composition
�1 ı �2 ı : : : ı �k of the unifiers of each step and restricting the result to the variables in the
original query.

An example is shown below, where again we use the clauses of Fig. 13.1.

legal(white,L) rule 1 with {P/white,L/reduce(X,N)}
) true(control(white)) rule 15 with {}

& true(heap(X,M)) & smaller(N,M)
) true(heap(X,M)) & smaller(N,M) rule 12 with {X/a,M/2}
) smaller(N,2) copy of rule 4 with {X'/N,Y'/2}
) succ(N,2) rule 6 with {N/1}
) �

Answer: {L/reduce(a,1)}

Here is another successful derivation for the same query.

legal(white,L) rule 1 with {P/white,L/reduce(X,N)}
) true(control(white)) rule 15 with {}

& true(heap(X,M)) & smaller(N,M)
) true(heap(X,M)) & smaller(N,M) rule 12 with {X/a,M/2}
) smaller(N,2) copy of rule 5 with {X'/N,Y'/2}
) succ(N,Z') & smaller(Z',2) rule 6 with {N/0,Z'/1}
) smaller(1,2) copy of rule 4 with {X''/1,Y''/2}
) succ(1,2) rule 7 with {}
) �

Answer: {L/reduce(a,0)}

Derivations aren’t always successful.

Definition 13.5 A derivation fails if it leads to a query whose first element does not unify with
the head of any available clause.

Here is an example of a derivation for the same query as above that leads to a dead-end.

legal(white,L) rule 1 with {P/white,L/reduce(X,N)}
) true(control(white)) rule 15 with {}

& true(heap(X,M)) & smaller(N,M)
) true(heap(X,M)) & smaller(N,M) rule 13 with {X/b,M/0}
) smaller(N,0) copy of rule 4 with {X'/N,Y'/0}
) succ(N,0)
) failure
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13.5 DERIVATIONTREE SEARCH
Some of the basic functions from Chapter 4 for a general game player require to consider all
possible derivations of a query. For instance, findlegals(role,state,description) is expected to
deliver every computable answer to legal(role,M) for a given state and game description. Back-
tracking provides a systematic way to compute these: after having found the first successful or
failed derivation, one goes back to the most recent choice where a different clause could have
been applied to the query, until all choices have been exhausted.

We can draw a tree with the original query as the root to illustrate the search space of
backward-chaining. Each computed answer then corresponds to one branch that ends with the
empty query. Switching to a different example, consider the problem of computing all legal moves
for a player in a given Tic-Tac-Toe position. Let’s use the clauses listed below in Fig. 13.2. Specif-
ically, the facts in lines 1–10 together encode the following game state, with white to move.

3

2

1

1 2 3

1 true(cell(1,1,x))
2 true(cell(1,2,o))
3 true(cell(1,3,b))
4 true(cell(2,1,o))
5 true(cell(2,2,o))
6 true(cell(2,3,x))
7 true(cell(3,1,b))
8 true(cell(3,2,x))
9 true(cell(3,3,b))

10 true(control(white))
11
12 legal(W,mark(X,Y)) :- true(cell(X,Y,b)) & true(control(W))
13 legal(white,noop) :- true(control(black))
14 legal(black,noop) :- true(control(white))

Figure 13.2: e rules for legality in Tic-Tac-Toe along with facts encoding a given position.
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e tree depicted in Fig. 13.3 shows the three legal moves that can be computed for white in
our example Tic-Tac-Toe position. e labels at the arcs indicate which clause has been selected.
Backtracking can be implemented by a depth-first search through this tree (Fig. 13.3).

Figure 13.3: Derivation tree to compute all legal moves for white from the clauses in Fig. 13.2.

For black there is just one legal move in the same position, as the computation tree in
Fig. 13.4 illustrates.

Figure 13.4: Derivation tree to compute all legal moves for black from the clauses in Fig. 13.2.

A correct implementation of a complete search through a derivation tree requires you to
address the problem of potentially infinite derivations that may arise with some game descriptions.
Even if a GDL describes a finite game, there is always the risk that a computation loops because
of a recursive clause. Suppose, for example, the following rule were added to the game description
of Nim in Fig. 13.1.

16 smaller(X,Y) :- smaller(X,Y)
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is clause is obviously redundant but perfectly correct, both logically and syntactically.
A straightforward implementation to compute derivations with this rule will eventually enter a
non-terminating loop.

legal(white,L) rule 1 with {P/white,L/reduce(X,N)}
) true(control(white)) rule 15 with {}

& true(heap(X,M)) & smaller(N,M)
) true(heap(X,M)) & smaller(N,M) rule 12 with {X/a,M/2}
) smaller(N,2) copy of rule 16 with {X'/N,Y'/2}
) smaller(N,2) …
) …

Although it may be unlikely that you encounter such a tricky game description in practice,
it can be a good idea to add a simple loop check to avoid non-terminating computations. Note
that potential loops may be less obvious to detect from the GDL itself than in our example if they
are spread over several clauses.

Recursive clauses may even lead to non-terminating derivations in which the query grows
forever without repetition. To see why, consider the following alternative formalization of clause 5
from Fig. 13.1.

5* smaller(X,Y) :- smaller(Z,Y) & succ(X,Y)

Logically, this means the very same thing, but it may give rise to a non-looping, infinite
derivation as follows.

legal(white,L) rule 1 with {P/white,L/reduce(X,N)}
) true(control(white)) rule 15 with {}

& true(heap(X,M)) & smaller(N,M)
) true(heap(X,M)) & smaller(N,M) rule 12 with {X/a,M/2}
) smaller(N,2) copy of rule 5* with {X'/N,Y'/2}
) smaller(Z',2) & succ(N,Z') copy of rule 5* with {X''/Z',Y''/2}
) smaller(Z'',2)

& succ(Z',2) & succ(N,Z') …
) …

is problem can be avoided simply by reordering the atoms in a rule in such a way that
recursive calls always come last.

13.6 HANDLINGNEGATION

Let’s now generalize our derivation procedure to queries and programs that include negative liter-
als. A subgoal of the form ~A can be treated according to a principle known as negation-by-failure.
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It says that ~A is true ifA itself cannot be derived. is is justified by our use of theminimal model
as the semantics of a set of GDL clauses.

For a single derivation step in the general case we thus proceed as follows.

Given: Clauses G
Query L1&L2& …&Ln (n � 1)

Case: L1 D A positive literal
� proceed as before

Case: L1 D ~A negative literal without variables
� if all derivations for A fail: L1&L2& …&Ln ) L2& …&Ln

� if a derivation for A succeeds: L1&L2& …&Ln ) failure

Recall, for example, one of the termination condition in Tic-Tac-Toe.

terminal :- ~open
open :- true(cell(M,N,b))

As long as there is at least one blank cell in the current state, the sub-goal
true(cell(M,N,b)) has a successful derivation, and hence so has the atom open. Consequently,
the negative sub-goal ~open fails unless all cells have been marked. e query terminal therefore
fails too, provided that no other terminating conditions hold that allow it to be derived.

But when a state is reached in which all cells have been marked, then true(cell(M,N,b))
can no longer be derived, and hence open fails. Accordingly, ~open now succeeds, and so does
the query terminal.

e special, game-independent predicate distinct is computed very much like a negative
subgoal.

Given: Query L1&L2& …&Ln (n � 1)

Case: L1 D distinct(t1; t2) without variables
� if t1 and t2 are syntactically different: L1&L2& …&Ln ) L2& …&Ln

� if t1 and t2 are syntactically identical: L1&L2& …&Ln ) failure

It is crucial that only negative subgoals without variables can be subjected to the negation-
by-failure computation. e same holds for the distinct relation. In some cases it may be nec-
essary to reorder the subgoals to ensure that all variables have been replaced by non-variable terms
before a negative literal gets selected. e GDL description of Multiple Buttons And Light (see
Chapter 11) is a point in case. Consider the following encoding of a given position and a move
in that game, along with one of the update rules.
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1 true(p(1))
2 true(p(2))
3 true(p(3))
4 does(white,a(2))
5
6 next(p(X)) :- ~does(white,a(X)) & true(p(X))

Naturally, we expect to be able to derive two answers to the query next(p(Z)), namely
{Z/1} and {Z/3}, since the first and third light are not affected by the action. So let’s consider the
situation after the first step in a derivation.

next(p(Z)) rule 6 with {X/Z}
) ~does(white,a(Z)) & true(p(Z))

But now if we were to ignore the restriction about negative literals with variables and chose
the subgoals in the given order, then the query would fail. For the positive part of the negative
literal, does(white,a(Z)), obviously has a successful derivation:

does(white,a(Z)) rule 4 with {Z/2}
) �

If, however, we reorder the subgoals so as to ensure that before we select a negated subgoal,
all its variables have been substituted, then the two answers are obtained as expected.

next(p(Z)) rule 6 with {X/Z}
) true(p(Z)) & ~does(white,a(Z)) rule 1 with {Z/1}
) ~does(white,a(1)) query does(white,a(1)) fails
) �

next(p(Z)) rule 6 with {X/Z}
) true(p(Z)) & ~does(white,a(Z)) rule 3 with {Z/3}
) ~does(white,a(3)) query does(white,a(3)) fails
) �

Fortunately, the syntactic restrictions on valid GDLs guarantee that subgoals can always
be reordered in this manner. Specifically, every variable in a rule must occur in a positive literal in
the body, not counting the special game-independent predicate distinct. Hence, you can always
compute values for all variables in a clause before selecting a negative subgoal or an instance of
distinct.

e negation-by-failure principle is recursively applied in case of nested negation, that is,
when negative sub-goals arise during an attempted derivation for another negated literal. An
illustrative example is given by the following excerpt from a fictitious game description.
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1 role(red)
2 role(blue)
3 role(green)
4
5 true(free(blue))
6
7 trapped(R) :- role(R) & ~true(free(R))
8 goal(W,100) :- role(W) & ~trapped(W)

Only player blue can be shown to have achieved the goal in the current state, as per the
nested derivation below.

goal(blue,100) rule 8 with {W/blue}
) role(blue) & ~trapped(blue) rule 2
) ~trapped(blue) sub-derivation �
) �

�

trapped(blue) rule 7 with {R/blue}
) role(blue) & ~true(free(blue)) rule 2
) ~true(free(blue)) sub-derivation �
) failure

�

true(free(blue)) rule 5
) �

e attempt to derive goal(red,100) fails.
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goal(red,100) rule 8 with {W/red}
) role(red) & ~trapped(red) rule 1
) ~trapped(red) sub-derivation �
) failure

�

trapped(red) rule 7 with {R/red}
) role(red) & ~true(free(red)) rule 1
) ~true(free(red)) sub-derivation �
) �

�

true(free(red))
) failure

e same is true for goal(green,100).

EXERCISES
13.1. e goal of this exercise is to unlock the mystery behind the single-layer game shown

below—and then solve it.

role(you)

succ(1,2)
succ(2,3)
succ(3,4)
succ(4,5)
succ(5,6)
succ(6,7)
succ(7,8)

is_row(1)
is_row(Y) :-

succ(X,Y)

base(step(1))
base(step(2))
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base(step(3))
base(step(4))
base(step(5))
base(row(X,empty)) :-

is_row(X)
base(row(X,one_coin)) :-

is_row(X)
base(row(X,two_coins)) :-

is_row(X)
input(you,jump(X,Y)) :-

is_row(X) &
is_row(Y)

init(step(1))
init(row(X,one_coin)) :-

is_row(X)

babbage(X,Y) :-
succ(X,Y)

babbage(X,Y) :-
succ(X,Z) &
true(row(Z,empty)) &
babbage(Z,Y)

lovelace(X,Y) :-
succ(X,Z) &
true(row(Z,empty)) &
lovelace(Z,Y)

lovelace(X,Y) :-
succ(X,Z) &
true(row(Z,one_coin)) &
babbage(Z,Y)

turing(X,Y) :-
succ(X,Z) &
true(row(Z,empty)) &
turing(Z,Y)
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turing(X,Y) :-
succ(X,Z) &
true(row(Z,one_coin)) &
lovelace(Z,Y)

turing(X,Y) :-
succ(X,Z) &
true(row(Z,two_coins)) &
babbage(Z,Y)

legal(you,jump(X,Y)) :-
true(row(X,one_coin)) &
true(row(Y,one_coin)) &
turing(X,Y)

legal(you,jump(X,Y)) :-
true(row(X,one_coin)) &
true(row(Y,one_coin)) &
turing(Y,X)

next(row(X,empty)) :-
does(you,jump(X,Y))

next(row(Y,two_coins)) :-
does(you,jump(X,Y))

next(row(X,C)) :-
true(row(X,C)) &
does(you,jump(Y,Z)) &
distinct(X,Y) &
distinct(X,Z)

next(step(Y)) :-
true(step(X)) &
succ(X,Y)

terminal :-
~open
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open :-
legal(you,M)

goal(you,100) :-
true(step(5))

goal(you,0) :-
~true(step(5))

(a) Answer Substitutions
Compute all successful derivations and their answer substitutions to the
query init(F).
Hint: You should obtain nine different answers, which together form the initial
game state. Can you draw a simple diagram to visualize it?

(b) Derivations
e key to unlocking the mystery is to understand the meaning of the three recursive
relations, babbage, lovelace, and turing. To get the idea, suppose given some
facts shown below.

true(row(1,one_coin))
true(row(2,one_coin))
true(row(3,empty))
true(row(4,empty))
true(row(5,one_coin))
true(row(6,one_coin))
true(row(7,two_coins))
true(row(8,one_coin))

Which of the following queries have a successful derivation?

• babbage(2,5)
• babbage(2,6)
• lovelace(1,5)
• lovelace(1,6)
• turing(1,6)
• turing(1,7)
• turing(6,8)

Can you now describe in words the meaning of turing(X,Y)?
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(c) Derivations: LegalMoves
Next, have a look at the definition for legal(you,jump(X,Y)). In words, what are
the preconditions for jumping from row X to row Y? How many actions are possible
in the initial game state?

(d) Derivations: State Update
Now pick any one of the legal actions jump(m,n) in the initial state and compute
the new state after does(you,jump(m,n)). Can you describe in words what is the
effect of jumping from X to Y?

(e) Playing
e definitions for terminal and goal(you,100), respectively, imply that the
game ends when you are stuck (i.e., there are no more legal moves) and that you
win the game when you can make the maximum of four moves before getting stuck.
Find a sequence of actions that solves this game!
Hint: ere is more than one solution.

(f ) Playing
Bonus challenge: We humans are often better than computers at generalising a so-
lution. How would you solve the game if you start with 998 coins in a row and the
goal is to make the maximum of 499 moves without getting stuck?
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C H A P T E R 14

Analyzing Games with Logic
14.1 INTRODUCTION
Analyzing a set of rules with the aim to acquire useful knowledge about a new game is arguably
the biggest, and most interesting, challenge for general game-playing systems. Most knowledge
is only implicit in the description of a game and therefore needs to be learned, structured, and
verified before it can be used to improve play.

e range of useful knowledge extends from basic properties, such as whether a game is
zero-sum or cooperative, to expertise that can fill entire databases, such as the world’s chess knowl-
edge accumulated over centuries of play.

e uses of knowledge in a general game player are equally wide. Simple properties help
to decide on the right search method, like minimax with alpha-beta pruning in case a game has
been identified as zero sum with alternating moves. Structural knowledge, e.g., of symmetries in
a game, can be used to accelerate any type of search. Knowledge of the value of different pieces
or of different board regions can form the basis for evaluation functions, etcetera.

While the possibilities to acquire and use knowledge in a general game player are nearly
limitless, in this and the following two chapters wewill consider approaches that are both relatively
easy to implement and at the same time (almost) universally applicable.

We begin with a solution to a very basic problem that you need to solve if, for example,
you want to transform a GDL description into a more efficient representation like a propositional
network. To do so you need to determine the possible values for the arguments of each function
and relation in a given game description. For some relations, like true, next, and does, this is
easily computed from the base and action relation. But for auxiliary predicates and functions,
their input values need to be explicitly computed.

14.2 COMPUTINGDOMAINS
Computing the domains is actually fairly easy. We just need to examine the dependencies among
the arguments and variables in each game rule. is can be achieved through the construction of
the domain graph for a given GDL description.

e vertices of this graph include all function symbols and constants that occur in the
rules. In our GDL-description for Tic-Tac-Toe in Chapter 2, for example, we find the following
constants and functions, listed in the order of appearance.

white, black, cell, x, o, b, control, mark, noop, 1, 2, 3
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e vertices also includes one node for each argument position of each predicate and func-
tion. An example are the two nodes row[1] and row[2] for the auxiliary binary function row
from our Tic-Tac-Toe description.

e edges in the domain graph are directed. ey indicate the dependencies between the
constants, functions, and argument positions.

Definition 14.1 e domain graph for a set of GDL rulesG is the smallest directed graph .V;E/
with vertices V and edges E that satisfies all of the following.

1. c 2 V for each constant c occurring in G.

2. p; pŒ1�; : : : ; pŒn� 2 V for each n-ary predicate or function symbol p occurring in G.

3. f ! pŒi � 2 E for each occurrence of a function (or constant) f in the i-th argument of an
expression p in the head of a rule in G.

4. pŒj � ! qŒi � 2 E whenever a variable X in a clause in G is shared by

• the i-th argument of expression q in the head and
• the j -th argument of expression p in the body.

5. E includes the three edges

• base[1] ! true[1]

• input[1] ! does[1]

• input[2] ! does[2]

As an example, recall one of the rules from our Tic-Tac-Toe description in Chapter 2.

base(cell(M,N,x)) :- index(M) & index(N)

is rule gives rise to four edges in the Tic-Tac-Toe domain graph according to items 3
and 4 of Definition 14.1, as shown in the diagram below.

cell[1]

cell[2]cell[3]

cell

x

base[1]

index[1]

Figure 14.1: Some edges in the Tic-Tac-Toe domain graph.
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e edges cell ! base[1] and x ! cell[3] are obtained from the head of the clause.
e edges connecting index[1] to cell[1] and cell[2] follow, respectively, from the shared
variables M and N.

For another example, consider the clauses defining the auxiliary concepts of a row, column,
diagonal, and line.

line(Z) :- row(M,Z)
line(Z) :- column(N,Z)
line(Z) :- diagonal(Z)

row(M,Z) :-
true(cell(M,1,Z)) &
true(cell(M,2,Z)) &
true(cell(M,3,Z))

column(N,Z) :-
true(cell(1,N,Z)) &
true(cell(2,N,Z)) &
true(cell(3,N,Z))

diagonal(Z) :-
true(cell(1,1,Z)) &
true(cell(2,2,Z)) &
true(cell(3,3,Z))

diagonal(Z) :-
true(cell(1,3,Z)) &
true(cell(2,2,Z)) &
true(cell(3,1,Z))

Along with the base definition for cell,

index(1)
index(2)
index(3)

base(cell(M,N,x)) :- index(M) & index(N)
base(cell(M,N,o)) :- index(M) & index(N)
base(cell(M,N,b)) :- index(M) & index(N)

these rules determine edges in the Tic-Tac-Toe domain graph as follows.
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line[1]

row[1]

row[2]

column[1]

column[2]

diagonal[1]

cell[1]

cell[2]

cell[3]

1

2

3

b

x

o

Figure 14.2: An excerpt of the Tic-Tac-Toe domain graph that determines the range of values for
some of the auxiliary predicates.

e domains for the four features can easily be computed from this graph by following
backwards along all possible paths from the argument positions to the constants. e possible
arguments of line, say, are determined as follows.

Domain(line[1]) D Domain(row[2]) [ Domain(column[2]) [

Domain(diagonal[1])
D Domain(cell[3])
D {b,x,o}

Altogether we thus obtain the domains shown in the table below.

Table 14.1: Some of the function symbols and their argument range from the rules of Tic-Tac-Toe

Function Domain

line {b,x,o}

row {1,2,3}  {b,x,o}

column {1,2,3}  {b,x,o}

diagonal {b,x,o}
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In the same way we can compute the domains for all other predicates and functions used
in Chapter 2 to describe Tic-Tac-Toe.

Table 14.2: e argument ranges of the remaining predicates and functions from the Tic-Tac-Toe
game description

Predicate/Function Domain

role {white,black}

index {1,2,3}

cell {1,2,3}  {1,2,3}  {b,x,o}

control {white,black}

base {cell({1,2,3} {1,2,3} }

true {cell({1,2,3} {1,2,3} }

mark {1,2,3}  {1,2,3}

input {white,black}  {mark({1,2,3} {1,2,3}),noop}

does {white,black}  {mark({1,2,3} {1,2,3}),noop}

init {cell({1,2,3} {1,2,3} {b}),control({white})}

legal {white,black}  {mark({1,2,3} {1,2,3}),noop}

next {cell({1,2,3} {1,2,3} }

goal {white,black}  {0,50,100}

14.3 REDUCINGTHEDOMAINS FURTHER
While the domain graph helps to identify the range of possible values for each individual argu-
ment, it does not consider dependencies between different argument positions of a predicate or
function. As a consequence, it may still generate many unnecessary instances.

Take, for example, the following rules from a GDL description of the game of Chess.

coordinate(a) coordinate(b) coordinate(c) coordinate(d)
coordinate(e) coordinate(f) coordinate(g) coordinate(h)

coordinate(1) coordinate(2) coordinate(3) coordinate(4)

http://ggpserver.general-game-playing.de/public/view_game.jsp?name=chess
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coordinate(5) coordinate(6) coordinate(7) coordinate(8)

next_file(a,b) next_file(b,c) next_file(c,d) next_file(d,e)
next_file(e,f) next_file(f,g) next_file(g,h)

next_rank(1,2) next_rank(2,3) next_rank(3,4) next_rank(4,5)
next_rank(5,6) next_rank(6,7) next_rank(7,8)

adjacent(X1,X2) :-
next_file(X1,X2)

adjacent(X1,X2) :-
next_file(X2,X1)

adjacent(Y1,Y2) :-
next_rank(Y1,Y2)

adjacent(Y1,Y2) :-
next_rank(Y2,Y1)

kingmove(U,V,U,Y) :-
adjacent(V,Y) & coordinate(U)

kingmove(U,V,X,V) :-
adjacent(U,X) & coordinate(V)

kingmove(U,V,X,Y) :-
adjacent(U,X) & adjacent(V,Y)

e rules define a king’s move as going one square in either direction, that is, vertically,
horizontally, or diagonally. From the domain graph we can compute the possible values for the
arguments of the five predicates, as shown in Table 14.3.

But many of the instances thus obtained are unnecessary because they will never be
referred to when playing the game. To begin with, the domains for both adjacent(X,Y)
and kingmove(U,V,X,Y) do not distinguish between file and rank coordinates. As a conse-
quence, the domain graph generates superfluous instances like for example adjacent(a,2) or
kingmove(d,e,5,6).

Even among the instances of kingmove(U,V,X,Y) for which both (U,V) and (X,Y) are
proper squares, the vast majority is not needed given the limited mobility of a king: For every
(U,V) there is a maximum of eight squares (X,Y) that a king can reach in one move. If we were
able to identify all combinations of arguments that do not correspond to a possible move, such as
kingmove(e,2,g,7), then this would significantly reduce the number of instances that we need
to compute. A simple calculation shows how much can thus be saved. ere are 164 D 65; 536

instances of kingmove with the domain as per Table 14.2. If we respect the distinction between
file and rank coordinates, this number reduces to 84 D4,096. Of these, less than 82 � 8 D 512
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Table 14.3: e domains of some predicates from the rules of Chess as determined by the domain
graph

PredicatePredicatePredicatePredicatePredicatePredicatePredicate DomainDomainDomain

coordinate {a,b,c,d,e,f,g,h,1,2,3,4,5,6,7,8}

next_file {a,b,c,d,e,f,g}  {b,c,d,e,f,g,h}

next_rank {1,2,3,4,5,6,7}  {2,3,4,5,6,7,8}

adjacent {a,…,h,1,…,8}  {a,…,h,1,…,8}

kingmove {a,…,h,1,…,8}  {a,…,h,1,…,8}  {a,…,h,1,…,8}  {a,…,h,1,…,8}

correspond to an actual king move. (e exact number is 444 because a king at the border can
reach no more than five squares and only three from a corner.)

e following procedure allows you to eliminate in a given game description G most of the
instances of predicates that will never be derivable.

1. Build the domain graph for G to determine the maximal range of values for all predicates
and functions in the game description.

2. Let GC be obtained from G by

• adding all facts true(t) and does(t1,t2) that follow from the domain graph; and
• deleting all negative conditions from the rules in G.

3. For all possible predicate instances (except for the keywords true and does) with the do-
mains obtained in step 1, check if they can actually be computed fromGC. Keep only those
that can.

4. For all possible instances of true(t) that follow from the domain graph, keep only those
for which init(t) or next(t) can be computed from GC.

5. For all possible instances of does(t1,t2) that follow from the domain graph, keep only
those for which legal(t1,t2) can be computed from GC.

Let’s see how steps 1–3 of this process will indeed eliminate all unnecessary combinations
of values from Table 14.2. To begin with, out of the 49 possible instances of next_file(X,Y)
only the seven that are given as facts can be computed from the given game rules. e same is
true for next_rank(X,Y). For adjacent(X,Y), we can compute 28 instances (out of a total of
16�16 = 256), which rules out instances like, say, adjacent(a,2) and adjacent(8,2). Finally,
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the only computable instances of kingmove(U,V,X,Y) are those 444 that correspond to actual
moves by a king.

e reason for augmenting G in step 2 by all possible state propositions and all actions is
that many predicates directly or indirectly depend on them. An example from Tic-Tac-Toe is
shown below.

line(Z) :- row(M,Z)

row(M,Z) :-
true(cell(M,1,Z)) &
true(cell(M,2,Z)) &
true(cell(M,3,Z))

With all possible instances of true(cell(M,N,Z)) in Tic-Tac-Toe added, it follows that
each of the nine combinations of arguments for row(M,Z) according to Table 14.1 may indeed
at some point be true. e same holds for the three instances of line(Z).

e reason for deleting all negative conditions in step 2 is that it would be incorrect to
uphold them after having added all possible state propositions and actions. is can be seen, for
example, with the rules for a draw in Tic-Tac-Toe.

goal(white,50) :- ~line(x) & ~line(o)
goal(black,50) :- ~line(x) & ~line(o)

Obviously, both line(x) and line(o) will be computable given all possible instances of
true(cell(M,N,X)). Hence, if the negative conditions in the rules for goal(white,50) and
goal(black,50) were not ignored, then we would wrongly conclude that neither of the two
predicate instances will ever be derivable.

Step 4 of the procedure above is used to identify propositions that can never be true in a
reachable game state. Similarly, step 5 is used to identify actions that will never be possible in a
reachable state. As an example, consider a further rule from the GDL description of Chess, where
the general concept of a king move from before is used to define the conditions under which a
player can legally move this piece.

piece_owner_type(wk,white,king)
piece_owner_type(bk,black,king)

legal(P,move(K,U,V,X,Y)) :-
true(control(P)) &
piece_owner_type(K,P,king) &
true(cell(U,V,K)) &
kingmove(U,V,X,Y) &
occupied_by_opponent_or_blank(X,Y,P) &
~threatened(P,X,Y)



14.4. INSTANTIATINGRULES 137

Recall that we were able in step 3 to restrict the possible instances of kingmove(U,V,X,Y)
to those for which (X,Y) is one square away from (U,V). e very same restriction fol-
lows for legal(white,move(wk,U,V,X,Y)) and legal(black,move(bk,U,V,X,Y)) accord-
ing to the rule just given. Hence, step 5 eliminates all instances of moves of the form
does(white,move(wk,U,V,X,Y)) and does(black,move(bk,U,V,X,Y)) for which the two
squares are not adjacent.

If steps 4 and 5 lead to a reduction in the set of state propositions and actions, then step 3
can be repeated with this reduced set in order to possibly further constrain the derivable predicate
instances. is, in turn, may lead to more reductions in steps 4 and 5, so that the whole process
can be iterated until no more ground predicates, state propositions, or moves are eliminated.

14.4 INSTANTIATINGRULES
Once you have computed the domains of all predicates and functions, you can generate all rel-
evant ground instantiations of the game rules, for example in order to construct a propnet. To
instantiate a rule, all variables need to be substituted by appropriate values, i.e., members of the
domain associated with the argument position in which each variable occurs. Variables with mul-
tiple occurrences in a rule can only be instantiated with an element from the intersection of all
corresponding domains.

During the instantiation process, you can evaluate each condition of the form
distinct(X,Y) in the body of a rule as soon as both arguments have received a value. If true,
the condition itself can be removed, and if false, the entire instance of the rule should be deleted.

As an illustrative example, let’s look at the Tic-Tac-Toe rule shown below.

next(cell(M,N,b)) :-
does(W,mark(J,K)) &
true(cell(M,N,b)) &
distinct(M,J)

From the domain computation we know that M,N,J,K 2 {1,2,3} and W 2

{white,black}. Hence, the rule can be instantiated in 34 � 2 D 162 different ways. But every
third of these instances violates the condition distinct(M,J), so that in fact only 108 need to
be generated.

A fully instantiated game description can be reduced further in size by identifying sup-
porting concepts that are never used by any other clause. Such instances can safely be removed
together with their defining clauses. Again, this is a process that can be repeated until no further
reduction is possible.

A point in case are the Tic-Tac-Toe rules defining a line.

line(Z) :- row(M,Z)
line(Z) :- column(N,Z)
line(Z) :- diagonal(Z)
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row(M,Z) :-
true(cell(M,1,Z)) &
true(cell(M,2,Z)) &
true(cell(M,3,Z))

column(N,Z) :-
true(cell(1,N,Z)) &
true(cell(2,N,Z)) &
true(cell(3,N,Z))

diagonal(Z) :-
true(cell(1,1,Z)) &
true(cell(2,2,Z)) &
true(cell(3,3,Z))

diagonal(Z) :-
true(cell(1,3,Z)) &
true(cell(2,2,Z)) &
true(cell(3,1,Z))

From Table 14.1 we know that X 2 {b,x,o} for line(X). Indeed, line(b) is derivable
in many reachable states, including the initial one. But the supporting concept of a line is needed
only for the goal rules shown below, which do not refer to blank lines.

goal(white,100) :- line(x) & ~line(o)
goal(white,50) :- ~line(x) & ~line(o)
goal(white,0) :- ~line(x) & line(o)

goal(black,100) :- ~line(x) & line(o)
goal(black,50) :- ~line(x) & ~line(o)
goal(black,0) :- line(x) & ~line(o)

Consequently, we can delete each rule for line(X) that has been instantiated with X=b.
is eliminates 7 of the 21 clauses with predicate line in the head obtained from the domains
of Table 14.1. Moreover, once these have been removed there are no rules that use any of the
conditions row(1,b), row(2,b), row(3,b), column(1,b), column(2,b), column(3,b), or
diagonal(b). Hence, these and their defining clauses can be eliminated too.

e process of instantiating logic program rules is also known as grounding. Some of the
techniques we described and others have been implemented in efficient systems that are com-
monly referred to as grounders and are not specific to GDL. An example is the grounder Gringo.

http://potassco.sourceforge.net/
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14.5 ANALYZINGTHE STRUCTUREOFGDLRULES

Analyzing the structure of GDL clauses has the goal to better understand the meaning of a rule by
abstracting from the syntax details. is can be useful for many purposes. For instance, it enables
the comparison of different formalizations of essentially the same rule. A general game player
may thus be able to recognize a known game that just comes in a new guise.

Focusing on the structure of GDL rules also allows a general game-playing system to rec-
ognize symmetries in arbitrary games. As an example, the figure below illustrates two standard
symmetries on the Tic-Tac-Toe board that you will be able to identify with the help of the struc-
tural rule analysis detailed below.

3

2

1

1 2 3

3

2

1

1 2 3

3

2

1

1 2 3

Figure 14.3: ree symmetric positions in Tic-Tac-Toe. A rotation by 180ı transforms the position
shown on the left-hand side into the center board. Mirroring the latter along the first diagonal results
in the position on the right-hand side.

Determining symmetries like these requires to look at the game description as a whole and
to see if some of its elements can be systematically exchanged with each other without affecting
the meaning of any of the rules. e rules for winning or losing a game must be included in this
analysis as symmetries can be broken by an asymmetric goal definition. If, say, a Tic-Tac-Toe
player wins by filling a row but not a column with his or her markers, then the mirror symmetry
in Fig. 14.5 would no longer apply. (e 180ı rotational symmetry, in contrast, would still hold.)

14.6 RULEGRAPHS

Much like the domain computation in Section 14.2, the structural analysis can be performed on
a graph constructed from the GDL rules. Specifically, the so-called rule graph for GDL game
description is obtained through the four steps described below. Prior to applying the following
definition, all variables in a game description should be renamed so that no two rules share the
same variables. Constants are treated like function symbols with zero arguments. e definition
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is rather involved, but the example that immediately follows illustrates in detail how to construct
the graph step by step.

Definition 14.2 e rule graph for a set G of GDL rules is a colored directed graph .V;E; c/
whose vertices V , edges E, and vertex coloring c are obtained as follows.

1. Add a vertex for each occurrence, in G, of a logical connective, predicate symbol, function
symbol, and variable. Connect each vertex v that represents a logical connective, predicate,
or function p with the vertices for the arguments of p.

2. For each vertex v thus obtained:

• If v stands for an n-ary function or predicate symbol p that is not a GDL keyword,
– add vertices labeled pŒ1�; : : : ; pŒn�;
– for each such new vertex pŒi �, add a directed edge from pŒi � to the vertex that in

step 1 was created for the actual argument.
• If v stands for the binary connective “:-” or a binary GDL keyword p, add a directed

edge from the first to the second argument.

3. Add a vertex for each variable or symbol p that occurs in G and is not a GDL keyword.
Add a directed edge from this vertex for p to

• each occurrence node for p constructed in step 1, and
• each node for pŒ1�; : : : ; pŒn� constructed in step 2 if p is a function or predicate symbol

with n arguments.

4. Color the vertices such that

• each logical connective has a unique color;
• each GDL keyword has a unique color; and
• all other nodes are colored in one of six colors, which depends only on their type: pred-

icate occurrence, function occurrence, variable occurrence, argument, variable symbol,
or non-variable symbol.

For illustration, recall a simple rule from our Tic-Tac-Toe game description.

open :- true(cell(M,N,b))

e result of the first step in the construction of this clause’s rule graph is shown below.
Vertices are depicted in different shapes to indicate different types, which will help with the
coloring in the end.
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: —

true

Figure 14.4: Step 1: A node for each occurrence of a logical connective (here, “:-”), predicate (open,
true), function (cell, b), and variable (M, N). Directed edges lead from vertices to their arguments, if
any.

In the second step, argument position nodes are added for non-keyword cell and con-
nected to the respective occurrences. Also added is an edge between the two arguments of the
logical operator “:-” (Fig. 14.5).

In step 3, nodes are added for each domain-dependent predicate symbol, function symbol,
constant, and variable (Fig. 14.6).

In step 4, all vertices get colored according to their type, which completes the construction
of the rule graph (Fig. 14.7). Since the structure of a set of rules is independent of the names given
to the variables, functions, and predicates, these symbols now become irrelevant. is will enable
us to compare game axiomatizations that are structurally similar and differ only in the symbols
being used.
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: —

true

cell[1]

cell[2]

cell[3]

Figure 14.5: Step 2: Indicating arguments.

14.7 USINGRULEGRAPHS

14.7.1 DETERMININGTHEEQUIVALENCEOFGAMEDESCRIPTIONS
e rule graph substitutes concrete symbols by abstract colors while maintaining the structure of
the original clauses. is allows to compare syntactically different but otherwise identical game
descriptions. An isomporhism between two colored graphs is a one-to-one mapping from the
vertex set of one graph into the vertex set of the other that preserves both the edge structure and
the coloring. Two graphs with an isomorphism between them are called isomorphic. Two GDL
descriptions whose rule graphs are isomorphic describe essentially the same game.

As a simple example, the rule graph for our GDL description of Tic-Tac-Toe is isomorphic
to the rule graph of any other description that just uses different coordinates, e.g., (a,a), (a,b),
…instead of (1,1), (1,2), …, or different symbols for the two markers.

14.7.2 COMPUTINGSYMMETRIES
e rule graphs can moreover be used for symmetry detection. is requires to compute auto-
morphisms, that is, one-to-one mappings from a rule graph into itself that are both structure- as
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: —

true

cell[1]

cell[2]

cell[3]

cellopen

?m

?n

b

Figure 14.6: Step 3: Connecting the symbols to their occurrences.

well as color-preserving. As an example, consider exchanging two vertices of the rule graph for
Tic-Tac-Toe as follows:

1 ! 3, 3 ! 1

is mapping constitutes an automorphism for the sub-graph depicted in Fig. 14.8, which
is obtained from the two GDL rules shown below.

init(cell(1,3,b))
init(cell(3,1,b))

Our observation generalizes from this small sub-graph to the entire rule graph for our Tic-
Tac-Toe description, which means that we have found a symmetry in this game. More specifi-
cally, we have discovered the 180ı rotation symmetry from Fig. 14.5 above, which is obtained by
swapping the first and third coordinate, just like in our automorphism.

e mirror symmetry along the first diagonal of the Tic-Tac-Toe board is obtained by the
following exchange of two vertices in the rule graph.



144 14. ANALYZINGGAMESWITHLOGIC

Figure 14.7: e final rule graph for open :- true(cell(M,N,b)).

cell[1] ! cell[2], cell[2] ! cell[1]

ismapping also can be shown to be an automorphism on the graphs depicted in Figs. 14.7
and 14.9, respectively, and in fact provides an automorphism for the entire Tic-Tac-Toe rule
graph.

e most common use of symmetry detection in general game players is to reduce the
search space. You can, for example, prune a branch of a search tree when another branch with a
symmetric joint move exists. You can also identify symmetric states and collate them in a single
node in a search tree because, by definition, they must have the same value for all players.
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init init

cell[2]

cell[3]

cell

1

3

b

cell[1]

Figure 14.8: is graph remains the same when the two nodes 1 and 3 are exchanged. You can easily
verify this by drawing the graph with the left-hand side and the right-hand side swapped.

14.8 EXERCISES
14.1. is exercise aims at determining the relevant ground instances of all rules of a single-

player game called blocksworld (Fig. 14.9).

(a) Let’s start with the rules below.

block(a)
block(b)
block(c)

base(table(X)) :- block(X)
base(clear(X)) :- block(X)
base(on(X,Y)) :- block(X) & block(Y)

From these rules draw the domain graph with nodes a,b,c,table,clear,on and
block[1],base[1],table[1],clear[1],on[1],on[2].



146 14. ANALYZINGGAMESWITHLOGIC

c

ba

a

b

c

Figure 14.9: A simple single-player game of moving toy blocks with a robot gripper. e goal is to
transform the initial configuration on the left-hand side into the stack shown on the right-hand side.

(b) Now consider the next set of rules.

succ(1,2)
succ(2,3)
succ(3,4)

base(step(1))
base(step(N)) :- succ(M,N)

Extend the domain graph by the nodes 1,2,3,4,step along with nodes
succ[1],succ[2],step[1] and add all edges that follow from the given clauses.
Use the resulting graph to determine the possible arguments for keyword base.

(c) Extend the domain graph further according to the following rules.

role(robot)

input(robot,stack(X,Y)) :- block(X) & block(Y)
input(robot,unstack(X,Y)) :- block(X) & block(Y)

Use the resulting graph to determine the possible arguments for keyword input.
(d) Complete the domain graph using the remaining rules of the game shown below.

init(table(a))
init(table(b))
init(on(c,a))
init(clear(b))
init(clear(c))
init(step(1))
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legal(robot,stack(X,Y)) :-
true(clear(X)) &
true(clear(Y)) &
distinct(X,Y)

legal(robot,unstack(X,Y)) :-
true(clear(X)) &
true(on(X,Y))

next(on(X,Y)) :-
does(robot,stack(X,Y))

next(on(X,Y)) :-
does(robot,stack(U,V)) &
true(on(X,Y))

next(on(X,Y)) :-
does(robot,stack(U,V)) &
true(on(X,Y)) &
distinct(U,X)

next(table(X)) :-
does(robot(unstack(X,Y))

next(table(X)) :-
does(robot(unstack(U,V)) &
true(table(X))

next(table(X)) :-
does(robot(stack(U,V)) &
true(table(X)) &
distinct(U,X)

next(clear(Y)) :-
does(robot,unstack(X,Y))

next(clear(Y)) :-
does(robot,unstack(U,V)) &
true(clear(Y))

next(clear(Y)) :-
does(robot,stack(U,V)) &
true(clear(Y)) &
distinct(V,Y)
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next(step(N)) :-
true(step(M)) &
succ(M,N)

terminal :-
true(step(4))

terminal :-
true(on(a,b)) &
true(on(b,c))

goal(robot,100) :-
true(on(a,b)) &
true(on(b,c))

goal(robot, 0) :-
~true(on(a,b))

goal(robot, 0) :-
~true(on(b,c))

Use the resulting graph to determine the domain of next[1]. Which element from
Domain(base[1]) is not a member of Domain(next[1])?

(e) Extend the given game description G to GC by adding all facts true(t) and
does(robot,t) that follow from the domain graph. Which of the instances of
legal(robot,t) determined by the domain graph are not derivable from GC and
therefore can be removed?

(f ) Use all of the above to determine only the relevant instances of the rule

next(clear(Y)) :-
does(robot,stack(U,V)) & true(clear(Y)) & distinct(V,Y)

Hint: You should obtain just 6 out of the 27 instances that without further reductions
would result from domain graph.

14.2. Implement the domain graph construction, the reduction strategy, and the grounding
and try it out on the Tic-Tac-Toe game description and another standard GDL game of
your choice.

14.3. is exercise is concerned with finding equivalences and symmetries in a variant of the
Buttons and Lights game.

(a) Draw the rule graph for the following fact.

role(player)
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Why would this graph be isomorphic to the rule graph for the clause
“role(white)” but not for the clause “index(1)”?

(b) Draw the rule graph for the clause below.

next(on(X)) :- ~true(on(X)) & does(player,toggle(X))

Use the rule graph method to show that this clause is structurally equivalent to the
rule
next(p(Y)) :- does(white,q(Y)) & ~true(p(Y))

(c) Extend the graph for the entire game description given below.

role(player)

index(1)
index(2)
index(3)

base(on(X)) :- index(X)
input(player,toggle(X)) :- index(X)

legal(player,toggle(X)) :- index(X)

next(on(X)) :- ~true(on(X)) & does(player,toggle(X))
next(on(X)) :- true(on(X)) & ~does(player,toggle(X))

terminal :- true(on(1)) & true(on(2)) & true(on(3))
goal(player,100) :- true(on(1)) & true(on(2)) & true(on(3))

Use the rule graph method to find all symmetries in this game.

14.4. Implement the rule graph construction and try it out on the Tic-Tac-Toe game descrip-
tion and another standard GDL game of your choice. Search the Web for a program to
compute isomorphisms of graphs and use this to determine the symmetries in each of
the two games.
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C H A P T E R 15

Solving Single-Player Games
with Logic

15.1 ANSWER SETPROGRAMMING
Single-player GDLs can be viewed as formal specifications of a logical puzzle. A perfect way to
play any such game is by solving it upfront. A player can then simply unwind this solution step
by step to reach a winning terminal state.

Answer Set Programming (ASP) is one of the fastest existing method for domain-
independent solving of problems described in logic. It particularly lends itself to use in general
game playing because the input language for ASP is very similar to GDL. Translating one into
the other is therefore straightforward and can be easily automated. Moreover, a variety of ASP
solvers are available for free download and can be plugged into your player.

In ASP, problems are described as collections of logic program clauses. A problem is solved
by finding a minimal model for the specification.

A special type of input formula in ASP are clauses without head. Called constraints, they
are written as

:- L1&L2& : : :&Ln

eir purpose is to exclude anymodel as solution in which all ofL1; L2; : : : ; Ln are simultaneously
true.

As a first example, consider the ASP problem specification (also called answer set program)
listed in Fig. 15.1. e clauses together have exactly one (minimal) model. To see why, observe
first that p1 must obviously be true in any model according to the fact in line 1. By the constraint
in line 9, p2 must be false. Hence, by clause 3, a1 must be false, because otherwise p2 would be
true given that p1 is true. Knowing that a1 is false, from clause 7 it follows that b1 must be true.
We thus obtain the dataset M D {p1,b1} as the only candidate for a model. It is easy to verify
that this candidate also satisfies the program rules we have not considered yet, that is, clause 6
(since ~b1 is false inM ) and clause 4 (since ~p1 is false inM ). Hence, we have found a minimal
model of the program.

In addition to being minimal, an ASP solution must also be supported. It means that ev-
ery atom in a candidate model needs to be the head of a clause whose body is true under the
model. Our solutionM D {p1,b1} satisfies this requirement: p1 is supported by rule 1 and b1 is
supported by rule 7 (since ~a1 is true inM ).
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1 p1
2
3 p2 :- a1 & p1
4 p2 :- b1 & ~p1
5
6 a1 :- ~b1
7 b1 :- ~a1
8
9 :- p2

Figure 15.1: An answer set program.

e example in Fig. 15.1. can be interpreted as the specification of a simple one-step puzzle.
A single state proposition is true at time 1 (fact p1). Whether it is still true at time 2 (literal p2)
depends on which of two actions are chosen, encoded by the literals a1 and b1. Taking the first
action does not change the state proposition between times 1 and 2 (rule 3) but taking the second
one does (rule 4). Clauses 6–7 together stipulate that exactly one of the two actions is chosen.
Finally, the constraint in line 9 can be interpreted as the goal to make the state proposition false:
answers in which p2 holds are excluded.

e model that we have just computed for this program contains b1. is provides us with
a solution to the problem, namely, that the goal is achieved by taking the second action, b1.

15.2 ADDINGTIMETOGDLRULES
We can generalize the idea behind the example in Fig. 15.1 to single-player games that require
more than just one action. To this end we need to incorporate a linear temporal dimension into
the game rules so that different instances can refer to different time points.

Let’s illustrate this with a non-factored variant of the Buttons and Light game from Chap-
ter 11. ere are three lights and three buttons. Pushing the first button toggles the first light;
pushing the second button moves the value of the first to the second light; and pushing the third
button interchanges the second and third lights.

Figure 15.2: Buttons and lights.
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According to the GDL description below, initially the lights are all off. e goal is to turn
them on. A step counter ensures that the game terminates after six moves.

role(white)

base(p)
base(q)
base(r)
base(step(1))
base(step(N)) :- successor(M,N)
input(white,a)
input(white,b)
input(white,c)

legal(white,a)
legal(white,b)
legal(white,c)

init(step(1))

next(p) :- does(white,a) & ~true(p)
next(p) :- ~does(white,a) & true(p)
next(q) :- does(white,b) & true(p)
next(q) :- does(white,c) & true(r)
next(q) :- ~does(white,b) & ~does(white,c) & true(q)
next(r) :- does(white,c) & true(q)
next(r) :- ~does(white,c) & true(r)
next(step(N)) :- true(step(M)) & successor(M,N)

terminal :- true(step(7))
goal(white,100) :- true(p) & true(q) & true(r)
goal(white, 0) :- ~true(p)
goal(white, 0) :- ~true(q)
goal(white, 0) :- ~true(r)

successor(1,2)
successor(2,3)
successor(3,4)
successor(4,5)
successor(5,6)
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successor(6,7)

Time steps can be incorporated into a set of GDL rules like these as follows.

1. Replace init(F) by true(F,1).

2. Replace next(F) by true(F,T+1).

3. Replace every other atom p(…) by p(…,T), unless

• p is either of the keywords role, base, or input; or
• p is a supporting concept that depends on neither true nor does.

4. Add the condition time(T) to the body of every clause to which variable T has been added.

Transforming the game rules above in this fashion results in the program clauses shown
below.

role(white)

base(p)
base(q)
base(r)
base(step(1))
base(step(N)) :- successor(M,N)
input(white,a)
input(white,b)
input(white,c)

legal(white,a,T) :- time(T)
legal(white,b,T) :- time(T)
legal(white,c,T) :- time(T)

true(step(1),1)

true(p,T+1) :- does(white,a,T) & ~true(p,T) & time(T)
true(p,T+1) :- ~does(white,a,T) & true(p,T) & time(T)
true(q,T+1) :- does(white,b,T) & true(p,T) & time(T)
true(q,T+1) :- does(white,c,T) & true(r,T) & time(T)
true(q,T+1) :- ~does(white,b,T) & ~does(white,c,T) & true(q,T) & time(T)
true(r,T+1) :- does(white,c,T) & true(q,T) & time(T)
true(r,T+1) :- ~does(white,c,T) & true(r,T) & time(T)
true(step(N),T+1) :- true(step(M),T) & successor(M,N) & time(T)
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terminal(T) :- true(step(7),T) & time(T)
goal(white,100,T) :- true(p,T) & true(q,T) & true(r,T) & time(T)
goal(white, 0,T) :- ~true(p,T) & time(T)
goal(white, 0,T) :- ~true(q,T) & time(T)
goal(white, 0,T) :- ~true(r,T) & time(T)

successor(1,2)
successor(2,3)
successor(3,4)
successor(4,5)
successor(5,6)
successor(6,7)

e domain for time points should be defined as ranging from 1 to some maximum solution
length, say 3. Instead of explicitly adding the three facts time(1), time(2), and time(3), any
standard ASP solver supports the abridged syntax

time(1..3)

Given an element T from this domain, the solver interprets the expression T+1 in the way
you would expect. Note, therefore, that true is the only predicate whose time argument extends
one step beyond the given horizon.

e additional time argument allows us to compute the effect of a sequence of moves within
the same program. Consider, for example, the move a followed by b, then c. We can compute
the sequence of game states by adding the facts shown below to our time-enriched program from
above.

does(white,a,1)
does(white,b,2)
does(white,c,3)

e resulting set of clauses has exactly one minimal and supported model. is includes all
of the following atoms.
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Time 1 Time 2 Time 3 Time 4

legal(white,a,1) legal(white,a,2) legal(white,a,3)

legal(white,b,1) legal(white,b,2) legal(white,b,3)

legal(white,c,1) legal(white,c,2) legal(white,c,3)

does(white,a,1) does(white,b,2) does(white,c,3)

true(p,2)

true(q,3)

true(r,4)

true(step(1),1) true(step(2),2) true(step(3),3) true(step(4),3)

goal(white,0,1) goal(white,0,2) goal(white,0,3)

true(p,3) true(p,4)

To understand how such models are computed, observe first that true(p,1), true(q,1),
and true(r,1)must all be false in any supported model because they do not occur in the head of
any clause. e same holds for does(white,b,1), does(white,c,1), and true(step(2),1),
…, true(step(7),1). It follows that true(step(1),1) and does(white,a,1)—along with
the other facts in the leftmost column of the table above—are the only atoms with time argument
1 that can occur in a solution. From this we can compute all atoms with time argument 2 using the
instantiated rules with the heads true(p,2), true(q,2), true(r,2), and true(step(1),2),
…true(step(7),2). e same rules but now instantiated with T = 2 can be used to generate
the atoms in the solution with time argument, and so forth.

All time-independent facts are of course included in the solution too.

role(white) base(p) base(q) base(r)

base(step(1)) base(step(2)) base(step(3)) base(step(4))

base(step(5)) base(step(6)) base(step(7)) input(white,a)

input(white,b)) input(white,c) successor(1,2) successor(2,3)

successor(3,4) successor(4,5) successor(5,6) successor(6,7)

15.3 SOLVING SINGLE-PLAYERGAMESWITHANSWER
SETPROGRAMMING

We have seen how a time-expanded GDL description allows you to compute the evolution of the
game state for a given sequence of actions. e goal, however, is to find some such sequence that



15.3. SOLVING SINGLE-PLAYERGAMESWITHANSWERSETPROGRAMMING 157

leads to a winning terminal state. In other words, we are looking for a model in which the player
takes one legal move at every time step and eventually is awarded 100 points. is is achieved
with just a few more clauses.

First, we need to stipulate that the player does one action per time point until the game has
terminated. In analogy to the program in Fig. 15.1, we could write the following for our example
game with the three actions a, b, and c.

does(white,a,T) :- time(T) & ~does(white,b,T) & ~does(white,c,T)
does(white,b,T) :- time(T) & ~does(white,a,T) & ~does(white,c,T)
does(white,c,T) :- time(T) & ~does(white,a,T) & ~does(white,b,T)

ese clauses together require that for every instance of T, exactly one element from the set
{does(white,a,T), does(white,b,T), does(white,c,T)} is true in a model. Fortunately,
most ASP systems support a more convenient way of specifying exactly this.

1 { does(white,a,T), does(white,b,T), does(white,c,T) } 1 :- time(T)

e numbers before and after the curly brackets, respectively, indicate the minimum and
maximum number of set elements that must be contained in a solution in order for the head of
this clause to be true, for any instance of T. is reduces the three clauses from above to a single
one. But it still requires us to enumerate all possible moves. An even more compact encoding is
obtained by implicitly, rather than explicitly, specifying the elements of a set. ere is a simple
way to do this by referring to another GDL keyword: because our set contains all moves M that
satisfy input(white,M), we can use the following to require white to make one move at every
time step.

1 { does(white,M,T) : input(white,M) } 1 :- time(T)

In fact, we do not even need to mention explicitly our player’s name, white, and instead
refer to the keyword role. is leads to the following rule, which is now general enough to be
applicable in any single-player game.

1 { does(R,M,T) : input(R,M) } 1 :- role(R) & time(T)

A valid solution to a single-player game requires that all chosen moves be legal at the time
when they are performed. is is best expressed as a constraint by which any illegal moves are
ruled out.

:- does(R,M,T) & ~legal(R,M,T)

e last and of course most important requirement is to look for models in which the goal
of the game is achieved. To this end, the first constraint below rules out any candidate set in which
the game never reaches a terminal state. Aiming high, the second constraint discards any model
in which the game reaches a terminal state where the player is not awarded 100 points.
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:- 0 { terminal(T) : time(T) } 0

:- terminal(T), role(R), ~goal(R,100,T)

is completes the answer set program for solving single-player games. Coming back to
our example game, Buttons and Lights, suppose the time horizon is set to 7, that is,

time(1..7)

e program then has a minimal and supported model that includes the following atoms.

does(white,a,1) does(white,b,2) does(white,c,3)

does(white,b,4) does(white,a,5)

Another model exists with moves as shown below.

does(white,a,1) does(white,b,2) does(white,c,3)

does(white,b,4) does(white,b,5)

In fact, the solution to this game comes in three variants, one for each available action at
time 5. is last move is obviously irrelevant since the game has terminated at that time. But it is
required according to the rule that the player has to do one action at every time point.

No solution can be found with a time horizon shorter than 5. A longer time horizon, on
the other hand, will generate more models with redundant actions before or after the game has
terminated. Normally, of course, the required solution length is unknown when you get a new
game description. But you can start with setting it to 1 and then increment it until a model is
found. is guarantees that the first computed solution is a shortest one.

15.4 SYSTEMSFORANSWERSETPROGRAMMING
Several ASP systems are available for free download. ey are powerful enough to compute solu-
tions to answer set programs for single-player games of medium size. Two such systems are Clasp
and DLV.

15.5 EXERCISES
15.1. Minimal and supported models

Consider the answer set program in Fig. 15.1 but without rule 1. Show that this program
has two minimal models. Show that only one of them is supported.

http://potassco.sourceforge.net/
http://www.dlvsystem.com/dlv/
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15.2. Answer set programming
Recall the rules that require a legal move at every time step.

1 { does(R,M,T) : input(R,M) } 1 :- role(R) & time(T)

:- does(R,M,T), not legal(R,M,T)

is requirement may be too strong as it includes one or more time points after the
termination of a game. Extend this specification so as to require a (legal) move at time T
only in case the game has not terminated at or before T.
Hint: Use theGDLkeyword terminal but be aware that this atommay only be derivable
at the time of termination but not at later points in time.

15.3. Solving a single-player game with logic
Recall the mysterious single-player game dealt with in Exercise 13.1. Now the goal is to
solve this problem with an ASP system.

(a) Extend the given rules by time points as needed.
(b) Add general rules to search for a sequence of legal moves that achieves the goal.
(c) Choose a suitable time horizon and feed the resulting answer set program into an

existing ASP solver.

Hints:

• Remember that this game terminates when the player is left without a legal move.
Hence, you need a solution to Exercise 2.

• Familiarize yourself with the exact input syntax for the system of your choice, as this
may be slightly different from the one used throughout this chapter. Specifically, the
delimiter “.” should be added to mark the end of a clause. And most likely, “&” and
“~” need to be substituted by “,” and “not”, respectively.

15.4. An automatic solver for single-player games
Write a module that automatically translates single-player GDLs into answer set pro-
grams and that uses an existing ASP system to try to solve them.





161

C H A P T E R 16

DiscoveringHeuristics with
Logic

16.1 DISCOVERINGHEURISTICSWITHANSWERSET
PROGRAMMING

Answer set programming, the topic of the previous chapter, has an interesting application beyond
single-player games, namely, the discovery of useful properties of games written in GDL. You can
use it to find latches, for example. Recall from Chapter 12 that a latch is a proposition that, once
it becomes true (respectively, false), stays so for the rest of the game. To check that a state feature
has this property, you first replace the given clauses for the initial state by the following ASP rule.

0 { true(F,1) : base(F) }

is fact acts as a state generator because it supports any base proposition to either be true or not
at time 1. e missing number after the closing curly bracket indicates that a model can contain
an unbounded number of elements from the set.

We also stipulate that each role chooses a legal move at time 1.

1 { does(R,M,1) : input(R,M) } 1 :- role(R)

:- does(R,M,1), ~legal(R,M,1)

Now suppose that we want to verify an arbitrary base proposition p to be a positive latch,
that is, to stay true once it becomes true. is is achieved by trying to find a counter-example, that
is, a model in which p is true in one state but not so in the next state.

counterexample :- true(p,1), ~true(p,2)

Finally, we need to filter out all models without such a counter-example as per the constraint
below.

:- ~counterexample

Every model that an ASP system will generate is a counter-example to the hypothesis that
p cannot revert back from true to false. In other words, if the solver produces no answer, then you
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have checked that the proposition is in fact a latch. is argument involves double negation but
is perfectly valid.

In order to check that a proposition cannot revert back to true once it became false, you
just need to replace the above by

counterexample :- ~true(p,1), true(p,2)

Note that you only need two time points for this proof technique, which is one of the
reasons why it is very viable in practice.

16.2 GOALHEURISTICS
Goal heuristics are based on the idea to evaluate intermediate positions according to their estimated
distance to a goal—the closer a state is to our player’s goal, the more promising it is. A good
distance measure is often indicative of the quality of domain knowledge that a player has.

In general game playing, players begin with knowing nothing of their goal besides its pure
logical description. But this information alone suffices to create a basic distance measure. An
established AI technique known as Fuzzy Logic helps us to define it. e main idea is to equate
distance with the degree to which a given state satisfies a goal formula.

As a motivating example, consider a larger, and hence more difficult, variant of the 8-Puzzle
(cf. Chapter 5).

Figure 16.1: A solved 15-puzzle.

Suppose the GDL description of this game includes the goal definition depicted in
Fig. 16.2. In Fuzzy Logic, the degree to which a conjunctive formula is satisfied is proportional to
the number of conjuncts that are true. Hence, an intermediate position in the 15-puzzle will be
judged by the number of tiles that are in the correct place. While not a perfect distance measure,
it can be successfully employed as the sole parameter of the evaluation function in a depth-limited
search with the effect that the player prefers moves that bring it closer to the goal configuration.
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goal(player,100) :-
true(cell(1,1,1)) & true(cell(2,1,2)) & true(cell(3,1,3)) &
true(cell(4,1,4)) & true(cell(1,2,5)) & true(cell(2,2,6)) &
true(cell(3,2,7)) & true(cell(4,2,8)) & true(cell(1,3,9)) &
true(cell(2,3,10)) & true(cell(3,3,11)) & true(cell(4,3,12)) &
true(cell(1,4,13)) & true(cell(2,4,14)) & true(cell(3,4,15))

Figure 16.2: e goal formula for the 15-puzzle.

16.3 FUZZY LOGIC

To implement a Fuzzy Logic-based goal heuristics, we first need to fix a truth value � that satisfies
0:5 < � < 1. When evaluating a GDL formula against a given state S , value � will be assigned
to all atoms true(p) for which p holds in S . Conversely, 1 � � will be assigned to any atom
true(p) whose argument p does not hold in S .

Consider, for example, a random Tic-Tac-Toe position.

3

2

1

1 2 3

Figure 16.3: A state in Tic-Tac-Toe.

is state determines the truth values for three selected features shown in the table below,
where � has been set to 0.9.

Atom Value

true(cell(1,1,x)) 0.9

true(cell(2,2,x)) 0.1

true(cell(3,3,x)) 0.9
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For the evaluation of compound formulas in Fuzzy Logic, we need to also decide on a
so-called t-norm. is is a function T : Œ0; 1� � Œ0; 1� ! Œ0; 1� that is used to compute the truth
value of a conjunction. (T-norm stands for: triangular norm. As such the function must satisfy
T.x; z/ > T .y; z/ whenever x > y and z > 0.)

A common and simple t-norm is given by the product of the two arguments. For example,
by multiplying the individual truth values taken from the table above we can determine the truth
value of the conjunction in the rule shown below.

diagonal(x) :-
true(cell(1,1,x)) &
true(cell(2,2,x)) &
true(cell(3,3,x))

e resulting value is 0.081. is can be interpreted as the degree to which the body of the
clause is satisfied in the state of Fig. 16.3.

EVALUATINGCOMPLEXFORMULAS
Any t-norm is extensible to an evaluation function for arbitrary formulas with negation (~) and
disjunction (|). For our example t-norm, computing the truth value of a compound formula fol-
lows the recursive definition shown below.

truth(~A) = 1�truth(A)
truth(A&B) = truth(A) � truth(B)
truth(A|B) = 1 � .1�truth(A)) � (1�truth(B))

e function for the disjunction can be used to compute the truth value of an atom that
is defined by more than one rule. Consider, for example, the two rules defining a diagonal in
Tic-Tac-Toe.

diagonal(x) :-
true(cell(1,1,x)) &
true(cell(2,2,x)) &
true(cell(3,3,x))

diagonal(x) :-
true(cell(1,3,x)) &
true(cell(2,2,x)) &
true(cell(3,1,x))
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e body of the second clause evaluates to 0:13 D 0:001 in the position shown in Fig. 16.3.
Together with the value for the body of the first clause, 0.081, we obtain 0:081C 0:001 � .0:081 �

0:001/ D 0:081919 for the truth value of diagonal(x).
Analogously, we can use the rules for row(M,x) and column(N,x) to compute the truth

values for each of their instances, that is, where M,N 2 {1,2,3}. e resulting values can then be
combined into the overall truth value for line(x). Again, this means to compute a disjunction
from all instances of all rules for this predicate,

line(x) :- row(1,x)
line(x) :- row(2,x)
line(x) :- row(3,x)
line(x) :- column(1,x)
line(x) :- column(2,x)
line(x) :- column(3,x)
line(x) :- diagonal(x)

For our example position from Fig. 16.3 we thus obtain a truth value of 0.116296 for
line(x). In a similar fashion, we can compute the truth value for line(o) for the same po-
sition as 0.023797. According to the rule,

goal(white,100) :- line(x) & ~line(o);

we can now compute the degree to which goal(white,100) is satisfied:

truth(goal(white,100)) = truth(line(x)) � (1�truth(line(o))) = 0.113529.

Finally, for games with positive goal values below 100, we can compute a weighted average
over all goal formulas and use the Fuzzy Logic function for disjunction to obtain a single number
as the overall heuristic value of a state. In Tic-Tac-Toe, where the two positive goal values are 50
and 100, respectively, we compute the weighted average for white thus:

100 � [truth(goal(white,100)) � 1
C truth(goal(white,50)) � 0.5
� truth(goal(white,100)) � 1 � truth(goal(white,50)) � 0.5 ].

With truth(goal(white,50)) = (1�truth(line(x))) � (1�truth(line(o))) = 0.862674 ac-
cording to the rule

goal(white,50) :- ~line(x) & ~line(o);
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this altogether results in a goal heuristics value of 49.589684 for the position shown in Fig. 16.3.
Computing the fuzzy truth values for auxiliary atoms, such as line(x) or goal(x,100),

requires to generate all relevant instances of the rules that define these atoms. is can be easily
accomplished with the help of the domain analysis described in Chapter 14.e domain graph for
Tic-Tac-Toe depicted in Fig. 14.2, for example, tells us which instances of the rules for line(Z)
shown below need to be considered when computing the fuzzy truth value of line(x) in any
given situation:

line(Z) :- row(M,Z)
line(Z) :- column(N,Z)
line(Z) :- diagonal(Z)

16.4 USINGTHEGOALHEURISTICS
e primary use of the Fuzzy Logic goal heuristics is to evaluate leaf nodes in a game tree search.
To see the heuristics in action, we can apply it to all successor states of the initial position in
Tic-Tac-Toe to see which of the possibilities for placing the first mark looks most promising.

Figure 16.4: Using the goal heuristics to decide on the opening move in Tic-Tac-Toe.

Without any search beyond the first ply, it follows that the center square is the best move
according to the goal heuristics. Moreover, a cell in the corner is deemed more valuable than a
non-corner border cell.
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16.5 OPTIMIZATIONSANDLIMITATIONS
When computing the fuzzy truth value of a defined predicate, atoms in the body of a rule can be
treated differently if their truth is independent of the current state. Examples include instances of
the keywords role and distinct as well as every auxiliary predicate whose definition does not
depend on keyword true. Any such state-independent atom can be assigned truth value 1 (if it is
true) or 0 (if it is false) rather than � or 1 � � . So doing simplifies the computation and also leads
to sharper distinctions between different positions.

e strict application of our example t-norm for the goal heuristics can have the practical
disadvantage of approaching 0 for large conjunctions even when each conjunct is true. e goal
predicate in the 15-puzzle shown in Fig. 16.2, for instance, still has a low degree of �15 D 0:915 D

0:20589 after the final goal position has been reached. In practice, it is therefore useful to introduce
a threshold � , which should satisfy 0:5 < � � � . is threshold can be used to ensure that a true
formula always has a truth value greater than 0.5. To do so, we just need to slightly extend the
computation of the fuzzy truth values for complex formulas.

truth.~A/ D 1 � truth.A/
truth.A&B/ D maxftruth.A/ � truth.B/I �g if truth.A/ > 0:5; truth.B/ > 0:5
truth.A&B/ D truth.A/ � truth.B/ otherwise
truth.A|B/ D 1 � .1 � truth.A// � .1 � truth.B//

e better a heuristics can distinguish between different states, the more useful it is for
evaluation functions. e multiplication t-norm allows for little flexibility in this regard. A much
wider range of t-norms is captured by the so-called Yager family. A t-norm from this family is
obtained by

S.x; y/ D .xq
C yq/1=q

T .x; y/ D 1 � S.1 � x; 1 � y/

for some 0 � q � 1.
Any function S that is used to define a Yager t-norm T also serves as the corresponding

computation rule for disjunctions. General game-playing systems that use these t-norms can ad-
just parameter q as well as the basic truth value � depending on the complexity and structure of
the goal formulas for different games.

LIMITATIONS
e Fuzzy Logic-based goal heuristics can be very useful for games whose goal, broadly speaking,
is reachable through the accumulation of sub-goals. is extends well beyond obvious examples
like the 15-puzzle shown above. If, for instance, the aim is to eliminate all of your opponent’s
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pieces or to occupy all locations on a board, and if this can be achieved successively, then goal
heuristics can provide a useful guidance for a depth-limited search.

A limitation of the simple goal heuristics is not to take into account how difficult it is to
extend a partial solution to a complete one, or even if that is possible at all. In Tic-Tac-Toe, for
example, every row, column, or diagonal with exactly two of our player’s markers has the same
fuzzy truth value, no matter whether the remaining third square is blank or already blocked. A
possible solution could involve the concepts of latches and inhibitors (cf. Chapter 12). A proposi-
tion that is inhibited by an active latch can always be assigned truth value 0 because, by definition,
it will never become true later in the game.

Simple goal heuristics moreover generally fail to provide useful information for games with
specialized goals like, for example, checkmate in Chess, whose logical definition alone does not
allow to determine the degree to which it is already satisfied in an intermediate position.

16.6 EXERCISES
16.1. Use answer set programming to discover the following properties in the Buttons and

Lights game of Chapter 15.

a. Verify that step(1) is a (negative) latch.
b. Show that none of the propositions p,q,r, which represent the status of the lights,

is a latch in this game.
c. Write a module for your player that uses an ASP system to systematically check

every base proposition whether it is a latch.

16.2. Consider the two possible replies shown below to white’s opening move in Tic-Tac-Toe.

What truth value does goal(black,100) have in these two positions? Which move,
therefore, would black take based on the goal heuristics without search?

16.3. If both players always choose their moves based on the goal heuristics without search,
how would the game of Tic-Tac-Toe be played out from the following position, where
black moves next?
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16.4. For each of the three positions shown below, what is the truth value of the formula in the
body of the goal description for the 15-puzzle (cf. Figure 16.2)? Use the multiplication
as t-norm to answer this question, with truth value � D 0:9 and no threshold � .

16.5. Answer the previous question for the same three positions, the same t-norm and truth
value � D 0:9, but now using a threshold � of 0.6.

16.6. Implement the Fuzzy Logic goal heuristics in your player and try it out on the 15-puzzle
using minimax search.
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C H A P T E R 17

Games with Incomplete
Information

17.1 INTRODUCTION

Our input language GDL has been designed with the assumption that the players are informed
about each others’ moves after every round. e effects of these moves are completely and un-
ambiguously determined by the game rules, so that players can always compute the subsequent
game state from the current one. Given that they know the initial position, they effectively have
complete knowledge of the state throughout a game.

is is adequate for classical board games like Chess, Checkers, and Go. But many games
of interest use moves with indeterminate effect, like rolling a die. Others are characterized by
incomplete and asymmetric information. In the chess variant known as Kriegspiel, for example,
the two players only can see the pieces of their own color. Most card games combine randomized
moves (shuffling) with information asymmetry (you can’t see cards dealt to the other players). e
poker variant Texas Hold’em is a point in case.

Truly general-game playing therefore requires the extended game description language
GDL-II, which enables descriptions of games with nondeterministic moves and where the players
have incomplete information about the game state.

17.2 GDL-II

GDL-II stands for “GDL for games with incomplete information.” By incompleteness we mean
that players do not know the full game state. Mathematical game theorists draw a finer distinction
between what they call imperfect-information games and those of incomplete information. We
do not differentiate between the two and just mention that both can be modeled in GDL-II.

e extended game description language uses two additional keywords:

percept(r,p) means that p is a percept of player r in the game.
sees(r,p) means that player r perceives p in the next state.

e keyword percept(r,p) is used to define all possible percepts for a player in the same
way as GDL-keyword input(r,a) describes the range of available moves. Percepts can be any-
thing from the move by another role to a specific state feature such as the value of a card dealt
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face-down to the player. Even communication between players, both private and public, can be
described with the help of percepts that are triggered by certain moves.

What a player actually perceives is described by the predicate sees(r,p) and generally
depends on both the current state and a joint move, much like GDL-keyword next(f) does.
Percepts are, by definition, private. Hence, they can be used to model games with imperfect and
asymmetric information.

Regular GDL games can be easily modeled in GDL-II by adding the general game rule

sees(P,move(Q,M)) :- role(P) & does(Q,M)

With this clause, all players are informed about each others’ moves in every round. is infor-
mation suffices to maintain complete knowledge of the position throughout the game, just as in
regular GDL.

To describe games with chance moves, we also introduce a new auxiliary keyword:

random means a pre-defined role that moves purely randomly.

By definition, the role of the random player is to always choose with uniform probability
among its legal moves. Nondeterministic actions can thus be modeled as moves whose actual
effect depends on the move simultaneously chosen by this game-independent role.

17.3 BLINDTIC-TAC-TOE
As an example of how to describe imperfect-information games in GDL-II, let us look at a
variation of Tic-Tac-Toe where, much like in Kriegspiel, the players don’t get to see each others’
moves. Of course it may then happen that a player intends to mark a cell that’s already been
occupied. In that case, the move shall have no effect but the player will be informed about it. To
make the game fairer, both players mark concurrently. If they happen to choose the same cell at
the same time, then the toss of a coin determines who is successful.

To begin with, our new two-person game, which we call Blind Tic-Tac-Toe, features three
roles, where the new random player is needed to simulate the coin toss.

role(white)
role(black)
role(random)

Note that you are required to declare random as a role whenever you want to use it in a
game, even though it is a pre-defined one. is guarantees upward compatibility with GDL.

e initial state is similar to classical Tic-Tac-Toe (see Chapter 2) but without the state
feature to indicate whose turn it is, which is no longer needed now that white and black move con-
currently. A new feature, tried(P,M,N), records every attempt by a player to mark a cell. Players
will only be allowed to try each cell once, which will help to ensure that the game terminates.
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index(1)
index(2)
index(3)

base(cell(M,N,x)) :- index(M) & index(N)
base(cell(M,N,o)) :- index(M) & index(N)
base(cell(M,N,b)) :- index(M) & index(N)

base(tried(white,M,N)) :- index(M) & index(N)
base(tried(black,M,N)) :- index(M) & index(N)

init(cell(1,1,b))
init(cell(1,2,b))
init(cell(1,3,b))
init(cell(2,1,b))
init(cell(2,2,b))
init(cell(2,3,b))
init(cell(3,1,b))
init(cell(3,2,b))
init(cell(3,3,b))

Next, we define legality in Blind Tic-Tac-Toe. In each round, both white and black may
choose any cell that they have not already tried. At the same time a coin toss is simulated, the result
of which is used to break the tie in case both players attempt to mark the same cell. Accordingly,
we call this random move a tiebreak.

input(white,mark(M,N)) :- index(M) & index(N)
input(black,mark(M,N)) :- index(M) & index(N)

input(random,tiebreak(x))
input(random,tiebreak(o))

legal(white,mark(X,Y)) :-
index(X) &
index(Y) &
~true(tried(white,X,Y))

legal(black,mark(X,Y)) :-
index(X) &
index(Y) &
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~true(tried(black,X,Y))

legal(random,tiebreak(x))
legal(random,tiebreak(o))

Next, we look at the new update rules for the game. Any try to mark a cell is recorded. A
cell is marked with an “x” or an “o” if the corresponding player chooses that cell and if the cell is
blank and not simultaneously targeted by the other player. If both players aim at the same cell,
then that cell ends up being marked according to the result of the random tie-breaking move.
Finally, if a cell contains a mark, then it retains that mark on the subsequent state; and if a cell is
blank and neither player attempts to mark it, then it remains blank.

; any new attempt to mark a cell is recorded
next(tried(W,M,N)) :-
does(W,mark(M,N))

; all recorded attempts are remembered
next(tried(W,M,N)) :-
true(tried(W,M,N))

; white is successful in marking a blank cell
; when black moves in a different column
next(cell(M,N,x)) :-
does(white,mark(M,N)) &
true(cell(M,N,b)) &
does(black,mark(J,K)) &
distinct(M,J)

; white is successful in marking a blank cell
; when black moves in a different row
next(cell(M,N,x)) :-
does(white,mark(M,N)) &
true(cell(M,N,b)) &
does(black,mark(J,K)) &
distinct(N,K)

; black is successful in marking a blank cell
; when white moves in a different column
next(cell(M,N,o)) :-
does(black,mark(M,N)) &
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true(cell(M,N,b)) &
does(white,mark(J,K)) &
distinct(M,J)

; black is successful in marking a blank cell
; when white moves in a different row
next(cell(M,N,o)) :-
does(black,mark(M,N)) &
true(cell(M,N,b)) &
does(white,mark(J,K)) &
distinct(N,K)

; if both players aim at the same cell, then that cell
; gets marked by the result of the random tiebreak move
next(cell(M,N,W)) :-
true(cell(M,N,b)) &
does(white,mark(M,N)) &
does(black,mark(M,N)) &
does(random,tiebreak(W))

; markings are forever
next(cell(M,N,x)) :-
true(cell(M,N,x))

next(cell(M,N,o)) :-
true(cell(M,N,o))

; a cell remains blank if no player attempts to mark it
next(cell(M,N,b)) :-
true(cell(M,N,b)) &
~marked(M,N)

marked(M,N) :-
does(W,mark(M,N))

GDL-II is based on the assumption that players are no longer automatically informed about
any other players’ moves. us, without additional hints our Blind Tic-Tac-Toe players would be
completely oblivious as to whether any of their attempts to mark a cell was successful. According
to the following rules, which define the players’ percepts, they are provided with exactly that but
no more information.
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percept(white,ok)
percept(black,ok)

; players get ok when they mark a blank cell
; in a different column from where their opponent moves
sees(R,ok) :-
does(R,mark(M,N)) &
true(cell(M,N,b)) &
does(S,mark(J,K)) &
distinct(M,J)

; players get ok when they mark a blank cell
; in a different row from where their opponent moves
sees(R,ok) :-
does(R,mark(M,N)) &
true(cell(M,N,b)) &
does(S,mark(J,K)) &
distinct(N,K)

; white gets ok when he marks a blank cell
; and the random tiebreak went to his side
sees(white,ok) :-
does(white,mark(M,N)) &
true(cell(M,N,b)) &
does(random,tiebreak(x))

; black gets ok when he marks a blank cell
; and random tiebreak went to his side
sees(black,ok) :-
does(black,mark(M,N)) &
true(cell(M,N,b)) &
does(random,tiebreak(o))

By these rules a player sees “ok” after attempting to mark a cell that was indeed blank and
that was not simultaneously targeted by the opponent. e very same will be seen by the player
in whose favor the tie was broken, provided again that the cell being aimed at was empty. Since
the percepts are identical in both cases, players cannot distinguish between them. Hence, they
will not know, for example, if their opponent attempted (and failed) to mark the same cell at the
same time. Even when both cases apply together, the percept will not change.
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Still, the players obtain enough information to infer which of the board’s cells carry their
own marks. In turn, this allows them to determine exactly their legal moves according to the rules
from above. Generally speaking, a good GDL-II game description should always provide players
with sufficient information for them to know their legal moves and also to know whether a game
has terminated and what their result is.

In our example game, the absence of the percept “ok” tells players that they were unsuc-
cessful in their attempt to mark a cell. A smart player can even conclude that the cell in question
must now be occupied by their opponent, because either the cell already was marked before, or
the tie break decided in the other player’s favor.

e terminal condition for our blind version of Tic-Tac-Toe can be taken as is from the
description of the standard game. Also the rules for the goals are the same as before but need to
be extended to the possibility that both players complete a line in the same round.

terminal :- line(x)
terminal :- line(o)
terminal :- ~open

goal(white,100) :- line(x) & ~line(o)
goal(white, 50) :- line(x) & line(o)
goal(white, 50) :- ~open & ~line(x) & ~line(o)
goal(white, 0) :- ~line(x) & line(o)

goal(black,100) :- ~line(x) & line(o)
goal(black, 50) :- line(x) & line(o)
goal(black, 50) :- ~open & ~line(x) & ~line(o)
goal(black, 0) :- line(x) & ~line(o)

e supporting concepts line(z) and open shall be defined as before; see Chapter 2.

17.4 CARDGAMESANDOTHERS
e two new keywords in GDL-II can be used to describe all kinds of card games, which are typ-
ically characterized by both randomness (shuffle) and information asymmetry (individual hands).
For example, a single card dealt face down to a player can be specified thus.

legal(random,deal(Player,Card)) :-
role(Player) &
distinct(Player,random) &
true(indeck(Card))
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next(holds(Player,Card)) :-
does(random,deal(Player,Card))

sees(Player,Card) :-
does(random,deal(Player,Card))

Here, only the player who is dealt the card can see it. Multiple cards can be handed out in
a single move that takes each card as a separate argument and of which players only get to see the
argument position for their card.

In contrast, a card dealt face-up, say like in Texas Hold’em, would be described as follows.

legal(random,deal(river(C))) :-
true(indeck(C))

next(river(C)) :-
does(random,deal(river(C)))

sees(P,river(C)) :-
role(P) &
distinct(P,random) &
does(random,deal(river(C)))

With the last rule all players are informed about the river card.
Games involving communication among players, both public and private, can also be de-

scribed inGDL-II. For example, as part of a negotiation a player Pmay offer a player Q to exchange
an item C for another item D. is can be formalized by the GDL-II clauses below.

legal(P,ask(Q,trade(C,D))) :-
true(has(P,C)) &
true(has(Q,D)) &
distinct(P,Q) &
distinct(C,D)

sees(Q,offer(P,C,D)) :-
does(P,ask(Q,trade(C,D)))

Under these rules, their communication is private: only the addressee gets to see the offer.

17.5 GDL-II GAMEMANAGEMENT
GDL-II requires a modified protocol for running a game so that players are no longer automati-
cally informed about everyone’s moves after each round (cf. Chapter 3). Rather, each player gets
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his or her individual percept, or percepts, as determined by the game rules for the new keyword
sees.

Shown below is the format of the Play message for GDL-II games in the current GGP
communication language. e parameters are: (1) the usual match identifier; (2) an integer count-
ing the number of turns; (3) the move that was executed by the player in the last turn; and (4) a
list of the player’s percepts.

play(id, turn, move, percept)

If the player receives no information according to the game rules, the percept field is [].
e number of turns and the confirmation of the previous move help players recover from com-
munication and other errors, when the game master selected a move on their behalf. On the first
request, turn is 0, move is nil, and the percept field is [].

e specification of the Stop message is likewise modified.

stop(id, turn, move, percept)

Here is a sample of messages for a quick game of Blind Tic-Tac-Toe. As always, the Game
Manager initiates the match by sending a startmessage to all of the players with their individual
role, the rules of the game, and the values for the startclock and playclock. e players then respond
with ready.

Game Manager to Player x: start(m23,white,[...],10,10)
Game Manager to Player y: start(m23,black,[...],10,10)
Player x to Game Manager: ready
Player y to Game Manager: ready

e manager starts play by sending an initial playmessage to all of the players. In this case,
the first player responds with the action mark(1,1) while the second player chooses mark(2,3).

Game Manager to Player x: play(m23,0,nil,[])
Game Manager to Player y: play(m23,0,nil,[])
Player x to Game Manager: mark(1,1)
Player y to Game Manager: mark(2,3)

e Game Manager checks that these actions are legal, chooses a legal move for random,
updates the state of the game according to this joint move, and then sends play messages to the
players to solicit their next actions. Since the players aimed at different cells, they both get their
“ok”. On the next step, the two players attempt to mark the same cell and both play mark(2,2).

Game Manager to Player x: play(m23,1,mark(1,1),[ok])
Game Manager to Player y: play(m23,1,mark(2,3),[ok])
Player x to Game Manager: mark(2,2)
Player y to Game Manager: mark(2,2)
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Again, the Game Manager checks legality, randomly chooses a legal move for random,
updates its state, and sends a play message requesting the players’ next actions. In this case, the
random move decided in favor of the first player, which therefore is the only player to again see
“ok”.e first player takes advantage of the situation and plays mark(3,3)while the second player
chooses mark(1,3).

Game Manager to Player x: play(m23,2,mark(2,2),[ok])
Game Manager to Player y: play(m23,2,mark(2,2),[])
Player x to Game Manager: mark(3,3)
Player y to Game Manager: mark(1,3)

With this move, the game is over. e Manager lets the players know by sending a suitable
stop message, stores the results in its database for future reference, and terminates.

Game Manager to Player x: stop(m23,3,mark(3,3),[ok])
Game Manager to Player y: stop(m23,3,mark(1,3),[ok])
Player x to Game Manager: done
Player y to Game Manager: done

17.6 PLAYINGGDL-II GAMES:HYPOTHETICAL STATES

Most of the techniques that we have dealt with in this book can be applied to GDL-II un-
changed: factoring, the discovery of heuristics, and logical reasoning all operate on the elements of
a game description. eir syntax and semantics is the same in both complete—and incomplete—
information games.

But there are additional challenges specific toGDL-II. General game-playing systems need
to be able also to draw the right conclusions from their partial observations. An example of this
was mentioned above, when the absence of the observation “ok” implied that a particular cell had
to be occupied by the opponent. is illustrates the kind of logical reasoning that GDL-II games
require.

Players also need to evaluate the value of a move under incomplete knowledge of the state.
ey can do so, at least in principle, by computing a complete table of all possible positions after
each round. is table is called an information set in mathematical game theory. It is constructed
in a similar way to a game tree. Beginning with the initial position, which is fully known, a player
can compute the resulting states for all combinations of legal moves. Later in the game, the player
can generate every legal successor state for every possible current state. e percepts made after
every round serve as filters. ey allow to exclude any element from the information set that,
according to the game rules, would have led to an observation different from the actual one.

Figure 17.1 shows an example of the possible states from white’s perspective after the first
round in Blind Tic-Tac-Toe.
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Figure 17.1: e set of positions that white—the player playing crosses—considers possible after
selecting the middle square in the first move and, respectively, seeing ok (left-hand side) or seeing
nothing (right-hand side).

edepicted information sets illustrate how a general game-playing system can draw logical
conclusions from a complete table of possible states. Square (2,2) carries an “x” in all elements
of the first set. It follows that white’s move must have been successful. On the other hand, (2,2)
carries an “o” in each element of the second set, which in fact is a singleton. Again, white can
deduce everything that follows logically from the absence of the expected percept. Black of course
will likewise know that the cell in the middle has been marked in this case. Unlike white, however,
black has no way of knowing that this is the only square that is occupied after the first round.

Provided the set of possible states remains sufficiently small throughout a game, a player
can use this set to determine all moves that are guaranteed to be legal. e evaluation of a move
can likewise be based on the entire information set. A player can, for instance, follow the min-
imax principle and always choose the move with the highest minimum value across all possible
positions.

Blind Tic-Tac-Toe is an example of a game with a manageable table of possible states. e
possible moves by the other players, including random, lead to further branching as the game
progresses. On the other hand, the players gain information after each round, which helps to
contain the growth of the information set.

But this is obviously not the case for larger imperfect-information games, like Chess with-
out revealing opponents’ moves or where a deck of cards is shuffled at the beginning. Maintaining
the complete information set is practically impossible in these games.

17.7 SAMPLINGCOMPLETE STATES
A simple solution is to apply a technique similar to Monte Carlo tree search (cf. Chapter 8).
Rather than generating all possible states, a player can restrict the computation of successor states
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to just a few, randomly selected joint moves. is allows for computing with only a few elements
from the information set. Each of these hypothetical states will be tested against the player’s
percept after each round. If inconsistent, the hypothesis will be discarded or replaced by another
randomly selected possible state.

Every ordinary GDL player can thus be lifted to GDL-II, since each element picked from
the information is a complete state. A single hypothetical state can thus be treated by the player
as if it was the actual state in a perfect-information game. Moreover, these hypothetical states can
be analyzed independently. e individual results from this analysis can then be combined into
an expect value for each move across the different possible states. A further advantage is that the
independence of the hypotheses allows the easy parallelization of this process.

But playing GDL-II games by randomly sampling complete states has its limitations. A
player that considers only a small subset of all possible states may draw wrong conclusions. Even
the mere legality of a move is not guaranteed by its being legal in just a few sample states. A move
that seems promising in some states may likewise turn out not to be a good move if all possible
positions would be considered.

A further and more fundamental disadvantage lies in the implicit assumption of complete
information when playing with individual elements of the information set. In so doing, we com-
pletely ignore the difference between knowledge and the lack thereof. As a consequence, a move
will never be considered useful if its sole purpose is to gain information. is is so because ad-
ditional information has no value for any hypothetical state that assumes complete knowledge
anyway.

Let’s look at a very simple example of a single-player game that demonstrates how little
the sampling technique values knowledge and how it will never choose an information-gathering
move. Play commences with the random player choosing a red or blue wire to arm a bomb. e
player, which shall be called agent, may then choose whether or not to ask which wire was used;
asking carries a cost of 10 points to the final score. Finally, the agent must cut one of the wires to
either disarm—or accidentally detonate—the bomb.

role(random)
role(agent)

input(R,noop) :- role(R)
input(agent,ask)
input(random,arm(C)) :- color(C)
input(agent,cut(C)) :- color(C)

color(red)
color(blue)

base(step(1))
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base(step(N)) :- succ(M,N)
base(armed(C)) :- color(C)
base(score(S)) :- payoff(S)

succ(1,2)
succ(2,3)
succ(3,4)

payoff(90)
payoff(100)

init(step(1))

legal(random,arm(C)) :- true(step(1)) & color(C)
legal(random,noop) :- ~true(step(1))
legal(agent,noop) :- true(step(1))
legal(agent,noop) :- true(step(2))
legal(agent,ask) :- true(step(2))
legal(agent,cut(C)) :- true(step(3)) & color(C)

sees(agent,C) :- does(agent,ask) & true(armed(C))

next(step(N)) :- true(step(M)) & succ(M,N)
next(score(90)) :- does(agent,ask) & true(step(2))
next(score(100)) :- does(agent,noop) & true(step(2))
next(score(S)) :- true(score(S))
next(armed(C)) :- does(random,arm(C))
next(armed(C)) :- true(armed(C))
next(explodes) :- does(agent,cut(C)) & true(armed(C))

terminal :- true(step(4))

goal(agent,S) :- true(score(S)) & ~true(explodes)
goal(agent,0) :- true(explodes)

Shown below (Fig. 17.2) is the full game tree, including the outcomes for the agent at
each terminal node. If a player samples the two states in the information set after round 1 and
assumes complete knowledge in each of them, then in either case he believes he knows which
color has been used to arm the bomb. Hence, he never asks the question in this game since it
carries a penalty that he thinks he can avoid (due to superficial agreement of the samples). But
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Figure 17.2: e exploding bomb game tree.

after playing noop in round 2 the two samples (that is, the two gray nodes at depth 2 in Fig. 17.2)
do not agree on which move to take next, so that the player can do no better than choose randomly
and thus obtain an average outcome of 50.

A variation of the Exploding Bomb game shows that a player also will never discount a
move that gives away valuable information to opponents, for the same reason. In this version
our player plays the arming agent—that chooses which wire arms the bomb—and also decides
whether to tell his opponent which wire to cut. Freely providing this information carries a reward
of 10 points.

role(agent)
role(opponent)

input(R,noop) :- role(R)
input(agent,tell)
input(agent,arm(C)) :- color(C)
input(opponent,cut(C)) :- color(C)

color(red)
color(blue)

base(step(1))
base(step(N)) :- succ(M,N)
base(armed(C)) :- color(C)
base(score(S)) :- payoff(S)
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succ(1,2)
succ(2,3)
succ(3,4)

payoff(90)
payoff(100)

init(step(1))

legal(agent,arm(C)) :- true(step(1)) & color(C)
legal(agent,noop) :- true(step(2))
legal(agent,tell) :- true(step(2))
legal(agent,noop) :- true(step(3))
legal(opponent,noop) :- ~true(step(3))
legal(opponent,cut(C)) :- true(step(3)) & color(C)

sees(opponent,C) :- does(agent,tell) & true(armed(C))

next(step(N)) :- true(step(M)) & succ(M,N)
next(score(100)) :- does(agent,tell) & true(step(2))
next(score(90)) :- does(agent,noop) & true(step(2))
next(score(S)) :- true(score(S))
next(armed(C)) :- does(agent,arm(C))
next(armed(C)) :- true(armed(C))
next(explodes) :- does(opponent,cut(C)) & true(armed(C))

terminal :- true(step(4))

opposite(90,10)
opposite(100,0)

goal(agent,S) :- true(explodes) & true(score(S))
goal(agent,T) :- ~true(explodes) & true(score(S)) & opposite(S,T)
goal(opponent,S) :- ~true(explodes) & true(score(S))
goal(opponent,T) :- true(explodes) & true(score(S)) & opposite(S,T)

If our agent samples the information set after his first move and again makes the implicit
assumption that both players play with complete information, then he believes that the opponent
knows the right color anyway. Hence, he always tells to avoid the penalty and thus is guaran-
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teed to lose against a rational opponent (with a score of 10 vs. 90 points) while withholding the
information would lead to a better outcome on average as the opponent has a mere 50/50 chance.

e two example games in this section are better approached by taking into account the
entire information set of a player to decide on a move. But to reason correctly about one’s own
knowledge (and that of the other players) remains one of the many major challenges in general
game playing with incomplete information for practical games where information sets are too
large to be maintained explicitly.

17.8 EXERCISES
17.1. In Blind Tic-Tac-Toe, how many states are possible at the end of round 2 after you

a. played mark(2,2) then mark(1,3) and your percepts were nil followed by (ok)?
b. played mark(2,2) then mark(1,3) and your percepts were nil followed by nil?
c. played mark(2,2) then mark(1,3) and your percepts were (ok) followed by nil?

17.2. Modify the rules of Blind Tic-Tac-Toe so as to describe a version without the random
role, where

• both players simultaneously choose a cell to mark;
• they can choose any cell that is not already occupied with their own marker;
• if they choose the same cell in the same move, then this cell remains blank;
• otherwise, a player succeeds in marking a cell only if that cell was empty;
• they see “ok” if and only if their attempt to mark a cell was successful.

17.3. Describe the following card game in GDL-II.
A deck initially has 13 cards: |2, |3, …, |10, |J, |Q, |K, |A. Two players, alice
and bob, are randomly dealt one card each from the deck. e first player then decides
whether to bet or fold.

• If she folds, the second player gets $5.
• If she bets, the second player can decide to fold, check, or raise.

– If he folds, neither player gets anything.
– If he checks, the player with the higher card gets $5.
– If he raises, the first player can either fold or check.

* If she folds, the second player gets $5.
* If she checks, the player with the higher card wins $10.

e players get to see their opponent’s card immediately after one of them has decided
to check. If, however, the round ended with one of them folding, then the players are not
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informed about each other’s hand. e game continues with two new cards dealt from the
reduced deck, but now bob has to make the initial choice between betting and folding.
e game ends after six rounds, when there is only one card left in the deck. e player
wins who has amassed the higher total amount.

17.4. Extend the game description from Exercise 3 by giving both players $100 at the start.
When betting or raising, the players can decide how much they want to put in. When
they check they have to match the previous bet (or raise, respectively), or go all-in. e
minimum opening bet is always $5. e game ends prematurely when one of the players
went broke.

17.5. Invent a simple (but non-trivial) game with imperfect information of your own. Describe
it in English. Write a GDL-II rulesheet for the game. Give a move history that takes the
game from the initial state to a terminal state. Use the GDL stepper to show that your
history works.

17.6. Implement the stochastic simulation of possible states as a bolt-on solution to your GDL
player. Try your player out on one of the standard GDL-II games.
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C H A P T E R 18

Games withHistorical
Constraints

18.1 INTRODUCTION
One of the distinctive features of GDL is its Markov character—the truth values of all state-
dependent conditions are defined entirely in terms of the truth values of conditions on the current
state and/or the immediately preceding state. ere is no explicit dependence on other states of
the world.

In some games and in many real-word applications, it is more convenient to define state-
dependent relations (such as legality, reward, and termination) in terms of multiple preceding
states. For example, in Chess, we need to express the fact that a player may not castle if it has
moved either its king or rook on any preceding step.

Now, for finite games, it is always possible to transform such conditions into Markov con-
ditions by adding information to the state of the game. Unfortunately, this is sometimes incon-
venient; and in many real-world applications, this is not possible, since the state description is
often controlled by others. In such cases, we need a language to allow us to express non-Markov
conditions directly, without such state modifications.

In this chapter, we examine a language called SystemDefinition Language (or SDL), which
supports this level of expressiveness. In the next section, we give the details of the language. We
then show how to use it in the context of a couple of examples.

18.2 SYSTEMDEFINITIONLANGUAGE
System Description Language (or SDL) is a non-Markov variant of GDL. Like GDL, descrip-
tions take the form of open logic programs. e only difference is in the game-independent vo-
cabulary, and even this is very similar to that of GDL.

First of all, SDL includes all of the structural relations in GDL without change.

role(r) means that r is a role in the game.
base(p) means that p is a base proposition in the game.
percept(r,a) means that p is a percept for role r .
input(r,a) means that a is an action for role r .

To these basic structural relations, we add a couple of relations for talking about steps.
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step(s) means that s is a step.
successor(s1,s2) means that step s1 comes immediately before step s2.

e relations true, sees, does, legal, goal, and terminal are all the same as in GDL
except that each is augmented with a step argument.

true(p,s) means that the proposition p is true on step s.
sees(r,p,s) means that role r sees percept p on step s.
does(r,a,s) means that role r performs action a on step s.
legal(r,a,s) means it is legal for role r to play action a on step s.
goal(r,n,s) means that player has utility n for player r on step s.
terminal(s) means that the state on step s is terminal.

And that’s it; that’s the entire language. We no longer need init and next. Why? e truth
of propositions in the initial state can be stated using truewith the first step as the step argument;
and update rules, formerly written using next, can be stated using true and successor. Just how
this works should become clear from the examples given below.

18.3 EXAMPLE–TIC-TAC-TOE

As an illustration of SDL, let’s see how we can use the language to describe the game of Tic-Tac-
Toe. As we have seen, we can describe the game adequately in GDL. e point of rewriting the
description in SDL is to underscore the similarities and differences.

In SDL, as in GDL, we use the ternary function constant cell together with a row m

and a column n and a mark w to designate the proposition that the cell in row m and column n
containsw wherew is either an x or an o or a b (for blank); and we use the unary function constant
control to state that it is that role’s turn to mark a cell. e binary function mark together with
a row m and a column n designates the action of placing a mark in row m and column n, and the
object constant noop refers to the act of doing nothing.

e first step in writing an SDL description is the same as that in GDL: we enumerate
the structural components of the game—roles, base propositions, percepts (there are none in this
case), and actions. In SDL, these descriptions are exactly the same as in GDL.

role(white)
role(black)

base(cell(X,Y,W)) :-
index(X) &
index(Y) &
filler(W)
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base(control(W)) :-
role(W)

input(W,mark(X,Y)) :-
role(W) &
index(X) &
index(Y)

input(W,noop) :-
role(W)

index(1)
index(2)
index(3)

filler(x)
filler(o)
filler(b)

To these basic components, we add a set of steps and a suitable successor function. In this
case, we use the natural numbers 1, …, 10 with their usual successor function.

step(1)
step(2)
step(3)
step(4)
step(5)
step(6)
step(7)
step(8)
step(9)
step(10)

successor(1,2)
successor(2,3)
successor(3,4)
successor(4,5)
successor(5,6)
successor(6,7)
successor(7,8)
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successor(8,9)
successor(9,10)

e initial state of the game is written using the true relation and the first step (in this
case the natural number 1).

true(cell(1,1,b),1)
true(cell(1,2,b),1)
true(cell(1,3,b),1)
true(cell(2,1,b),1)
true(cell(2,2,b),1)
true(cell(2,3,b),1)
true(cell(3,1,b),1)
true(cell(3,2,b),1)
true(cell(3,3,b),1)
true(control(white),1)

e update rules are basically the same as in GDL. ere are just three differences. (1) We
add a step argument to does and true. (2) We replace next with true and add a different step
argument. (3) We use successor to relate successive steps.

true(cell(I,J,x),N) :-
does(white,mark(I,J),M) &
successor(M,N)

true(cell(I,J,o),N) :-
does(black,mark(I,J),M) &
successor(M,N)

true(cell(K,L,b),N) :-
does(W,mark(I,J),M) &
true(cell(K,L,b),M) & distinct(I,K) &
successor(M,N)

true(cell(K,L,b),N) :-
does(W,mark(I,J),M) &
true(cell(K,L,b),M) & distinct(J,L) &
successor(M,N)

true(cell(I,J,Z),N) :-
does(W,mark(I,J),M) &
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true(cell(I,J,Z),M) & distinct(Z,b) &
successor(M,N)

true(control(white),N) :-
true(control(black),M) &
successor(M,N)

true(control(black),N) :-
true(control(white),M) &
successor(M,N)

Our view relations are the same except that, once again, we add step arguments. In this
case, we do not need the successor relation since the same step is involved in all cases.

row(M,W,S) :-
true(cell(M,1,W),S) &
true(cell(M,2,W),S) &
true(cell(M,3,W),S)

column(N,W) :-
true(cell(1,N,W)) &
true(cell(2,N,W)) &
true(cell(3,N,W))

diagonal(W) :-
true(cell(1,1,W)) &
true(cell(2,2,W)) &
true(cell(3,3,W))

diagonal(W) :-
true(cell(1,3,W)) &
true(cell(2,2,W)) &
true(cell(3,1,W))

line(W,N) :- row(J,W,N)
line(W,N) :- column(K,W,N)
line(W,N) :- diagonal(W,N)

open(N) :- true(cell(J,K,b),N)
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Finally, we define the notions of legality, goal, and termination using our augmented ver-
sions of these relations.

legal(W,mark(X,Y),N) :-
true(cell(X,Y,b),N) &
true(control(W),N)

legal(white,noop,N) :-
true(control(black),N)

legal(black,noop,N) :-
true(control(white),N)

goal(white,100,N) :- line(x,N) & ~line(o,N)
goal(white,50,N) :- ~line(x,N) & ~line(o,N)
goal(white,0,N) :- ~line(x,N) & line(o,N)

goal(black,100,N) :- ~line(x,N) & line(o,N)
goal(black,50,N) :- ~line(x,N) & ~line(o,N)
goal(black,0,N) :- line(x,N) & ~line(o,N)

terminal(N) :- line(W,N)
terminal(N) :- step(N) & ~open(N)

And that’s it. Everything is pretty much the same as before. We have just made explicit the
Markov character of the game description.

18.4 EXAMPLE–CHESS
In order to see how we can use SDL to encode non-Markov constraints, let’s look at the game
of Chess and, in particular, the legality conditions for castling and en passant captures. While it
is possible to describe these conditions in GDL, that description requires that we include some
base propositions specifically for this purpose. In SDL, we can describe the conditions directly,
without these additional base propositions.

As in our description of Tic-Tac-Toe, we begin with a description of the structural elements
of the game—roles, base propositions, percepts (again none), actions, and steps. Here, we have
limited the game to 100 steps.

role(white)
role(black)
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base(cell(I,J,W)) :-
file(I) &
rank(J) &
filler(W)

base(control(W)) :-
role(W)

input(W,move(I,J,K,L)) :-
role(W) &
file(I) &
rank(J) &
file(K) &
rank(L)

input(W,castleshort) :-
role(W)

input(W,castlelong) :-
role(W)

input(W,noop) :-
role(W)

file(a)
file(b)
file(c)
file(d)
file(e)
file(f)
file(g)
file(h)

rank(1)
rank(2)
rank(3)
rank(4)
rank(5)
rank(6)
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rank(7)
rank(8)

filler(wk)
filler(wq)
filler(wb)
filler(wn)
filler(wr)
filler(wp)
filler(bk)
filler(bq)
filler(bb)
filler(bn)
filler(br)
filler(bp)
filler(b)

step(1)
step(2)

...
step(99)
step(100)

successor(1,2)
successor(2,3)

...
successor(98,99)
successor(99,100)

ere two types of castling in Chess: castling on the king side (castleshort) and castling
on the queen side (castlelong). In either case, the corresponding rook is moved to the cell
adjacent to the king, and the king is placed on the other side of the rook.

Castling is a very useful move in many situations. However, it can only be done if certain
conditions are met. First, the king and the rook must be in their original positions and must not
have been previously moved. Second, the spaces between the king and the rook must be clear.
ird, the spaces from the initial position of the king to the final position must not be under
attack.

Let’s formalize the first of these conditions in the case of white castling on the king side.
(e other conditions pose no special difficulties; and, for the sake of simplicity, we ignore them.)
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e corresponding definition of legality for white to castleshort is shown below. e
move is legal provided that the king and the rook are on their initial squares and the squares in
between are empty and neither the king nor the rook have been moved.

legal(white,castleshort,N) :-
true(cell(e,1,wk),N) &
true(cell(f,1,b),N) &
true(cell(g,1,b),N) &
true(cell(h,1,wr),N) &
~moved(wk,N) &
~moved(wr,N)

e white king has been moved on step N if there was any move from cell e1 on that step
or any preceding step. e king-side white rook has been moved on step N if there was any move
from cell h1 on that step or any preceding step. Finally, a piece has been moved on a step if it was
moved on any preceding step.

moved(wk,N) :-
does(W,move(e,1,K,L),N)

moved(wr,N) :-
does(W,move(h,1,K,L),N)

moved(P,N) :-
moved(P,M) &
successor(M,N)

is definition of legality guarantees that, if either the white king or the king-side white
rook have been moved, then castling on the king side is not legal. Significantly, the condition is
stated using just the state of the board and the history of moves, without any extraneous propo-
sitions in the state description.

Now, on to en passant captures. If a pawn has not been moved, a player has the option of
advancing the pawn either one or two steps forward. If it chooses to advance its pawn two steps,
it may move through a cell which is threatened by an opposing pawn. In this case, the opponent
has the option of taking the pawn even though it is no longer on a threatened square.

e conditions for en passant captures are strict. e player must have moved the pawn for
the first time, and it must have made that move on the preceding step. We can formalize these
conditions in SDL as shown below. Here, for simplicity, we have shown the conditions for the
black player to make the en passant capture, and we have shown only the case of a pawn move
on the e file and a capture from the f file. (Expanding this for the general case is messy but
straightforward.)
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legal(black,move(f,4,e,3),N) :-
does(white,move(e,2,e,4),M) &
successor(M,N)

Although, in this example, the rule concerns only two states, it still requires SDL because it
defines legality in one state on the basis of a move in the preceding state rather than on conditions
in the current state, as in GDL.

is definition guarantees the desired legality conditions; and, as with the preceding ex-
ample, the condition is stated using just the state of the board and the history of moves, without
any extraneous propositions in the state description.
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C H A P T E R 19

Incomplete GameDescriptions
19.1 INTRODUCTION
In our discussion of General Game Playing thus far, we have assumed that game descriptions
are complete. is does not mean that players have full information. For example, in multiple-
player games, they do not know the moves of other players before they make those moves; and,
in the case of imperfect information games, they do not even know the exact state of the world,
only what they can perceive of it. However, in our work thus far, we have assumed that the game
rules are complete—they completely define the initial state, legality, percepts, update, goals, and
termination in terms of states and actions.

Unfortunately, in real-world settings, complete information is not always available. In some
cases, agents do not know all of the effects of their actions; they may not even know exactly which
actions are legal or what their rewards are or when a game is over.

Incomplete Game Description Language (or IGDL) is a variant of GDL designed to facil-
itate the encoding of incomplete game descriptions. In place of rules that define concepts exactly,
IGDL has logical sentences that constrain concepts in more or less detail. (Spoiler for those
with background in Logic and Logic Programming—the essential difference between GDL and
IGDL is that, in IGDL, there is no negation as failure.)

In this chapter, we define IGDL and illustrate its use in writing incomplete descriptions
of various sorts. In the next section, we introduce Relational Logic, which is the logical basis for
IGDL. In the section after that, we define IGDL in Relational Logic in much the same way
that we defined GDL in terms of Logic Programming. We then show how to use IGDL in the
context of some examples. Finally, we talk about game management and game play.

19.2 RELATIONALLOGIC
e basic elements of Relational Logic are the same as those of Logic Programming. We have
the same vocabulary—object constants, function constants, relation constants, and variables. We
define terms in exactly the same way—as object constants, variables, and functional terms. And
we define atomic sentences and literals in the same way as well.

e main difference between the language of Relational Logic and the language of Logic
Programming is that, in Relational Logic, we write (1) logical sentences and (2) quantified sen-
tences instead of rules.

ere are five types of logical sentences in Relational Logic—negations, conjunctions, dis-
junctions, implications, and equivalences.
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A negation consists of the negation operator ~ and a simple or compound sentence, called
the target. For example, given the sentence p(a), we can form the negation of p(a) as shown
below.

(~p(a))

A conjunction is a sequence of sentences separated by occurrences of the & operator and en-
closed in parentheses, as shown below.e constituent sentences are called conjuncts. For example,
we can form the conjunction of p(a) and q(a,a) as follows.

(p(a) & q(a,a))

A disjunction is a sequence of sentences separated by occurrences of the | operator and
enclosed in parentheses. e constituent sentences are called disjuncts. For example, we can form
the disjunction of p(a) and q(a,a) as follows.

(p(a) | q(a,a))

An implication consists of a pair of sentences separated by the D> operator and enclosed
in parentheses. e sentence to the left of the operator is called the antecedent, and the sentence
to the right is called the consequent. e implication of p(a) and q(a,a) is shown below.

(p(a) D> q(a,a))

A biconditional, is a combination of an implication and a reverse implication. For example,
we can express the biconditional of p(a) and q(a,a) as shown below.

(p(a) <D> q(a,a))

Note that the constituent sentences within any compound sentence can be either simple
sentences or compound sentences or a mixture of the two. For example, the following is a legal
compound sentence.

((p(a) | q(a,a)) D> r(a))

A quantified sentence in Relational Logic is formed from a quantifier, a variable, and an em-
bedded sentence. e embedded sentence is called the scope of the quantifier. ere are two types
of quantified sentences in Relational Logic, viz. universally quantified sentences and existentially
quantified sentences.

A universally quantified sentence is used to assert that all objects have a certain property. For
example, the following expression is a universally quantified sentence asserting that, if p holds of
an object, then q holds of that object and itself.

(AX:(p(X) D> q(X,X))

An existentially quantified sentence is used to assert that some object has a certain property.
For example, the following expression is an existentially quantified sentence asserting that there
is an object that satisfies p and, when paired with itself, satisfies q as well.
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(EX:(p(X) & q(X,X))

Note that quantified sentences can be nested within other sentences. For example, in the
first sentence below, we have quantified sentences inside of a disjunction. In the second sentence,
we have a quantified sentence nested inside of another quantified sentence.

(AX:p(X)) | (EX:q(X,X))
(AX:(EY:q(X,Y)))

One disadvantage of our notation, as written, is that the parentheses tend to build up and
need to be matched correctly. It would be nice if we could dispense with parentheses, e.g., sim-
plifying the preceding sentence to the one shown below.

p(a) | q(a,a) D> r(a)

Unfortunately, we cannot do without parentheses entirely, since then we would be unable
to render certain sentences unambiguously. For example, the sentence shown above could have
resulted from dropping parentheses from either of the following sentences.

(p(a) | q(a,a)) D> r(a)
p(a) | (q(a,a) D> r(a))

e solution to this problem is the use of operator precedence. e following table gives a
hierarchy of precedences for our operators. e ~ operator has higher precedence than &; & has
higher precedence than |; and | has higher precedence than => and <=>.

~
&
|

=> <=>

In unparenthesized sentences, it is often the case that an expression is flanked by opera-
tors, one on either side. In interpreting such sentences, the question is whether the expression
associates with the operator on its left or the one on its right. We can use precedence to make
this determination. In particular, we agree that an operand in such a situation always associates
with the operator of higher precedence. When an operand is surrounded by operators of equal
precedence, the operand associates to the right.

As with Logic Programming, the Herbrand base for Relational Logic language is the set
of all ground relational sentences that can be formed from the constants of the language. Said
another way, it is the set of all sentences of the form r.t1; : : : ; tn), where r is an n-ary relation
constant and t1; : : : ; tn are ground terms.

A truth assignment for a Relational Logic language is a function that maps each ground
relational sentence in its Herbrand base to a truth value. For example, the truth assignment de-
fined below is an example for the case of the language with object constants and b, unary relation
constant p, and binary relation constant q.
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p(a) ! 1
p(b) ! 0
q(a,a) ! 1
q(a,b) ! 0
q(b,a) ! 1
q(b,b) ! 0

Once we have a truth assignment for the ground relational sentences of a language, the
semantics of our operators prescribes a unique extension of that assignment to the complex sen-
tences of the language. A truth assignment satisfies a negation ~� if and only if it does not satisfy
�. A truth assignment satisfies a conjunction (�1& ... & �n) if and only if it satisfies every �i . A
truth assignment satisfies a disjunction (�1| ... | �n) if and only if it satisfies at least one �i . A
truth assignment satisfies an implication (� => ) if and only if it does not satisfy � or does satisfy
 . A truth assignment satisfies an equivalence (� <=>  ) if and only if it satisfies both � and  
or it satisfies neither � nor  .

In order to define satisfaction of quantified sentences, we need the notion of instances. An
instance of an expression is an expression in which all variables have been consistently replaced by
ground terms. Consistent replacement here means that, if one occurrence of a variable is replaced
by a ground term, then all occurrences of that variable are replaced by the same ground term.

A universally quantified sentence is true for a truth assignment if and only if every instance
of the scope of the quantified sentence is true for that assignment. An existentially quantified
sentence is true for a truth assignment if and only if some instance of the scope of the quantified
sentence is true for that assignment.

As an example of these definitions, consider the sentence AX:(p(X) => q(X,X)). What is
the truth value under the truth assignment shown above? According to our definition, a universally
quantified sentence is true if and only if every instance of its scope is true. For this language, with
object constants a and b and no function constants, there are just two instances. See below.

p(a) => q(a,a)
p(b) => q(b,b)

We know that p(a) is true and q(a,a) is true, so the first instance is true. q(b,b) is false,
but so is p(b) so the second instance is true as well. Since both instances are true, the original
quantified sentence is true.

Now let’s consider a case with nested quantifiers. Is AX:EY:q(X,Y) true or false for the
truth assignment shown above? As before, we know that this sentence is true if every instance of
its scope is true. e two possible instances are shown below.

EY:q(a,Y)
EY:q(b,Y)



19.3. INCOMPLETEGAMEDESCRIPTIONLANGUAGE 203

To determine the truth of the first of these existential sentences, we must find at least one
instance of the scope that is true. e possibilities are shown below. Of these, the first is true; and
so the first existential sentence is true.

q(a,a)
q(a,b)

Now, we do the same for the second existentially quantified. e possible instances follow.
Of these, again the first is true; and so the second existential sentence is true.

q(b,a)
q(b,b)

Since both existential sentences are true, the original universally quantified sentence must
be true as well.

We say that a truth assignment satisfies a sentence with free variables if and only if it satisfies
every instance of that sentence. A truth assignment satisfies a set of sentences if and only if it
satisfies every sentence in the set.

19.3 INCOMPLETEGAMEDESCRIPTIONLANGUAGE
IGDL is not so much a language as a family of languages. It has multiple dialects - one for
each of the various dialects of GDL. ere is IGDL corresponding to GDL; there is IGDL-II,
corresponding to GDL-II; and there is ISDL, corresponding to SDL.

Given one of these dialects of GDL, the IGDL variant is obtained using the language
of Relational Logic in place of the language of Logic Programming. In other words, instead of
writing rules, one writes logical sentences. Everything else remains the same.

We make this more concrete in the following sections by looking at various descriptions of
a single game. First, we look at Buttons and Lights written in GDL. We then look at a complete
description of the game written in IGDL-II. And then we look at an incomplete description
written in IGDL-II. Finally, we discuss game management and game play with incomplete de-
scriptions.

19.4 BUTTONSANDLIGHTSREVISITED
In this section, we return to the game of Buttons and Lights. Recall that, in ordinary Buttons
and Lights, there are three base propositions (the lights) and three actions (the buttons). See
below. Pushing the first button in each group toggles the first light; pushing the second button in
each group interchanges the first and second lights; and pushing the third button in each group
interchanges the second and third lights. Initially, the lights are all off. e goal is to turn on all
of the lights. e game terminates on step 7 (after six moves).

e ordinary GDL for this game is shown below. ere is just one role, here called robot.
ere are three base propositions, one percept, three actions, and seven steps (with the usual
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Figure 19.1: Buttons and lights.

successor relation). e robot can see proposition q whenever it is true. All three actions are legal
in all states. e update rules, goal, and termination are as just described.

role(robot)

base(p)
base(q)
base(r)

percept(robot,q)

input(robot,a)
input(robot,b)
input(robot,c)

step(1)
step(2)
step(3)
step(4)
step(5)
step(6)
step(7)

successor(1,2)
successor(2,3)
successor(3,4)
successor(4,5)
successor(5,6)
successor(6,7)

sees(q) :- true(q)
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legal(robot,a)
legal(robot,b)
legal(robot,c)

next(p) :- does(robot,a) & ~true(p)
next(p) :- does(robot,b) & true(q)
next(p) :- does(robot,c) & true(p)
next(q) :- does(robot,a) & true(q)
next(q) :- does(robot,b) & true(p)
next(q) :- does(robot,c) & true(r)
next(r) :- does(robot,a) & true(r)
next(r) :- does(robot,b) & true(r)
next(r) :- does(robot,c) & true(q)

goal(robot,100) :- true(p) & true(q) & true(r)
goal(robot,0) :- ~true(p)
goal(robot,0) :- ~true(q)
goal(robot,0) :- ~true(r)

terminal :- true(7)

In playing games with incomplete descriptions, the game manager starts with a complete
description, typically encoded in GDL, like the one shown here. However, the players are given
only partial descriptions. ese partial descriptions are written in IGDL or IGDL-II or ISDL.
In the next section, we look at a complete description of Buttons and Lights written in IGDL-II;
and in the section after that we look at an incomplete description.

19.5 COMPLETEDESCRIPTIONOFBUTTONSAND
LIGHTS

e first step in writing an IGDL-II description is the same as for GDL, GDL-II, or SDL: we
enumerate the structural components of the game—roles, base propositions, percepts, actions,
and steps. In almost all cases, these descriptions are complete, as in this case.

e IGDL-II description of these structural components is shown below. e main differ-
ence here is that we have written negative sentences for each relation to tell us what is not true.
In Logic Programming, this is not necessary, since anything that is not known to be true there is
assumed to be false. In incomplete descriptions, we cannot make this assumption. If we do not
know something, it is not necessarily false; we just do not know whether it is true or false. So, we
need to be explicit about the things we know to be false.
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role(robot)
X!=robot => ~role(X)

base(p)
base(q)
base(r)
X!=p & X!=q & X!=r => ~base(X)

percept(robot,q)
X!=robot | Y!=q => ~percept(X,Y)

input(robot,a)
input(robot,b)
input(robot,c)
X!=robot | Y!=a & Y!=b & Y!=c => ~input(X,Y)

step(1)
step(2)
step(3)
step(4)
step(5)
step(6)
step(7)
X!=1 & X!=2 & X!=3 & X!=4 & X!=5 & X!=6 & X!=7 => ~step(X)

successor(1,2)
successor(2,3)
successor(3,4)
successor(4,5)
successor(5,6)
successor(6,7)
(X!=1 | Y!2) & ... & (X!=6 | Y!7) => ~successor(X,Y)

e other components of the game description can be formalized in the same way. See
below. All lights are off in the initial state. e player can see its single percept. All three actions
are legal. e update rules are the same. And the goal and termination rules are the same.
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~init(X)

true(q) <=> sees(q)
X!=q => ~sees(X)

legal(robot,a)
input(robot,b)
input(robot,c)
X!=robot | Y!=a & Y!=b & Y!=c => ~legal(X,Y)

next(p) <=>
does(robot,a) & ~true(p) |
does(robot,b) & true(q) |
does(robot,c) & true(p)

next(q) <=>
does(robot,a) & true(q) |
does(robot,b) & true(p) |
does(robot,c) & true(r)

next(r) <=>
does(robot,a) & true(r) |
does(robot,b) & true(r) |
does(robot,c) & true(q)

X!=p & X!=q & X!=r => ~next(X)

goal(robot,100) <=> true(p) & true(q) & true(r)
goal(robot,0) <=> ~true(p) | ~true(q) | ~true(r)
X!=robot | (Y!100 & Y!=0) => ~goal(X,Y)

terminal <=> true(7)

e sentences here are a little different from those in the GDL description. However, with
a little reflection on the semantics of GDL-II and IGDL-II, it is easy to see that they describe
exactly the same game.
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19.6 INCOMPLETEDESCRIPTIONOFBUTTONSAND
LIGHTS

As a simple example of an incomplete description written in IGDL-II, consider a simple variation
of Buttons and Lights in which the players know everything except the initial state of the game.

To be more precise, we take all of the sentences from Section 19.5, with the exception of
the sentence asserting that none of the base propositions are true in the initial state. Removing
this sentence means that the player starts the game in any one of eight possible states.

Of course, once the player gets a percept, i.e., it sees whether q is true or false, this ambiguity
is cut down to just four states. Unfortunately, in this situation there is still no guaranteed solution
in the allowed number of steps. ere are just too many cases to consider.

We can make things a little better by giving the player a bit more information. Let’s say we
tell the player that proposition p and proposition q have the same initial value. is can be done
by augmenting the description with a sentence like the one shown below.

init(p) <=> init(q)

With this additional information, the player knows that the game starts in one of four
possible states. Once it is given its initial percept, it can cut this down to just two initial states.
And, by clever play, it can then solve the problem despite the residual ambiguity, as described in
the next section.

19.7 PLAYINGBUTTONSANDLIGHTSWITHAN
INCOMPLETEDESCRIPTION

Game management and play with incomplete descriptions is a little different from management
and play with complete information.

First of all, the manager and the players typically have different descriptions of the game.
e manager has a complete description, like the one in Sections 19.4 and 19.5. is is necessary
so that it can simulate the game accurately. However, the players have only partial descriptions,
like the one in Section 19.6. In some cases, it is even possible for different players to have different
descriptions.

Second, our usual techniques for game play do not necessarily work. For example, with
incomplete descriptions, the players may not know the initial state exactly (as is the case in the
description of Section 19.6). Or they may know the initial state but not be able to determine a
unique successor state, given limited information about the update rules for the game. ey may
not even know in all cases whether the game is over.

Dealing with limitations of these sorts means that players must keep open multiple options
on state (as in playing games in IGDL-II). Also, they must use the description in new and inter-
esting ways to extract as much information from the description as possible, possibly combining
from multiple time steps.
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To illustrate these ideas, let’s consider the sort of computation necessary in the context of
the incomplete game description given in Section 19.6.

When the game begins, the player is given its percept and learns that q is false. From this
and the partial constraint on init, it knows that p must also be false. It still does know whether
r is true or false, so there are two possible states to consider. See below.

Figure 19.2: Possible states of Buttons and Lights on step 1.

ere are several ways to proceed in this situation. In one approach, the player presses the
a button to make p true, and then it presses the b button to interchange p and q. is makes p
false and q true.

Figure 19.3: Possible states of Buttons and Lights on step 3.

On the third step, it presses the c button to interchange q and r. is makes r true and
gives q the value of r.

Figure 19.4: Possible states of Buttons and Lights on step 4.

Now, if q is false after this operation, then the player knows that r was false in the initial
state. In this case, it needs to press a again, followed by b, followed by a to get all three lights on.

If q is true after interchanging with r, then the player just needs to press a to make p true,
at which point all three lights are on. It can then press b or c a couple of times to get to step 7.
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e challenge in building players for IGDL descriptions is making them able to use con-
straints that can help it to infer as much information about the state as possible from their per-
ceptual inputs and the known constraints. In some cases, like this one, the job is easy. In other
cases, especially with ISDL, the constraints may involve reasoning about multiple time steps, and
the process can be extremely complex.
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C H A P T E R 20

AdvancedGeneral Game
Playing

20.1 INTRODUCTION
Although we have looked at a few variations on traditional GGP, the variations have been rel-
atively minor. Over the years, researchers have proposed more extreme variants. In this chapter,
we briefly describe some of the more popular proposals, viz. Temporal General Game Playing,
Inductive General Game Playing, Really General Game Playing, and finally Enhanced General
Game Playing.

20.2 TEMPORALGENERALGAMEPLAYING
In traditional General Game Playing, players are given two clocks—one for initialization and one
for game play—and they are both hard limits. Over the years, members of the community have
proposed other sorts of timing restrictions.

One possibility is to replace the hard time limits on each step with a cumulative clock, with
the idea that each player stops its clock as soon as it replies to the game manager’s play request.
is way, players can conserve their time for portions of a match requiring more attention. e
downside of cumulative time is that players must decide for themselves how to allocate their time;
and this can add to the difficulty of building effective systems.

A different approach is to connect playing timewith reward. For example, a playermight get
a reward that depends not just on the game state but also on the amount of time spent computing
its moves. Again, this is a complication, but it allows us to model some real-world applications
that do not fit the fixed clock or cumulative time models.

Finally, some people have proposed making the world dynamic, so that the world state
changes while the players are contemplating their moves, placing emphasis on economy of delib-
eration and careful timing of action.

20.3 INDUCTIVEGENERALGAMEPLAYING
In traditional General Game Playing, the players are given game descriptions at runtime. Usually,
these game descriptions are complete; and, even then, the task of playing such games is difficult.
As we have seen, in some cases, the descriptions are incomplete; and this complicates the process
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of playing games. Inductive General Game is a variant of General Game Playing that is even
more difficult.

In Inductive General Game Playing (IGGP), the players are given no rules at all. In the
place of rules, they are provided with a corpus of records for game matches. Given only this corpus
of data, they must figure out the rules of the game for themselves; and then, in traditional GGP
fashion, they must use these rules to play the games effectively.

One thing that makes the job a little easier is that there is no noise, i.e., no errors in the
match records. All matches are correctly played games. At the same time, the job is complicated
by the fact that there are no negative examples, i.e., match records that do not correspond to
correctly played games. Of course, both of these limitations can easily be rectified. It is simple to
add in some false positives and no problem at all in supplying negative examples as well, with or
without false negatives.

20.4 REALLYGENERALGAMEPLAYING
Really General Game Playing (RGGP) extends this progression of difficulty one step further. In
RGGP, players are given structural information about their games and a simple utility sensor but
that is all. ey know the roles, the percepts, and the actions of each player; but that is all. ey
are not even given samples of games.

In RGGP, players explore the world, reading their utility sensors. ey must then develop
theories of how the world works and use those theories to optimize the readings of their utility
sensors.

20.5 ENHANCEDGENERALGAMEPLAYING
Finally, some have proposed a variant of GGP with more information rather than less. is is
often called Enhanced General Game Playing (EGGP).

e extra information in EGGP might included identity information about their oppo-
nents. With this information, players can do meaningful opponent modeling and re-use that
analysis from one match to another.

e extra information in EGGP might also include tournament information, e.g., whether
it is a cumulative score tournament, a single elimination ladder, a double elimination ladder, and
so forth, so that it can strategize about how to proceed. For example, in a cumulative score tourna-
ment, a player should try to maximize its return on every game, whereas in an elimination ladder,
all it needs to do is to beat its opponent.

In its most general form, EGGP is interesting because a player’s decisions do not end
when a match is over. It is playing a bigger game, which can involve the multiple matches of a
tournament and even the results of multiple tournaments. For an EGGP player of this sort, its
entire existence constitutes one big game.
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