Metagaming

Overview

Metagaming is the process of analyzing and/or modifying a game during the startclock so as to improve play.

Classes of Metagaming Techniques:
- Creation of an Evaluation Function
- Game Optimization
- Materialization and Relational Optimization
- Game Reformulation
- Traditional Software Engineering
Evaluation Functions

Heuristic Search

Techniques so far are for blind search. In traditional approaches to game-playing, it is common to use evaluation functions to assess the quality of intermediate game states and, presumably, the likelihood of achieving the goal.

Example: piece count in chess.

In general game playing, the rules are not known in advance; and it is not possible to devise a guaranteed evaluation function without such rules.
Ideas for Evaluation Functions

Clune: maximize number of options

Novelty with reversibility

Distance to goal

Arguing for Mobility

Initial State: \(s_1 \)
Legal action \(a \) leads to state \(s_a \)
 Legal action \(a \) leads to state \(s_{aa} \)
 Legal action \(b \) leads to state \(s_{ab} \)
Legal action \(b \) leads to state \(s_b \)
 Legal action \(a \) leads to state \(s_{ba} \)

Terminal states are \(s_{aa}, s_{ab}, s_{ba} \)
One of these is a goal state.
Assume checking goalhood is very expensive.
Assume terminal states are equally probable as goals.
Game Optimization

Rule Ordering

Example:

\[
\text{anc}(X,Z) :- \text{parent}(X,Y) & \text{ancestor}(Y,Z) \\
\text{anc}(X,Y) :- \text{parent}(X,Y)
\]

Better Version:

\[
\text{anc}(X,Y) :- \text{parent}(X,Y) \\
\text{anc}(X,Z) :- \text{parent}(X,Y) & \text{ancestor}(Y,Z)
\]
Conjunct Ordering

Example:

\[\text{goal}(Y) :\text{-} \text{parent}(X,Y), \text{carpenter}(X), \text{senator}(Y) \]

Solution Set Sizes:

\[
\begin{align*}
|\text{senator}(Y)| &= 100 \\
|\text{carpenter}(X)| &= 100,000 \\
|\text{parent}(X,Y)|_x &= 2.3 \\
|\text{parent}(X,Y)|_y &= 2 \\
|\text{parent}(X,Y)| &= 500,000,000
\end{align*}
\]

Better Version:

\[\text{goal}(Y) :\text{-} \text{senator}(Y), \text{parent}(X,Y), \text{carpenter}(X) \]

Data Extraction

Original:

\[
\begin{align*}
\text{p}(10) :\text{-} &\text{ q}(a) \\
\text{p}(20) :\text{-} &\text{ q}(b) \\
\text{p}(30) :\text{-} &\text{ q}(c) \\
\text{q}(x) :\text{-} &\text{ ...}
\end{align*}
\]

Assumptions:

q is expensive to compute
as easy to generate answers as to check answers

New, Improved Version:

\[
\begin{align*}
\text{p}(x) :\text{-} &\text{ q}(x) \land \text{ r}(x,y) \\
\text{r}(a,10) \\
\text{r}(b,20) \\
\text{r}(c,30) \\
\text{q}(x) :\text{-} &\text{ ...}
\end{align*}
\]
Materialization and Relational Reformulation

Database Views

The ancestor relation a is the transitive closure of the parent relation p

\[a(x,y) \Leftarrow p(x,y) \]
\[a(x,y) \Leftarrow a(x,z) \land a(z,y) \]

The samefamily relation sf is true of all pairs of people that are relatives, i.e., that have a common ancestor.

\[sf(x,y) \Leftarrow a(z,x) \land a(z,y) \]
Using Materialized Views

\[a(x,y) \leftarrow p(x,y) \]
\[a(x,y) \leftarrow a(x,z) \land a(z,y) \]
\[sf(x,y) \leftarrow a(z,x) \land a(z,y) \]

If we materialize the views \(a \) or \(sf \) then we increase the computational efficiency of answering the query \(sf \).

If we do not materialize the views \(a \) or \(sf \) then we decrease the amount of database storage space (space economy).

What are the optimal views to materialize? Database reformulation gives answers.

Querying Data Faster: Ideas

How about precomputing all elementary queries?
- not always a great idea (materializing \textit{samefamily})
Querying Data Faster: Ideas

How about precomputing predefined views?
- not too good, either (materializing ancestor)

- materializing new views that are not already defined
 on the database: relational reformulation
May Need to Invent New Relations!

Ancestor a: $a(x,y) \iff p(x,y)$

$$a(x,y) \iff a(x,z) \land a(z,y)$$

Same family sf:

$$sf(x,y) \iff a(z,x) \land a(z,y)$$

New: $has\ parent$: $hp(x) \iff p(z,x)$

New: $founding\ father$: $ff(x,y) \iff a(x,y) \land \neg hp(x)$

New: a rewriting of sf in terms of ff:

$$sf(x,y) \iff ff(z,x) \land ff(z,y)$$

Reformulating Samefamily

Has family: $hp(x) \iff p(z,x)$

Founding father: $ff(x,y) \iff a(x,y) \land hp(x)$

A rewriting of sf in terms of ff: $sf(x,y) \iff ff(z,x) \land ff(z,y)$
Game Reformulation

Overview

Game Reformulation is transformation of a game into one or more different games that can be played more efficiently yet yield the same result.

Sample Methods:
- Sequential Independence - Bottleneck - Maze
- Parallel Independence - Hodgepodge
- Single player abstraction
- End game book to enlarge goal set - Checkers
- Symmetry - Tic-Tac-Toe
- Hierarchical Abstraction
Buttons and Lights

Pressing button \(a \) toggles \(p \).
Pressing button \(b \) interchanges \(p \) and \(q \).

Double Buttons and Lights

Pressing button \(aa \) toggles \(p \) and toggles \(s \).
Pressing button \(ac \) toggles \(p \), interchanges \(s \) and \(t \).
Pressing button \(bc \) interchanges \(p \) and \(q \), toggles \(s \).
Pressing button \(bd \) interchanges \(p \) and \(q \), \(s \) and \(t \).
Original Version

\[
\begin{align*}
p' &\leq ac \land -p \\
qu' &\leq ac \land q \\
s' &\leq ac \land -s \\
t' &\leq ac \land t \\
p' &\leq ad \land -p \\
qu' &\leq ad \land q \\
s' &\leq ad \land t \\
t' &\leq ad \land s
\end{align*}
\]

Factored Version

\[
\begin{align*}
p' &\leftarrow a \land -p \\
qu' &\leftarrow a \land q \\
p' &\leftarrow b \land q \\
qu' &\leftarrow b \land p \\
s' &\leftarrow c \land -s \\
t' &\leftarrow c \land t \\
s' &\leftarrow d \land t \\
t' &\leftarrow d \land s
\end{align*}
\]
Import and Export

Import:
- a :- ac
- a :- ad
- b :- bc
- b :- bd
- c :- ac
- c :- bc
- d :- ad
- d :- bd

Export:
- ac :- a & c
- ad :- a & d
- bc :- b & c
- bd :- b & d

Startclock Analysis

Find disconnected components of game graph by looking for rule dependencies.

p' <= ac & -p
q' <= ac & q
p' <= ad & -p
q' <= ad & q
p' <= bc & q
q' <= bc & p

Actions can be grouped according to behavior.

p' <= ac & -p
q' <= ac & q
p' <= bc & q
q' <= bc & p
p' <= ad & -p
q' <= ad & q
p' <= bd & q
q' <= bd & p
Traditional Software Engineering

Examples

Compile the Game Description into machine code
pre-indexed rules
variable bindings on the stack
specialized unification procedures

Specialized Data Structures
e.g. Make propositional net explicit
 1 bit per proposition
 Convert rules to bit operations
Celebrating AAAI's 25th Anniversary